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ABSTRACT

With the rapid advancement of social economies, intelligent transportation systems are gaining increasing atten-
tion. Central to these systems is the detection of abnormal vehicle behavior, which remains a critical challenge
due to the complexity of urban roadways and the variability of external conditions. Current research on detecting
abnormal traffic behaviors is still nascent, with significant room for improvement in recognition accuracy. To
address this, this research has developed a new model for recognizing abnormal traffic behaviors. This model
employs the R3D network as its core architecture, incorporating a dense block to facilitate feature reuse. This
approach not only enhances performance with fewer parameters and reduced computational demands but also
allows for the acquisition of new features while simplifying the overall network structure. Additionally, this research
integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions, optimizing the
relevance of features for the task at hand. For temporal analysis, a Bi-LSTM layer is utilized to extract and learn
from time-based data nuances. This research conducted a series of comparative experiments using the UCF-Crime
dataset, achieving a notable accuracy of 89.30% on our test set. Our results demonstrate that our model not only
operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.
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1 Introduction

With the rapid development of the national economy and the rapid growth of domestic car own-
ership, cars not only bring convenience to people’s travel but also bring many security risks. Effective
traffic system management is crucial for ensuring both the safety and efficiency of transportation.
In recent years, the rapid advancement of artificial intelligence across various sectors has prompted
researchers to explore AI-based methods for traffic system management. Intelligent Transportation
System (ITS) [1–3] is an important measure of traffic management, which can effectively integrate
advanced computer vision processing and communication technology into the entire traffic manage-
ment system. This integrated management system allows for the comprehensive, real-time, accurate,
and efficient monitoring and management of various types of vehicles, and it can also predict the
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future trajectories of traffic participants based on actual data [4]. As an important traffic management
technology, vehicle abnormal behavior detection is an indispensable part of intelligent transportation
system. On the one hand, vehicle abnormal behavior recognition technology can reduce the pressure
on traffic management personnel and reduce the waste of human resources. On the other hand, it can
enhance the efficiency, accuracy, and timeliness of traffic monitoring.

Vehicle abnormal behavior detection [5,6], a subset of traffic incident detection, identifies incidents
such as traffic violations and accidents. At present, the detection methods of vehicle abnormal behavior
are mainly based on video recognition. These methods [7,8] use cameras to capture real-time video
data of traffic, which is then analyzed through video and image processing to detect traffic flow or
to track and identify targets. The vehicle detection method based on video image processing offers a
large detection range and rich information. The detection system itself only needs to have a camera,
processor, and other basic units, the hardware equipment is simple, easy to install and maintain, cost-
effective, durable, and easy to upgrade. Therefore, traffic flow detection based on video images has
become a research focus worldwide.

Due to the complexity of urban road traffic conditions, mature vehicle behavior detection
algorithms are mainly applied to highways and expressways. However, most traffic accidents occur on
urban roads, where the environment is more prone to abnormal events, leading to severe consequences.
Therefore, the rapid and accurate detection of abnormal vehicle behaviors on urban roads is critical
for saving lives, reducing property losses, alleviating congestion, and providing timely warnings. To
address these challenges, we designed a new abnormal traffic behavior recognition model. The main
contributions of this paper are summarized as follows:

1. We use R3D as the backbone network for spatial feature extraction, and improve model
accuracy by fully learning 3D spatio-temporal features within input video frames.

2. Through experiments, we find a spatial feature extraction method that is more suitable for
abnormal behavior detection of surveillance video. We employ dense blocks to extract spatial
features from surveillance video. This allows the network to make the most of existing features
and learn new ones without adding additional computations. We then filter the noise using soft
thresholds and pass the extracted features to the next part of the network. The soft thresholds
are adaptable based on current traffic conditions, thus enhancing the network’s flexibility.

3. We use Bi-LSTM to receive spatial features extracted from the upper layer and further extract
temporal information from it. The training of Bi-LSTM further improves the recognition
ability of the network, and the recognition accuracy rate, and finally outputs the recognition
result.

4. The rest of this article is described below. Chapter 2 introduces the existing research methods
based on traditional methods and deep learning. The shortcomings and improvement direc-
tions of these methods are also pointed out. Chapter 3 describes the principles of the networks,
algorithms, and techniques used in this article. In Chapter 4, the data set used in this paper is
presented, and all the experiments are compared and analyzed.

2 Related Work

Vehicle abnormal behavior detection can be broadly classified into indirect and direct methods.
Among them, the indirect method is to use the ground sensor [9,10] to obtain changes in traffic
parameters and indirectly identify traffic events by using methods such as pattern recognition or
statistical analysis. This type of method is more suitable for traffic congestion events under high
traffic flow. However, due to the influence of the detector installation location, it is powerless in the
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recognition of vehicle abnormal behavior in other locations, such as illegal parking, speeding, vehicle
reversing, and other specific vehicle behavior. Thus, the indirect method cannot meet the diverse traffic
event recognition applications that occur on urban roads.

The method of directly identifying vehicle abnormal behavior events using video image processing
technology is called the direct method. With the development of image processing, pattern recognition,
and artificial intelligence technology, vehicle abnormal behavior recognition methods based on image
processing [11–13] can acquire road scene image information through visual sensors. Computer
image processing technology and pattern recognition technology are used to analyze the collected
images for real-time processing and extract traffic information. And the collected information is
transmitted to the clients such as the traffic control center through the network transmission system via
signal machines. It provides comprehensive and real-time traffic status information for urban traffic
management and control.

The direct method based on image processing has the advantages of high intuitiveness, good real-
time performance, and high reliability compared with the indirect method. Moreover, it can detect a
wide range of events, the variety of recognizable events is rich, and the events have repeatability and
reproducibility. Therefore, it has received wide attention from domestic and foreign research scholars.

Wang et al. combined time series analysis (TSA) with a Support Vector Machine (SVM) [14–16]
in 2013. The time series component predicts traffic volumes, and the SVM component detects events
based on real-time traffic volumes, predicted normal traffic volumes, and the difference between the
two. The results show that this algorithm has a high detection rate, but also a high false alarm rate,
and the neural network structure is too large, requiring large storage space and long computation
time. In 2019, Li et al. proposed a GAN-RF-SVM-based event detection model [17] under small
sample conditions. New event samples are generated using a generative adversarial network (GAN)
and variables are selected using a random forest (RF) algorithm. Finally, SVM is used as the event
detection model. This solves the problems of small sample size, unbalanced sample size, and poor real-
time performance in accident detection systems, and reduces the false alarm rate of traffic accident
detection. The main drawback of this algorithm is that the portability is poor and the performance of
testing detection on different road sections is significantly reduced. In the detection of traffic videos,
detecting small objects has always been one of the key challenges in vehicle detection. Li et al. [18]
proposed a novel multi-scale detection network based on a differential segmentation criterion, which
significantly improves the detection rate of small objects compared to traditional methods. The
implementation of indirect and direct methods requires data collection by detectors. To address the
issue of modern detectors’ poor adaptability to actual complex traffic environments, Zhang et al. [19]
introduced a Category-Induced Coarse-to-Fine Domain Adaptation Approach (C2FDA) method that
significantly enhances the adaptability of detectors in new, unseen domains.

Research-based on high-dimensional time series analysis and anomaly detection [20] is a new
development in recent years regarding the identification of anomalous traffic behaviors. The study
proposes a method to address the challenge of ensuring the reliability of vehicle systems in the face of
the growing complexity of modern vehicles. By combining a Multi-Layer Long Short Term Memory
(LSTM) network with an Autoencoder architecture (ML-LSTMAE), the approach accurately ana-
lyzes the operation of various vehicle subsystems through training an encoding-decoding scheme using
multivariate time series data. Additionally, the method utilizes a One-Class Support Vector Machine
(OCSVM) to analyze reconstruction errors and establish a support boundary to differentiate between
healthy and unhealthy states. Validation with real-world vehicle data and NASA bearing data confirms
the high accuracy and effectiveness of the proposed approach.
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3 Proposed Method
3.1 DRN Block

Based on previous experiments on deep learning, we can conclude that the recognition accuracy
of the network is related to the number of layers of the network. Generally, deeper networks tend to
perform better due to their increased learning capabilities. However, excessively deep networks are
prone to the vanishing gradient problem, where gradients diminish as they propagate back through
the layers during training. This issue can halt the updating of network parameters, leading to a decline
in recognition accuracy. To solve this problem, we introduced the residual block [21,22], as shown in
Fig. 1.

weight layer

weight layer

+

H(X) = F(X) + X
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Figure 1: Residual block

H(X) = F(X) + X is the objective function of the residual block. When the network has a vanishing
gradient, F(X) approaches 0 and the objective function can be approximated as H(X) = X. This
achieves a constant mapping of the output of the network to X, keeping the network as it is and
avoiding network degradation. Since the derivative of X has a value of 1, the derivative of H(X) is
always greater than or equal to 1 during the back-propagation of the network parameters. This avoids
the appearance of a vanishing gradient and allows the network parameters to be updated.

Traditional deep residual networks require a large number of convolutional layers to produce good
recognition results. However, as the number of convolutional layers increases, the network suffers from
an excessive number of parameters and high computational costs, which greatly increases the training
time of the network. In addition, traditional residual networks use a 2D convolution. This can only
extract spatial features in the image, and not extract temporal features in the video. For the network
to better understand the information in the video, we also need the network to extract the temporal
features. To solve the above problem, this paper uses a R3D network instead of 2D convolution and
incorporates dense block [23,24]. The Dense-R3D Network (DRN) is shown in Fig. 2.

As shown in the figure, we have added a dense block to the residual block. We let each group
of feature maps converge in the channel dimension before they enter the convolution layer. This
achieves feature reuse and allows the network to use a smaller number of features to achieve better
recognition results. In feature map convergence, we use concatenation in the channel dimension instead
of summation. And these new feature maps are necessary for the model to learn new features, we
cannot discard them. So even though each convolutional layer only outputs a very small number of
new feature maps, the model still produces a large number of parameters as the number of layers in
the network increases. And because for the feature maps to be connected in the channel dimension,
we need to ensure that the feature maps are of the same size. We cannot arbitrarily use convolution
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and pooling to change the size of the feature maps, so we use bottleneck layers at the end of the model
to uniformly change the size of the feature maps. As the network reuses the same feature map several
times, this makes the network prone to overfitting during training. Therefore, we use the Dropout to
make some parameters deactivate randomly during the training process. During the training phase,
certain parameters are made to stop working with a certain probability during the forward propagation
of the model, which can effectively avoid overfitting the model.

C3D C3D C C3D C C3D

C C

soft 
thresholding

C

+

Figure 2: DRN block

When classifying samples, there will inevitably be some noise in the samples, and the noise tends
to be different across samples even for the same dataset. Therefore, at the end of the block, we also
used the soft thresholding method [25]. By removing features with absolute values less than a certain
threshold and compressing features with absolute values greater than that threshold in the direction
of zero, as shown by Eq. (1).

y =

⎧⎪⎨
⎪⎩

x − τ x > τ

0 −τ ≤ x ≤ τ

x + τ x < −τ

(1)

As can be seen from the equation, the derivatives of soft thresholds are 0 and 1. So using this
method avoids the vanishing gradient and exploding gradient that occurs in deep learning algorithms.

To prevent the output of the soft threshold function from being all 0 or all not 0. we need to set
the thresholds all to positive values, and the values cannot be too large. At the same time, to have good
portability of the model, the thresholds should be adaptive. Each sample should have its independent
threshold value depending on its noise content, and the threshold value is different for each sample.
For example, sample A contains less noise, while sample B contains more noise in the same dataset.
Therefore, when performing soft thresholding, a larger threshold should be used for sample A and a
smaller one for sample B. The specific implementation process is shown in Fig. 3.

First, we take the absolute value of the input feature map, so that the feature map is guaranteed
to have all positive values. We record the resulting new feature map as A. Next, we sent A into a
small fully-connected network whose output layer is a Sigmoid function. Using a small number of
calculations, the output is normalized to a number between 0 and 1. We record this coefficient as α.
α × A is the final threshold. Using this method, the threshold is guaranteed to be positive and not too
large in value. Since the threshold for each sample is calculated from its feature map, different samples
have different thresholds. This gives the model a high degree of self-adaptability. This algorithm can
be understood as a special kind of attention mechanism. It notices features that are not relevant to the
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current task and removes them by soft thresholding. At the same time features that are relevant to the
current task are noticed and they have adapted appropriately.

Figure 3: Soft thresholding method

3.2 LSTM

Long short-term memory (LSTM) [26–28] network is an efficient recurrent neural network, which
can better extract temporal feature information. To better extract the temporal features over long
distances, we aggregate the output of the DRN block into the LSTM. One of the LSTM units is
shown in Fig. 4. The input feature map is rewritten in dimensionality to one dimension. To retain the
important features, we input all the features directly into the LSTM for feature extraction.

Figure 4: One unit of LSTM

The LSTM consists of three steps, forgetting part of the previous state, updating the memory cell,
and outputting the current state. The first step in LSTM is to decide what information we need to
forget. This process is done using a forgetting gate. This gate reads the information from ht−1 and xt

and outputs a value between 0 and 1 to each data in the cell state Ct−1. 1 means complete retention and
0 means complete discard, as shown in Eq. (2).

ft = σ(Wf × [ht−1, xt] + bf) (2)

The next step is to determine the information we need to update. σ determines the state we want
to update, and then tanh creates a new vector of candidate values. Ĉt will be added to the state and we
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use these two pieces of information to implement the state update as shown in Eqs. (3) and (4).

it = σ (Wi · [ht−1, xt] + bi) (3)

Ĉt = tanh(WC · [ht−1, xt] + bC) (4)

Then, Ct−1 is updated to Ct. We multiply the old state with ft and discard the information we have
previously identified as needing to be discarded. Then add it × Ĉt to form a new candidate value. And
updated according to the calculated candidate value, as shown in Eq. (5).

Ct = ft × Ct−1 + it × Ĉt (5)

Finally, the output of the cell state is determined by σ . We process the cell states with tanh and
multiply them with the output of σ . The output obtained is shown in Eqs. (6) and (7).

Ot = σ(WO [ht−1] + bO) (6)

ht = Ot × tanh(Ct) (7)

3.3 DRN + Bi-LSTM

The traditional LSTM can only predict the output of the next moment based on the previous
feature information. However, in some practical problems, the state at the current moment is not only
related to the previous state but may also be related to the future state. We also need to focus on
information after the current situation has occurred. Therefore, we build a Bi-LSTM [29,30] network,
as shown in Fig. 5, where both A and A’ denote an LSTM cell.

A1A0 A2 A3

A0' A1' A2' A3'

x0 x1 x2 x3

x0 x1 x2 x3

Softmax

Figure 5: Bi-LSTM network

The image information input undergoes multiple layers of convolution to yield a one-dimensional
feature vector, which is then used as the input for the Bi-LSTM. The first layer of the Bi-LSTM receives
the extracted features from the left side, allowing the model to understand the current situation by
learning the previous spatiotemporal features. The second layer receives the extracted features from
the right side, allowing the model to determine current events by future conditions. The second layer is
processed in the same way as the first layer but in the opposite direction. Finally, the results obtained
from the two layers are judged and analyzed.

The overall network model structure is shown in Fig. 6. We first use 3D convolution and max
pooling operations to transform the input video sequence images into feature maps containing
spatiotemporal information and to change the size of the sequence feature maps. Then, we process
the input feature maps using multiple DRN modules, dealing with the spatiotemporal information
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contained in the input feature maps. Since the 3D convolution used by DRN mainly processes short-
term temporal information, in order to further enhance the processing of temporal information of the
input and improve the model’s ability to handle long-term temporal information, Bi-LSTM is used in
the model to extract the temporal information from the sequence of input feature maps. By utilizing
the dual-layer structure of Bi-LSTM, bidirectional temporal information in the input feature maps is
extracted, and a comprehensive analysis is conducted on the two obtained results. Finally, recognition
and classification are carried out based on the processed spatiotemporal feature weight information,
and the recognition results are outputted. The specific structure of the network is shown in Table 1.

Bi-LSTM
Classifier

(FC)

Class1

Class2

Class3

Maxpool

C3D

Maxpool

C3D

Concat

DRN

DRN

DRN

.  .  .

Video

Input Output

Figure 6: Overall network model

Table 1 : Parameters of the overall network

Layer name Output size Network parameters

C3D_1 112 × 112 × 8 × 64 3 × 3 × 3, 64
Maxpool_1 56 × 56 × 8 × 64 2 × 2 × 1, 64
C3D_2 56 × 56 × 8 × 96 3 × 3 × 3, 96
Maxpool_2 28 × 28 × 4 × 96 2 × 2 × 2, 96

DRN_1 28 × 28 × 4 × 96

⎡
⎢⎢⎣

3 × 3 × 3, 32
3 × 3 × 3, 32
3 × 3 × 3, 32
1 × 1 × 1, 96

⎤
⎥⎥⎦

DRN_2 14 × 14 × 2 × 96

⎡
⎢⎢⎣

3 × 3 × 3, 32
3 × 3 × 3, 32
3 × 3 × 3, 32
1 × 1 × 1, 96

⎤
⎥⎥⎦

DRN_3 7 × 7 × 1 × 96

⎡
⎢⎢⎣

3 × 3 × 3, 32
3 × 3 × 3, 32
3 × 3 × 3, 32
1 × 1 × 1, 96

⎤
⎥⎥⎦

Concatenate 7 × 7 × 1 × 384 –
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4 Experimental Results

We used the large abnormal behavior dataset UCF-Crime for training and testing, which contains
many categories of abnormal behavior videos and a large number of normal videos. The types of
abnormal behaviors include arrest, arson, stealing, road accidents, etc. The specific data are shown in
Table 2. The dataset contains a total of 1900 surveillance video data. All experiments were conducted
on an Intel Xeon CPU and a 2080Ti GPU.

Table 2: Details of the UCF-Crime dataset

Behavior category Number of videos

Abuse 50
Arrest 50
Arson 50
Assault 50
Burglary 100
Explosion 50
Fighting 50
Normal videos event 950
Road accidents 150
Robbery 150
Shooting 50
Shoplifting 50
Stealing 100
Vandalism 50

The UCF-Crime dataset is a large video dataset aimed for research in anomalous event detec-
tion. This dataset contains real-world surveillance videos, covering a wide variety of criminal and
anomalous behaviors, including various unusual vehicular activities such as cargo scattering, vehicle
combustion, vehicle collisions, etc. In our study, we extract videos related to unusual vehicular
behaviors to create a new video dataset, utilizing this new dataset to conduct research on the detection
of unusual vehicular activities. In order to avoid the influence of manual editing on the training results,
the videos in the dataset are screened so that all the videos in the dataset are unedited. In this dataset,
there are 150 videos with serious traffic abnormal behaviors and 950 normal videos without abnormal
behaviors, as shown in Fig. 7.

To compare our models with other models, we constructed six models and compared them
experimentally. They are R3D, R3D + LSTM, R3D + Bi-LSTM, DRN, DRN + LSTM, and DRN
+ Bi-LSTM. The vehicle’s abnormal behavior detection can be seen as a dichotomous problem, so we
use the dichotomous accuracy formula as an evaluation criterion, as shown in Eq. (8).

Accuracy = Tp + Tn

Tp + Tn + Fp + Fn

(8)

where Tp is the positive sample that is predicted to be positive by the model, Tn is the negative sample
that is predicted to be negative by the model, Fp is the negative sample that is predicted to be positive
by the model, Fn is the positive sample that is predicted to be negative by the model.
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Figure 7: Sampling images with the dataset

The accuracy of our model on the training and validation sets is shown in Fig. 8. From the figure,
we can see that the recognition accuracy gradually increases in the first 15 epochs, and then tends to
level off. Moreover, after 10 epochs, the difference in accuracy between the training and validation sets
is not significant, indicating that our model does not appear to be over-fitted and the model has good
generalization ability.

To compare the recognition accuracy of the different models, we used the six models mentioned
above to train, validate and test in the same environment. The training process consisted of 25 epochs,
all with an initial learning rate of 0.01. The learning rate decreased by a factor of 10 after every 5
epochs. Each epoch outputs the current recognition accuracy, and the experimental results are shown
in Fig. 9.

The final experimental results are shown in Table 3. From the table, we can see that the recognition
accuracy of the R3D on the UCF-Crime dataset is not high, only 65.73%. In contrast, the DRN + Bi-
LSTM has the highest recognition accuracy of 85.43% in the same environment. Moreover, compared
with the R3D, the DRN has fewer model parameters, shorter computation time and higher efficiency.
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Figure 8: Accuracy of DRN + Bi-LSTM on the training set and validation set

Figure 9: Accuracy of each model on the test set

Table 3 : Results and parameters of each model

Models Accuracy Model parameters Calculation time

DRN + Bi-LSTM 85.43% 25.67 M 121 s
R3D + Bi-LSTM 82.73% 37.51 M 181 s
DRN + LSTM 80.15% 23.89 M 106 s
R3D + LSTM 75.50% 35.36 M 167 s
DRN 71.75% 21.66 M 91 s
R3D 65.73% 33.23 M 152 s
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In order to verify the effect of the number of DRNs in our model, we designed an ablation
experiment to see the performance of the model by increasing or decreasing the number of DRN
modules in the model. The results are shown in Table 4. It can be seen that as the number of DRN
modules in the model increases, the recognition rate of the model is also increasing. However, it can
be seen that when the number of DRN modules is greater than 3, the model’s recognition accuracy
improves to a limited extent and the computation time increases significantly. Therefore, taking
into account the overall consideration and balancing the recognition accuracy and computational
efficiency of the model, we add 3 DRN modules to the model.

Table 4 : Impact of the number of DRNs on the model

Number of DRNs Accuracy Calculation time

0 64.51% 77 s
1 77.24% 90 s
2 81.81% 108 s
3 85.43% 121 s
4 85.67% 142 s
5 85.91% 171 s

To further evaluate the accuracy of the above models in vehicle abnormal behavior detection,
different abnormal behaviors in the dataset were used separately for experimental comparison. The
aberrant behavior labels in the test set include arrest, arson, burglary, road accidents, robbery,
shoplifting, and vandalism. We recorded the recognition accuracy of each model in different datasets
separately, as shown in Table 5. As we can see from the table, all six models are not suitable for detecting
some abnormal behaviors, such as arrest and shoplifting, but perform well in road accident detection.
Among them, DRN + Bi-LSTM has the best recognition result with 89.30%. This suggests that our
model is better suited for the identification and detection of abnormal vehicle behavior.

Table 5 : Accuracy of different abnormal behaviors on each model

Models R3D DRN R3D + LSTM DRN + LSTM R3D + Bi-LSTM DRN +
Bi-LSTM

Arrest 42.86% 45.62% 57.14% 57.10% 59.82% 59.71%
Arson 63.29% 62.44% 67.54% 67.75% 71.68% 72.43%
Burglary 72.50% 73.85% 74.50% 75.85% 78.32% 76.71%
Road accidents 73.58% 76.58% 83.92% 86.92% 85.65% 89.30%
Robbery 69.81% 70.84% 71.43% 71.43% 72.84% 73.33%
Shoplifting 43.63% 42.68% 45.73% 45.45% 52.86% 54.34%
Vandalism 75.71% 76.54% 77.14% 85.71% 86.42% 88.33%
Normal 65.75% 66.84% 75.91% 74.65% 85.49% 87.50%
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To evaluate the performance of our models (Dense Block and Soft Thresholding for the local
feature extraction network and the Bi-LSTM for the global feature extraction network), we conducted
a comparison experiment with good feature extraction networks (P3D, I3D, and R(2 + 1)D) on the
test set. The experimental result is shown in Fig. 10.
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Figure 10: Comparison of parameter overhead and accuracy

5 Conclusion

To sum up, for the network proposed in this paper, we first use 3D convolution and maximum
pooling to reduce the size of the feature map, expand the perceptual domain, and reduce the number
of parameters. Then, we use DRN blocks to improve the feature utilization of the network and improve
the computational efficiency. This makes it easier to train the network without adding additional
calculations. To solve the overfitting problem, we use Dropout and soft thresholds to remove noise and
adjust the features we need. Finally, Bi-LSTM is used to further enhance the time feature extraction.
Experimental results show that the model can improve the recognition accuracy of UCF-crime data
set. This model is more suitable for the recognition of vehicle abnormal behavior. The simulation of the
actual application is shown in Fig. 11, where “Frames” in the coordinate axis represents the number
of frames in a video, and “Score” indicates the anomaly score. The higher anomaly score indicates a
higher probability of abnormal vehicle behavior in the current frame. As can be seen from the figure,
our model can accurately detect the time when the abnormal behavior of the vehicle occurs. If the
exception does not disappear, the model continues to judge the situation as an exception. Only when
the abnormal behavior disappears does the model judge that the situation is normal at that time. The
experiment proves that the model can be integrated into the intelligent traffic management system,
improve the accuracy, timeliness, and efficiency of traffic monitoring.
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Figure 11: Simulation of applications
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