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ABSTRACT

Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights
and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-
modality images, the use of multi-modality images for fine-grained recognition has become a promising technol-
ogy. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The
key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more
discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the
image, resulting in a significant improvement in the model’s performance. In this paper, a dataset for fine-grained
recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed
first, named Dataset for Multimodal Fine-grained Recognition of Ships (DMFGRS). It includes 1,635 pairs of
visible and near-infrared remote sensing images divided into 20 categories, collated from digital orthophotos
model provided by commercial remote sensing satellites. DMFGRS provides two types of annotation format files,
as well as segmentation mask images corresponding to the ship targets. Then, a Multimodal Information Cross-
Enhancement Network (MICE-Net) fusing features of visible and near-infrared remote sensing images, has been
proposed. In the network, a dual-branch feature extraction and fusion module has been designed to obtain more
expressive features. The Feature Cross Enhancement Module (FCEM) achieves the fusion enhancement of the two
modal features by making the channel attention and spatial attention work cross-functionally on the feature map.
A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS. MICE-Net
conducted experiments on DMFGRS, and the precision, recall, mAP0.5 and mAP0.5:0.95 reached 87%, 77.1%,
83.8% and 63.9%, respectively. Extensive experiments demonstrate that the proposed MICE-Net has more excellent
performance on DMFGRS. Built on lightweight network YOLO, the model has excellent generalizability, and thus
has good potential for application in real-life scenarios.
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1 Introduction

Ship detection based on remote sensing images refers to the use of modern technology to extract
the ship’s position from the image taken by a remote sensing satellite and determine its category, which
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can be used to manage ships in the sea area and improve the level of maritime traffic management.
Based on ship detection, the fine-grained recognition of ships will be further refined to carry out a
finer division into sub-classes. For remote sensing ship recognition tasks, based on the classical image
detection framework, ship recognition methods based on manual features and deep learning have
been proposed. In the early stages, low-level global geometric features such as scale, aspect ratio and
shape were used as the basis for ship recognition algorithms [1–3]. With the application and excellent
performance of deep learning in computer vision, ship recognition algorithms based on deep learning
have gradually become a research hotspot for the detection of ships with the characteristics of small
objects, rotating objects and complex backgrounds [4–8]. In addition, multi-scale is one of the key
points of ship recognition [9,10].

The current mainstream ship recognition methods are mainly based on single-source remote
sensing images, such as SAR (Synthetic Aperture Radar), visible images, etc. [11,12]. With the
development of multimodal image fusion technology and the emergence of multimodal cameras, some
studies have gradually applied them to the object recognition field [13–16]. Multi-spectral images can
provide combined information to make object detection and recognition applications more reliable
and robust in real-world scenarios [17]. In the application of the multimodal image-based object
recognition framework, there are two main branches. First, the image fusion method is used to
generate a fused image with higher image quality instead of the source image as the input of the object
recognition framework. Based on the better visual effect and richer information of the fused image, a
better recognition performance is obtained. The second is the combination of the visible and infrared
image fusion algorithm with the object recognition algorithm. The image fusion algorithm and the
object recognition algorithm are placed in one framework. After the feature extraction and fusion of
visible and infrared images, the intermediate fusion information of the image fusion is directly utilized
by the object recognition stage, omitting the step of reconstructing the fused image.

Fine-grained recognition of objects mainly solves the problem of fine-grained classification to
distinguish different subclasses under the same category. Ship fine-grained recognition based on ship
detection will further refine the class recognition of ships with finer subclasses. HRSC2016 classified
the recognition of ships into three levels (L1–L3) [18]. Fine-grained image classification is very hard
due to the small granularity of the classification and the subtle variation within the target class, so
the detailed information contained in the image has a significant impact on the effectiveness of fine-
grained recognition.

Remote sensors receive light reflected or emitted from ground objects and convert it into electrical
signals, which are processed to produce digital images. Visible images contain red, green, and blue
bands with a spectral range of 400–700 nm, while near-infrared (NIR) images are in the spectral
range of 700–1,100 nm. The quality of visible images is greatly affected by weather conditions, such
as haze, smog, and fog. These weather conditions make the light form scattering and attenuates the
contrast of the captured image, causing the image to lose detailed information. The NIR light has a
high penetration ability for fog, compared to visible light, in this case, the NIR image provides higher
contrast with richer texture details. Based on the complementarity between NIR remote sensing images
and visible remote sensing images, some object recognition algorithm models based on dual-modality
remote sensing images have appeared to obtain better recognition results.

The most essential aspect of recognition methods based on multimodal remote sensing images is
how to utilise the complementary information in the multimodal data in order to benefit as much as
possible from each modality [19]. Since Bahdanau, Cho and Bengio in 2015 used attention mechanisms
for deep learning tasks, a wide variety of variants of attention mechanisms have emerged, which greatly
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improve the efficiency of visual information processing and also optimise the performance of visual
tasks [20]. In deep neural networks, the implementation of the attention mechanism can be seen as
a dynamic weighting operation. The attention mechanism obtains weight parameters based on the
input information, and in turn, applies the weight parameters to the input information to achieve
the purpose of focusing on the key regions of the input information. Attention mechanisms can
adjust the observation of more informative features based on their relative importance, allowing the
algorithm to focus on the most relevant parts of the input, shifting from focusing on global features
to focusing on key features, thus conserving resources and obtaining the most effective information
rapidly [20].

A large number of remote sensing image datasets have been applied to various tasks in the field
of object recognition, including NWPU VHR-10 [21] for geospatial object detection, DOTA [22] for
object detection in aerial images, and VEDAI [23] for vehicle detection in aerial images. In the field
of ship recognition, several public datasets for ship recognition in remote sensing images have been
proposed successively, such as HRSC2016 [18], DOSR [6], FGSCR-42 [24], etc. HRSC2016 organizes
the ship model into a tree structure, which is composed of three levels: (L1–L3), which is the first public
remote sensing dataset for ship recognition. DOSR supports the research of ship recognition in four
typical scenarios: Chaotic scene, dense scene, small scene and large-scale variance scene. FGSCR-42 is
the first public dataset published specifically for fine-grained ship classification, containing 42 distinct
categories from 10 major ship classes.

The requirements for more fine-grained recognition and multi-modality image-based interpreta-
tion put new requirements on the dataset:

(1) The unity of image data quality. To improve the generalization ability and robustness of the
model, the remote sensing image used in the training sample should be as close to the original
remote sensing image as possible in terms of image quality.

(2) The diversity of image data sources. The application of image fusion algorithms in the field
of object recognition has gradually attracted attention. The research of multi-modality remote
sensing image object recognition based on image fusion is also inseparable from the support
of multi-modality image datasets.

(3) The richness of the object image features. The research of fine-grained recognition requires
the dataset to have rich feature information of the object and provide the object image under
different environmental backgrounds, multi-angle, multi-phase shooting, and different weather
conditions.

(4) The fineness of sample labelling. Provide more fine-grained annotation information, select the
rotation annotation method with the higher fit degree to the object, and provide pixel-level
segmentation annotation of the object image.

Object detection and recognition based on visible and NIR images have been developed and
applied, but there are fewer studies and applications in the field of fine-grained recognition of ships
in remote sensing images, and essential datasets are lacking. On the other hand, how to extract
the complementary features of multimodal images and integrate the information between different
modalities, and how to design a more effective cross-modal fusion mechanism to obtain more
discriminative fusion features and improve the recognition effect is also a key issue.

The main contributions of our work are given as follows:

(1) A dataset, DMFGRS, has been established for the task of fine-grained recognition of ships
based on multi-modality remote sensing imagery. DMFGRS provides a total of 1,635 digital
orthophotos map (DOM) from commercial remote sensing satellites, including 3,689 samples
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of ship objects in 20 categories. DMFGRS provides true-color images with resolutions of 0.5,
0.75, and 0.8 m for each category as well as near-infrared (NIR) images that correspond to
the true-color images before and after the fusion process. NIR images that correspond to the
true-color images before and after processing. At the same time, DMFGRS provides two kinds
of annotation format files and gives the corresponding segmentation mask images of the ship
objects.

(2) A multimodal information cross-enhancement network for fine-grained recognition of ships,
called MICE-Net, is proposed. MICE-Net enhances the effectiveness of ship recognition based
on single-modality remote sensing images by fusing features and information from visible-NIR
remote sensing images through a dual-branch feature extraction and fusion network.

(3) A Feature cross enhancement module is designed to achieve a more informative and critically
focused feature map. Cross-acting on both visible and NIR modal features through the
attention mechanism to achieve mutual guidance of feature focus information and obtain
enhanced and fused features.

(4) The performance of popular object detection algorithms on the DMFGRS is evaluated to
provide a benchmark for future research. The effectiveness of MICE-Net is verified and
superior performance is achieved on the DMFGRS dataset with MICE-Net outperforming
the benchmark.

2 Related Work
2.1 Dataset

Since the emergence of object recognition algorithms, datasets have played an increasingly
important role in data-driven research. DOTA is a large-scale aerial image object dataset used to
advance object recognition research in Earth vision, which is favoured by researchers because it has
enough images, categories and object instances [22]. In addition, DOTA uses directional bounding
boxes to mark objects, which can better surround items and distinguish crowded objects. LEVIR
is a large remote sensing building change recognition dataset consisting of a large number of high-
resolution Google Earth images of 0.2 to 1.0 m pixels, covering most types of ground features of the
human inhabited environment [25]. NWPU VHR-10 includes 10 types of geospatial objects, which
are characterized by a balanced sample size among the various categories [21]. DIOR is a large-scale
optical remote sensing image dataset for object detection, which not only has a considerable number of
object instances and image numbers but also has a wide range of object scale changes [26]. FAIR1M is
currently the largest remote sensing images dataset for fine-grained recognition, containing more than
15,000 images with resolutions better than 1 m and sizes ranging from thousands to tens of thousands
of pixels, with more than 1 million finely labelled, multi-angle distribution objects, covering hundreds
of typical cities, towns, as well as commonly used airports, ports, etc. [27]. It also provides data for the
same region and different phases, which is a set of multi-temporal, multi-resolution and multi-factor
remote sensing image standardized sample sets. VEDAI is used for vehicle detection in aerial images
and supports the research of recognition algorithms in unconstrained environments [23]. DroneVehicle
is oriented to the visual task of vehicle detection and counting, and its shooting environment covers
day and night [28]. It is worth mentioning that the VEDAI and DroneVehicle datasets not only provide
visible remote sensing images but also provide infrared images after registration.

As shown in Table 1, the above commonly used datasets for remote sensing object detection
mostly focus on common broad categories of objects, such as aircraft, ships, oil tanks, automobiles,
etc., but do not carry out further detailed annotations within each category, which is not enough
to support fine-grained recognition research. There are two types of remote-sensing object labeling
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formats: Oriented Bounding Box (OBB) and Horizontal Bounding Box (HBB). Although VEDAI and
DroneVehicle focus on vehicle categories, the number of categories in the dataset is too small, so the
universality and generalization ability of the dataset are weak. In addition, the above remote sensing
image datasets are not aimed at remote sensing image ship objects, and ship recognition has different
characteristics from other remote sensing object recognition. For example, ship objects are mostly
axisymmetric structures, and the shooting environment is susceptible to weather and illumination.
Therefore, these datasets are not enough to support the research of ship fine-grained recognition tasks
in remote sensing images.

Table 1: Datasets for remote sensing image object detection

Dataset Object #Categories Annotation Image #Instances

DOTA Aircraft, ships, oil
tanks, bridges, etc.

15 OBB Visible 188,282

LEVIR Aircraft, ships, oil
tanks, etc.

3 HBB Visible 11,028

NWPU VHR-10 Airplanes, ships, oil
tanks, baseball fields,
etc.

10 HBB Visible 3,651

DIOR Airplanes, airports,
bridges, chimneys, etc.

20 HBB Visible 23,476

FAIR1M Aircraft, ships, vehicles,
etc.

37 OBB Visible 1.02M

VEDAI Vehicles 3 OBB Visible + infrared 1,268
DroneVehicle Vehicles 5 OBB Visible + infrared 953,087
DMFGRS (ours) Ships 20 OBB Visible + NIR 3,689

The fine-grained recognition of ship objects is mainly to solve the problem of fine-grained
classification based on detection, and the purpose is to distinguish different subclasses under the same
category. HRSC2016 has divided the recognition of ships into three levels (L1–L3). Due to the small
granularity of classification, it is very difficult to classify fine-grained images. Therefore, the research
of fine-grained recognition algorithms has more stringent requirements on datasets, and the lack of
clarity or image information will seriously affect the recognition effect.

Nowadays, as shown in Table 2, many datasets have made contributions in the field of ship fine-
grained recognition. The HRSC2016 was published in 2016 and includes 2,976 objects in 3 broad
and 27 subcategories. FGSC-23 is designed to meet the research requirements of ship object fine-
grained recognition tasks based on deep learning [29]. The open high-resolution Google Earth and
GF-2 satellite water surface scene remote sensing images containing ship objects are collected, and
a high-resolution optical remote sensing image ship object fine recognition data set is constructed.
FGSCR-42 consists of 9,320 optical satellite images of different spatial resolutions, ranging in size
from approximately 50 × 50 to approximately 1,500 × 1,500 pixels, containing a total of 9,320
ship instances in 42 different classes from 10 major ship classes [25]. DOSR contains 1,066 optical
remote sensing images and 6,127 ship instances, with image sizes ranging from 600 to 1,300 pixels and
resolutions ranging from 0.5 to 2.5 m. There are a variety of scenes in DOSR, including clutter scenes,
dense scenes, small scenes and large-scale change scenes [6].
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Table 2: Datasets for ship fine-grained recognition

Dataset #Categories Type Image #Images Level

DSCR [30] (2019) 7 Classification Visible 6,685 L2
FGSC-23 (2020) 23 Classification Visible 4,080 L2
FGSCR-42 (2021) 42 Classification Visible 9,320 L3
DOSR (2022) 20 Object detection Visible 1,066 L2
HRSC2016 (2016) 3/27 Object detection Visible 1,061 L3
DMFGRS (2023)
(ours)

20 Object detection, fine-grained
recognition, segmentation, image fusion

Visible
+ NIR

1,635 L3

2.2 Object Recognition Algorithms Based on Multi-Modality Image

Reference [31] proposed a differential maximum loss function for extracting complementary
features in visible and infrared images. The loss function directs the learning direction of the two
basic neural networks and maximizes the difference between the features of the two basic neurons
to extract complementary and diverse features. Reference [28] constructed a large-scale unmanned
aerial vehicle (UAV-based) visible infrared vehicle recognition dataset, called DroneVehicle, which
collected 28,439 visible infrared image pairs covering urban roads, residential areas, car parks and
other scenes. An uncertainty-aware cross-modal vehicle recognition (UACMDet) framework is also
proposed to extract complementary information from cross-modal images to significantly improve
the recognition performance under low-light conditions. The framework includes an Uncertainty
Awareness Module (UAM) to quantify the uncertainty weight of each modality, which is calculated
from the modal cross IoU (Intersection over Union) and visible illumination values, in addition to
a light-aware cross-modal. Non-Maximum Suppression algorithm is designed for better integration
of modality-specific information in the inference stage. Some other researchers have conducted in-
depth studies on object recognition based on the fusion of visible and infrared images [15,32].
Most of the existing methods for solving Red-Green-Blue (RGB) and Thermal (T) salient object
detection (SOD) try to integrate multimodal information through various fusion strategies or reduce
modal differences through unidirectional or undifferentiated bidirectional interactions, but in some
challenging scenarios, these methods have little success, therefore, Xie et al. [33] proposed a new RGB-
T network that includes an interaction branch to indirectly connect visible and thermal modalities,
uses a double bidirectional interaction (DBI) module consisting of a forward interaction block (FIB)
and a backward interaction block (BIB) to reduce cross-modal disparities, and introduces a multi-
scale feature enhancement and fusion (MSFEF) module that fuses the multimodal features taking
into account the internal gaps of different modalities. Finally, the cascaded decoder and a cross-level
feature enhancement (CLFE) module are used to generate high-quality saliency maps.

Research on object recognition based on multimodal remote sensing images mainly focuses on
visible and infrared images. Reference [34] proposed YOLOrs for real-time object recognition in
multimodal remote sensing imagery. YOLOrs can detect objects at multiple scales, utilize a small
receptive field to identify small objects, and predict object orientation. In addition, YOLOrs introduces
a novel mid-level fusion architecture that makes it suitable for multimodal aerial images. Reference [35]
proposed a new, lightweight multispectral feature fusion method based on the idea of preserving and
enhancing modality-specific features and selecting modality-shared features from visible and thermal
infrared modalities with common and differential modal focus, called Cross-Modality Attentive
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Feature Fusion (CMAFF), the common selection sub-module and the differential enhancement sub-
module are the two unique parts of enhancement and selection of features in CMAFF, enabling the
detector to achieve significant performance improvements while keeping the overhead small.

3 Dataset for Multimodal Fine-Grained Recognition of Ships (DMFGRS)

As shown in Table 2, most of the existing datasets for ship fine-grained recognition are oriented
to classification tasks rather than detection tasks. They only provide the category information of
ship objects, and the location information of ships is not given. However, in practical application,
classification and location are equally important tasks for remote sensing image ship detection and
recognition in sea areas and near shore. Therefore, it is very important and necessary to establish the
dataset of remote sensing image ship fine-grained recognition objects. At the same time, most of the
current datasets for the ship fine-grained recognition task only provide the visible light format, which
brings obstacles to the research of multi-modality image fusion applications in object recognition.

Compared with the above datasets, DMFGRS provides visible and near-infrared images and
supports the research of object recognition tasks of a single source (based on true color images or
near-infrared images) and multi-source remote sensing images. The labelling level of each category
reaches the L3 level, which supports the task of ship fine-grained recognition. At the same time, the
segmentation mask image of the object instance is provided to support segmentation task research.
Visible light and near-infrared complete registration processing, DMFGRS also supports image fusion
research and its application in recognition tasks. Fig. 1 shows the difference in annotation information
between DMFGRS and the other datasets. (a) The dataset for remote sensing object detection only
distinguishes between ship and non-ship categories; (b) the ship-oriented fine-grained classification
dataset only provides specific ship category information but does not label the object location; (c)
the ship-oriented fine-grained recognition dataset, namely DMFGRS, not only provides fine-grained
category information of ship objects but also accurately marks the location of object instances.

Figure 1: Comparison of sample labeling. (a) Dataset for remote sensing object detection. (b) Dataset
for fine-grained ship classification. (c) Dataset for ship fine-grained recognition (ours)

3.1 Establishment of DMFGRS

3.1.1 Images Collection

In order to ensure the authenticity and reliability of the images in the dataset, as well as to increase
the diversity of image data, the DMFGRS ship satellite image is derived from the orthographic remote
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sensing image (DOM) product and collected from commercial satellites, including two images in the
visible (red, green and blue) band and near-infrared band. The image format is TIFF. The image of the
same location has the difference between the time of shooting, the angle of shooting and the source
satellite.

The DMFGRS images are all cut from the original satellite images, and the information contained
in them is closer to the real scene. Due to the small difference between training and reasoning images,
DMFGRS, as a network model trained by the training dataset, will relatively reduce the impact of
post-processing when applied to the recognition of real remote sensing images. The network can have
better migration ability and generalization ability, which is more suitable for the practical application
scenarios of intelligent interpretation of on-orbit images.

3.1.2 Category Selection

DMFGRS selected 20 classic ship objects, and the image examples of some categories are shown
in Fig. 2, where each class shows two visible light images with different resolutions. According to the
ship recognition level assigned by HRSC2016, all categories belong to the L3 level, which meets the
requirements of fine-grained recognition. Examples of visible and near-infrared images with different
resolutions are shown in Fig. 3, where 0.5_RGB means a visible image with a resolution of 0.5 m. The
aspect ratio of each category in DMFGRS is shown in the Fig. 4. It can be seen that the aspect ratio
of the ship object is relatively large, and the minimum is also above 3. Most of them are concentrated
in the range of 4 to 7, and the maximum aspect ratio is close to 8.

Aircraft carrier Cruisers

Oil tanker Bulk carrier

Container ship Frigate

Figure 2: Examples of visible images (two visible images of different resolution)
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Figure 3: Examples of visible and NIR images
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Figure 4: Aspect ratio for each category
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3.1.3 Annotation Method

Different from the flat view shooting angle of objects in natural scenes, the shooting angle of
remote sensing image is overlooking, so its object does not have a fixed direction like the object in
natural scenes but has non-orientation. In addition, ships in remote sensing images are usually densely
arranged on the port shore. If horizontal boundary boxes is used, there will be partial overlap between
boundary boxes, which will undoubtedly mislead the object detection model and reduce its ability
to distinguish object boundaries. However, rotating boundary boxes can well avoid this situation. As
shown in Fig. 5, Fig. 5a shows the use of horizontal box annotations, due to the dense layout of the
object, the overlap between adjacent boxes is high; Fig. 5b shows the use of rotating box annotations
significantly mitigated the overlap problem, but only labelled the ship category; Fig. 5c shows the
further annotating the class as a frigate based on (b), and (d) not only annotating the position with a
rotating box but also refining the ship class to level L3 (ours).

Figure 5: Comparison of annotation methods. (a) Horizontal box annotations. (b) Rotating box
annotations. (c) Further annotating the class. (d) Refining the ship class to L3 (ours)

In order to ensure that the bounding box is better fitted with the object instance, avoid the
overlap problem as much as possible, and provide more accurate information for the research of
object recognition, the dataset adopts the method of rotating annotation and provides two formats
of annotation files as shown in Fig. 6. In the DOTA annotation format, as shown in Fig. 7, (X1, Y1)
represents the first vertex position of the upper left corner of the object instance, that is, the vertex of
the position on the left side of the ship’s bow. Therefore, DMFGRS not only gives the exact position
of the ship instance but also indicates the direction of the bow.

3.1.4 Segmentation Mask Image Production

DMFGRS uses the polygon annotation box to draw the minimum envelope of the ship instance
in the image to generate a binary mask gray pattern. In order to distinguish different types of ship
objects, different gray values are used to correspond to different categories, as shown in Table 3. The
illustration of the binary mask image is shown in Fig. 8.
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Figure 6: Annotation information in two formats. 1 is DOTA format, 2 is longsize format

Figure 7: The first vertex position
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Table 3: Greyscale values for each category of mask

Class FAC NAC HAA TC BD ZD PF ILC SM KFT

Gray 10 20 30 40 50 60 70 80 90 100

Class SAT RFS BAC FLC AL WL OT BC CT LCS

Gray 110 120 130 140 150 160 170 180 190 200

Figure 8: Examples of mask images

3.2 Properties of DMFGRS

3.2.1 Image Size

In order to ensure the integrity of large ship objects in images, and considering the size require-
ments for fine-grained recognition of objects in slice images, the slice sizes of this data set are designed
as follows:

1) 0.5 m resolution visible and near-infrared slice size of 768 × 768.
2) 0.8, 0.75 m resolution visible and near-infrared slice size of 512 × 512.
3) Raw 2 m resolution and 3.2 m resolution near-infrared slices of 192 × 192 and 128 × 128.

It can be seen that the resolution and size of the original NIR slice is a quarter of that of the visible
image, and similarly, the coordinates of the labelled object frame are a quarter of that of the visible
image.

3.2.2 Spatial Resolution Information

The spatial resolution of the image has an important effect on the object recognition task,
especially in the fine-grained recognition task. The difference between subcategories of fine-grained
recognition tasks is subtle, and the detailed information has an important impact on the recognition
effect. The image with high resolution is more conducive to the feature extraction network to obtain
more detailed information. In addition, the use of training data with different resolutions can improve
the robustness of the model to identify the same class of objects. The same ship objects will occupy
different proportions in images with different resolutions, which also greatly improves the diversity of



CMC, 2024, vol.79, no.3 5255

the datasets. Therefore, DMFGRS collects images in three different resolutions: 0.5 m resolution,
0.75 m resolution and 0.8 m resolution. Three images with different resolutions not only meet
the requirements of fine-grained recognition, but also enhance the diversity and robustness of the
dataset. DMFGRS also provides raw NIR images corresponding to 0.5, 0.75 and 0.8 m resolutions
in quadruple relation, i.e., 2, 3 and 3.2 m resolutions, with the image size and labelled coordinates
simultaneously reduced to the corresponding quadruples.

3.2.3 Instance Information

The distribution of the number of instances for each category is shown in Fig. 9. It is clear from
the figure that the DMFGRS has an imbalance in the distribution of instances in each category. This
imbalance is mainly due to the difference in the number of ships of each category used in reality. Since
the number of ships in different categories varies in reality, the number is also affected when collecting
ship objects.

Figure 9: Number of instances per category

Because of the particularity of fine-grained recognition with little difference between classes and
big differences within classes, the details of the object have a great impact on the results of fine-
grained classification. If the object size in the image is too small, the object detection or fine-grained
recognition model will not be able to capture the details in the image, which will affect the final
recognition effect. The detection and recognition of small objects have the problems that their visual
characteristics are not obvious and the available information is less, which is difficult at the ordinary
recognition level, let alone the more demanding precision recognition task.

Compared with medium and large objects, the feature extraction of small objects is also difficult,
but the quality of feature extraction will directly affect the recognition effect. Therefore, the existence
of small objects undoubtedly brings negative effects on the research of ship fine-grained recognition.
To better support the fine-grained recognition research of ships, the ship objects in DMFGRS are
screened into medium and large targets according to the provisions of the MS-COCO dataset, and the
interference of small objects to the research is eliminated [36]. As shown in Table 4 and Fig. 10, the
instance size of each category in DMFGRS is in the medium and large object range.
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Table 4: MS-COCO on large, medium and small object size requirements

Min rectangle area Max rectangle area

Small object 0 × 0 32 × 32
Medium object 32 × 32 96 × 96
Large object 96 × 96 ∞ × ∞

Figure 10: Instance size distribution of each category

Most of the existing public datasets for ship recognition only annotate the complete instance or
use negative values to annotate the ship parts beyond the image. These negative labels will be filtered
out on the grounds of illegal data in the data processing program of the object recognition algorithm.
However, in the actual case of remote sensing ship recognition and recognition, the remote sensing
images taken by the satellite do not fully guarantee that the ships at the edge are completely captured
and presented, but it does not mean that these ships are not important, or in the actual scene, they
cannot be regarded as illegal data and directly filtered out. Therefore, it is necessary to consider the
detection and recognition of incomplete ship objects in the real scene.

Datasets that ignore incomplete instances cannot provide a learning experience for the recognition
of incomplete ships in real situations. DMFGRS annotates the incomplete ship instances at the edge
of the image and supports the object recognition algorithm to reason with the incomplete features of
the ship in the learning and training stage, so that the detection and recognition model trained on this
dataset has the ability to detect incomplete ship objects, which is more suitable for the actual scene,
and also improves the universality of the model.

4 Multi-Modality Information Cross-Enhancement Network (MICE-Net)
4.1 Framework Overview

The overall architecture of the multi-modality information cross-enhancement network (MICE-
Net) is shown in Fig. 11. MICE-Net is modified on the YOLO detection network, including three
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parts: Dual-modality information extraction and fusion module (DMIEF), Neck and Head. DMIEF
module extracts features from visible and NIR images, respectively, on the features of two modes at
different depths. The feature cross enhancement module (FCEM) is used for feature fusion to obtain
more representative intermediate features, which are sent to the subsequent network. In the Neck,
the feature pyramid structure is used to fuse high-level features with low-level features to enhance the
expression ability of features and improve the performance of subsequent recognition categories and
locations. The feature mapping is obtained on the feature layers of two different scales, and the feature
mapping is input into the recognition head to obtain the recognition result. The input of the network
is the registered visible and NIR remote sensing images, and the output is the category, location and
confidence of the detected object.

Figure 11: Framework of MICE-Net
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In the DMFGRS proposed in the previous section, the two corresponding visible and NIR images
have the same size and resolution, the image scene is unobscured, and the two images are registered, so
the labels of the two modes are completely matched with each other. In addition, DMFGRS uses the
parallelogram labelling method to label each object as a rotating object. Therefore, the loss function of
the network also needs to consider the rotation angle. Thus, the loss function of the proposed MICE-
Net is designed as follows:

Lrecognition = α1 × Lθ + α2 × Lclass + α3 × Lobj + α4 × Lbox (1)

where α1, α2, α3, α4 are the weights of each component loss; Lrecognition, Lθ , Lclass, Lobj and Lbox are the
overall loss, angle classification losses, object classification losses, confidence losses and bounding box
regression loss.

The CIOU [37] was used for the calculation of the Lbox Lθ , Lclass and Lobj are calculated in the form
of cross-entropy, and the respective calculations are given in the following equation:

Lbox = 1 − IoU +
ρ2

(b,bgt)

c2
+ αv, α = v

(1 − IoU) + v
, v = 4

π 2

(
arctan

wgt

hgt
− arctan

w
h

)2

(2)

Lcls = − 1
N

N∑
i=1

C∑
c=1

yic log
(
ŷic

) + (1 − yic) log
(
1 − ŷic

)
(3)

Lobj = − 1
NG

NG∑
i=1

[
yi log

(
ŷi

) + (1 − yi) log
(
1 − ŷi

)]
(4)

Lθ = − 1
NT

NT∑
i=1

T∑
t=1

yit log
(
ŷit

) + (1 − yit) log
(
1 − ŷit

)
(5)

where IoU is the Intersection over Union (IoU) between the prediction bounding box b and the ground
truth bounding box bgt, ρ2

(b,bgt)
is the square of the Euclidean distance between the centroid of b and

the centroid of bgt. c is the diagonal length of the smallest box that can contain both b and bgt. α is
a weighting factor to balance the effects of different losses. v used to measure the consistency of the
aspect ratio of b and bgt. w and h are the width and height of b, while wgt and hgt are the width and height
of bgt. In Eq. (3), N is the number of detected objects, yic is the true label, ŷic is the probability that object
i belongs to category c as predicted by the model. In Eq. (4), NG is the total number of bounding boxes
of all grid cells, yi is the true label, yi = 1 if an object exists within bounding box i, otherwise yi = 0.
ŷi is the confidence score of the bounding box i predicted by the model. Lθ is essentially a category
loss, which is calculated by dividing the angles into 180 categories and then proceeding to perform a
cross-entropy loss calculation.

4.2 Dual-Modality Information Extraction and Fusion Module (DMIEF)

The framework of dual-modality information extraction and fusion module is shown in the above
figure. The basic structure of the DMIEF module is a dual-branch network, and each branch extracts
features from shallow to deep layers from visible and NIR remote sensing images. Feature cross
enhancement module (FCEM) is used to enhance the fusion of visible and NIR features between the
feature maps of two modes with three scales of (80 × 80 × 128), (40 × 40 × 256) and (20 × 20 × 512).

In order to imitate the methods of human visual and cognitive systems, so that the model can
focus on the key areas in the input data like humans, the attention mechanism is gradually applied
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to image processing tasks. The attention mechanism assigns different weights to different positions
of the middle layer features so that the neural network can automatically pay attention to and learn
those key information, thereby improving the performance and generalization ability of the model.
In the object recognition task, the current popular attention mechanisms include the self-attention
mechanism, spatial attention mechanism and channel attention mechanism. The application of these
attention mechanisms greatly improves the sensitivity of the model to the object location and category,
and effectively improves the accuracy of the model.

The attention mechanism is actually a weighting mechanism. It performs different weighting
processing on different parts of the input data with different weights. In practical applications, it is
usually achieved by calculating the weight vector. For single-modality input images, the attention
mechanism acts on the feature map and selects high-value and more critical object regions from a large
number of unrelated background regions. Due to the different imaging modes of visible and NIR, the
wavelength of near-infrared is larger than that of visible light. Therefore, the attention mechanism
will generate different weight vectors on visible and NIR images. The FCEM designed in this paper
is different from the previous attention mechanism. As shown in Fig. 12, the attention weights of the
two modes not only act on themselves, but also act on each other to achieve the purpose of enhancing
the ability of feature expression, so it is called the feature cross enhancement module.

Figure 12: Structural diagram of the proposed feature cross enhancement module

The input of the FCEM is the feature map of visible and NIR modes at three different depths
obtained by the Dual-modality information extraction and fusion module in the feature extraction
stage: FRi and FNi(i ∈ 1, 2, 3). In order to make the attention mechanism not only guide the feature
aggregation and enhancement of visible and NIR feature maps themselves but also guide each others.
As shown in Fig. 12, the channel weights of the two modal feature maps are added to obtain the
cross-channel weights, and the spatial weights of the two modal feature maps are added to obtain the
cross-spatial weights. FRi is multiplied by the cross-channel weight and the cross-spatial weight in turn,
and FNi repeats the same operation. Finally, the weighted feature maps of the two modes are concat to
obtain the fusion result. The feature cross enhancement module is calculated as follows:

F
′
Ri

= FRi × (
wN

C + wR
C

) × (
wN

S + wR
S

)
(6)

F
′
Ni

= FNi × (
wN

C + wR
C

) × (
wN

S + wR
S

)
(7)

where FRi and FNi(i ∈ 1, 2, 3) are the respective feature maps of visible and NIR; wN
C and wR

C are the
channel weights of FRi and FNi; wN

S and wR
S are the spatial weights of FRi and FNi;
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The channel weight and spatial weight of visible and NIR feature maps are calculated by channel
attention mechanism and spatial attention mechanism, respectively. The calculation process is as
follows:

wR
C = fCA

(
FRi

)
(8)

wR
S = fSA

(
FRi × wR

C

)
(9)

wN
C = fCA

(
FNi

)
(10)

wN
S = fSA

(
FNi × wN

C

)
(11)

where fCA (·) indicates the channel attention mechanism; fSA (·) indicates the spatial attention
mechanism.

The channel attention module and the spatial attention module refer to CBAM, the process of
which is shown in Figs. 13 and 14. The computational function of the channel attention module is
given in Eq. (12). The computational function of the spatial attention module is shown in Eq. (13):

fCA = sigmoid((MLP(AvgPool(FC) + (MLP(MaxPool(FC)) (12)

fSA = sigmoid (Conv2d (Concat (AvgPool (FS) , MaxPool (FS)))) (13)

where FC refers to the features of the input channel attention module, FS refers to the features of the
input spatial attention module, AvgPool denotes the average pooling operation, MaxPool denotes the
maximum pooling operation, MLP contains a multilayer perceptual machine (MLP) model with two
linear layers and an activation function ReLU, and sigmoid denotes a sigmoid activation function.
Concat denotes stacking the two vectors, and Conv2d denotes a 2D convolutional layer.

Figure 13: Channel attention module

Figure 14: Spatial attention module

5 Experiments and Results
5.1 Implementation Details

5.1.1 Training Detail

The experiment is based on the 64-bit operating system Ubuntu 18.04 installed on a NVIDIA
GeForce RTX 3080 and 10,015 MiB memory. We use the Stochastic Gradient Descent (SGD)
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optimizer with an initial learning rate of 0.01, a final learning rate of 0.002, a weight attenuation of
0.0005, and a momentum of 0.937. The total epoch is set to 800 (if the model converges in the middle
of training, the model can end the training early), and the batch size is 4 (the single-modality model
reads four visible images or NIR images at one time, and the dual-modality model reads four visible
images and four NIR images at one time), using the Mosaic [38] data augmentation method.

5.1.2 Evaluation Metrics

The evaluation metrics are an important basis for measuring the performance of remote-sensing
object recognition algorithms. In order to evaluate the practicality of the proposed dataset and the
effectiveness of the proposed algorithm, The evaluation metrics we use are shown in Table 5.

Table 5: Evaluation metrics for object recognition

Evaluation metrics Description

Precision Reflect the proportion of real positive samples in the test results
Recall Reflects the proportion of correctly predicted positive samples in all positive

samples to be detected
AP The test results of each category are good or bad
mAP0.5 The average value of all types of APs (IoU = 0.5)
mAP0.5:0.95 The average value of all types of APs (IoU from 0.5 to 0.95, step size 0.05)

Hence, the precision, recall indicators are formulated as follows:

Precision = TP
TP + FP

(14)

Recall = TP
TP + FN

(15)

where TP (True positives) refers to the number of samples correctly predicted as positive samples; FP
(False positives) refers to the number of samples wrongly predicted as positive samples, and FN (False
negatives) refers to the number of samples wrongly predicted as negative samples.

For a certain category, different thresholds are selected to obtain the corresponding accuracy and
recall rate. It is drawn as a curve in the coordinate system with Recall in the abscissa and Precision in
the ordinate, which is the P-R (Precision-Recall) curve. The area under the PR curve is the AP of this
class.

5.2 Evaluation of Advanced Object Recognition Algorithms on DMFGRS

We evaluate the state-of-the-art object recognition algorithms on DMFGRS, including
YOLOv5s+CSL [39], R-CNN [40], Faster-RCNN [41], RetinaNet [42], etc. Because DMFGRS
adopts rotation annotation method, the verified model comes from the modified rotation detection
algorithm on the MMrotate platform. MMRotate is a toolkit that provides a unified training and
evaluation framework for rotating object detection methods and supports three rotating frame
definition methods: OpenCV definition method, 135° long side definition method and 90° long
side definition method. The OpenCV definition method is used for the test models in this section.
MMrotate can specify the angle prediction methods, including CSL and KLD [43].
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The benchmark test results of the selected baseline model are shown in Table 6. The YOLOv5s out-
performed R-CNN, Faster R-CNN, and RetinaNet. The worst performance is the model RetinaNet.
The performance of RetinaNet is greatly affected by the values of the hyperparameters α and γ . It takes
continuous experiments to determine the optimal α and γ parameters. In addition, category LCS and
category FAC performed poorly, which may be related to their small sample size. From Fig. 4, it can be
seen that the aspect ratio of category ILC is the smallest, and the aspect ratio of adjacent category SM
and category PF is almost doubled. Category ILC is among the top in each model, and the comparison
with category SM and category PF is more obvious. Therefore, the large aspect ratio is an important
factor to be considered in the optimization of fine-grained recognition algorithms for ship objects. On
the RetinaNet model, we tested the two angle prediction methods, CSL and KLD, respectively, and it
can be seen that the KLD method is 7.6 percentage points higher than the CSL method in mAP, which
shows that for the RetinaNet model, the boxes predicted by the KLD method are more accurate.

Table 6: Benchmark results of baseline models

Model Config FAC NAC HAA TC BD ZD PF ILC SM KFT mAP
SAT RFS BAC FLC AL WL OT BC CT LCS

YOLOv5+CSL s
0 92.8 89.9 93.5 97.7 98.8 95.1 98.2 88.9 71.2

80.9
88.5 82.2 99.5 80.8 99.5 89.4 91.3 78.6 81.3 0

R-CNN R50-FPN
0 97.2 98.2 84.3 89.3 95.2 88.0 99.2 80.0 75.1

78.92
82.0 97.3 89.3 69.8 99.1 72.8 90.4 86.9 78.8 5.5

Faster R-CNN R50-FPN
33.3 83.5 79.5 62.5 81.2 78.4 49.3 99.2 75.4 62.0

70.6
74.8 92.9 59.1 73.4 64.1 55.6 66.6 83.4 61.0 77.3

RetinaNet
R50-FPN

40.0 78.8 66.9 56.3 59.3 60.0 44.9 84.7 32.2 16.1
46.4

26.6 80.4 33.6 20.8 57.5 23.5 42.4 58.5 45.1 0

R50-FPN-kld
100 87.4 56.1 59.1 60.9 72.6 42.4 81.4 44.2 26.8

53.0
48.0 71.9 58.7 25.0 49.9 29.1 46.0 57.0 44.2 0

From Table 6, it can be seen that the classical object detection framework with the best validation
effect on DMFGRS is the YOLOv5s model, which combines both detection accuracy and detection
efficiency, and also has generality for the detected object, and the number of parameters is relatively
small, which saves space resources. Moreover, the entire YOLOv5s model architecture is highly
modular and suitable for making alterations. Therefore, we choose YOLOv5s as the base framework
of our model.

5.3 Evaluation of Multimodal Information Fusion Network on DMFGRS

5.3.1 Comparison with Single-Modality Image Recognition

We validate the proposed ship fine-grained recognition network MICE-Net based on multimodal
information cross-enhancement on the established DMFGRS, because the DMFGRS recognition
process refers to the idea of YOLOv5s, and as shown in Table 7, the YOLOv5s outperforms the other
several models in terms of speed and recognition effect, so this section mainly compares with the
recognition effect of YOLOv5s.
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Table 7: Evaluation results of MICE-Net on DMFGRS

Modality Method Precision Recall mAP0.5 mAP0.5:0.95

Visible YOLOV5s 77.3 76.6 80.9 58.8
NIR YOLOV5s 81.6 75.3 79.6 56.5
Visible + NIR MICE-Net 87 77.1 83.8 63.9

As shown in Table 7, the performance of MICE-Net is significantly better than YOLOv5s in all the
metrics. MICE-Net uses visible-NIR dual-modal remote sensing images for fine-grained recognition of
ships on DMFGRS, and it achieves 87%, 77.1%, 83.8%, and 63.9% in the metrics of precision, recall,
and mAP0.5 and mAP0.5:0.95. Compared to YOLOv5s for single-modality visible remote sensing
images, MICE-Net is 9.7% higher on precision, 0.5% higher on recall, 2.9% higher on mAP0.5, and
5.1% higher on mAP0.5:0.95. Compared to YOLOv5s for single-modality NIR remote sensing images,
MICE-Net is 5.4% higher on precision, 1.8% higher on recall, 4.2% higher on mAP0.5, and 7.4% higher
on mAP0.5:0.95.

Fig. 15 shows the changes in the four metrics precision, recall, and mAP from the start of training
to the convergence of the model. As can be seen from the figure, within 300 epochs, the purpleline
representing MICE-Net is always located above the other two lines, i.e., during the training process,
the convergence speed of MICE-Net using visible-NIR bimodal remote sensing images for ship
recognition is significantly better than that of using YOLOv5s for ship recognition based on the
single-modality remote sensing images in the pre-training period. In particular, from the trend plot
representing the change in mAP0.5:0.95, it can be seen that throughout the training period including
the final test phase shown in the table, the bimodal training was superior to the two unimodal ones.
While mAP0.5:0.95 indicates that when the IOU threshold changes from 0.5 to 0.95, the average value
of mAP corresponding to each threshold is taken. Compared with mAP0.5, mAP0.5:0.95 can evaluate
the model performance more comprehensively and accurately by considering the average accuracy
under multiple IOU thresholds at the same time. The mAP0.5:0.95 of MICE-Net far exceeds the single-
modality case, indicating that MICE-Net has a wide coverage and can be applied to different scenarios
and application requirements.

Compared to the training effect of YOLOv5s for single-modality visible images, the training
effect is about the same or even slightly better than that of MICE-Net in the late convergence stage
though. However, when the trained model is applied to a test dataset with no training added at
all, the recognition results of MICE-Net, including precison, recall, mAP0.5 and mAP0.5:0.95, are
significantly better than those of YOLOv5s for unimodal visible or NIR images. Therefore, MICE-
Net has better transferability and generalizability.

Table 8 shows the metrics comparison between YOLOv5s and MICE-Net on DMFGRS specific
to each category, where P represents Precision, R represents Recall, 0.5 represents mAP0.5, and 0.95
represents mAP0.5:0.95. As can be seen from the table, the performance of all models is poor in the
FAC category due to the extremely low number of instances, but the performance of MICE-Net on
dual-modality images exceeds the performance of YOLOv5s on single-modality images in most of the
categories. In particular, the performance of the mAP0.5:0.95 index, except for the categories ZD, KFT
and OT, the performance of MICE-Net is significantly superior. Combined with Table 7, although
there are still categories where MICE-Net fails to achieve the top performance in terms of Precision,
Recall and mAP0.5, the overall performance is best in all categories, and therefore MICE-Net is better
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able to balance the differences between categories using the feature information of the dual-modality
images, and has a better generalisability. However, we should admit that MICE-Net still has space for
improvement and progress.

Figure 15: Comparison of metrics during training
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Table 8: Comparison of performance in different categories

Class Modality P R 0.5 0.95 Class Modality P R 0.5 0.95

FAC
Visible 0 0 0 0

SAT
Visible 76 81.1 88.5 73.5

NIR 0 0 0 0 NIR 74.5 81.1 83.8 70.9
Dual 0 0 0 0 Dual 91.6 83.8 91.9 80.8

NAC
Visible 90 75 92.8 72.9

RFS
Visible 91.4 78.9 82.2 47.8

NIR 89.9 74.1 94.2 71.6 NIR 81.2 78.9 81.5 53.5
Dual 100 89.9 97.5 75 Dual 86.1 84.2 92.7 58.1

HAA
Visible 86.6 82.2 89.9 67.5

BAC
Visible 90.9 100 99.5 89.1

NIR 84.1 82.2 87.3 61.4 NIR 92 100 99.5 82.5
Dual 97.3 81.2 92.8 70.2 Dual 95.3 92.3 99 89.5

TC
Visible 86.4 91.4 93.5 69.1

FLC
Visible 82.6 80 80.8 59.3

NIR 87.1 93.1 93.3 65.6 NIR 85.6 79.2 89.2 67.2
Dual 83.9 84.5 90.7 73.5 Dual 84.4 86.7 89.1 72.8

BD
Visible 90.2 94.1 97.7 74.3

AL
Visible 100 99.8 99.5 72.8

NIR 87.7 90.1 93.8 71.5 NIR 93.3 92.8 94.5 72.4
Dual 93.3 90.9 95.8 76.6 Dual 95.3 100 99.5 76.9

ZD
Visible 93.2 100 98.8 77

WL
Visible 76.1 79.2 89.4 72.1

NIR 89.1 87.5 91.8 73.4 NIR 85.8 75 80.7 65.3
Dual 97.6 100 99.5 75.8 Dual 86.3 78.5 85.8 72.5

PF
Visible 89.2 92.6 95.1 58.4

OT
Visible 95.3 85.2 91.3 69.7

NIR 91 93.3 95.8 53.1 NIR 85 84.2 86.5 57.6
Dual 92.5 96.3 98.4 64.1 Dual 87.7 79.3 90.3 69.2

ILC
Visible 97.8 93.1 98.2 83.2

BC
Visible 72.2 71 78.6 55.8

NIR 97.8 93.2 99.1 83.2 NIR 67.8 70.5 72.4 55.1
Dual 97.3 92.8 96.9 85.7 Dual 90.9 68.1 80.1 67.7

SM
Visible 78.9 88.6 88.9 41.1

CT
Visible 82.6 76.2 81.3 41.5

NIR 81 83.8 87.1 41.7 NIR 80.2 84 91.2 43.6
Dual 93.4 85.4 92.2 53.3 Dual 90.4 76 86.7 51.9

KFT
Visible 66.1 63.6 71.2 50.5

LCS
Visible 0 0 0 0

NIR 78.8 63.6 70.5 39.8 NIR 100 0 0 0
Dual 75.8 72.7 71.5 49.8 Dual 100 0 24.9 14.9

Table 9 shows the model complexity of MICE-Net, which mainly includes the number of param-
eters and the time consumed. The time is calculated when the input image size of the network is (4,
3, 768, 768). Because MICE-Net is changed from a single-branch network to a two-branch network,
and from one Backbone to two Backbones, the parameters of the network will inevitably increase.
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Compared to YOLOV5s, the number of parameters of MICE-Net has increased from 7,549,525 to
14,164,660, which is a total increase of 6,615,135. Each detection time consists of three parts: Pre-
process, inference and NMS. MICE-Net needs to process two images for each detection, so the
duration of both pre-process and inference is increased. However, since MICE-Net only has two
detections for medium and large objects, so that the duration of NMS decreases. Total time increased
4 ms from 5.8 to 9.8 ms.

Table 9: Comparison of MICE-Net model complexity

Model Parameters Time (ms)

Pre-process Inference NMS Total

YOLOV5s 7,549,525 0.2 4.3 1.3 5.8
MICE-Net 14,164,660 (↑6,615,135) 0.5 (↑0.3) 8.2 (↑3.9) 1.1 (↓0.2) 9.8 (↑4)

In summary, MICE-Net can indeed achieve significant improvement in detection by fusing
and enhancing dual-modality image feature information, but it also results in an increase in model
complexity, including a rise in the number of parameters as well as an increase in inference time.
Therefore, in the future, we will further process the model, such as lightweight, to improve the detection
efficiency of the model.

5.3.2 Ablation Studies

In this ablation study, we analyzed in detail the effects of the effectiveness of FCEM, attention
mechanism structure and DMIEF structure on the performance of MICE-Net.

Effectiveness of FCEM FCEM obtains more critical and representative fusion vectors by making
the attentional mechanism work crosswise on the feature vectors of the visible and NIR images so that
the focus of the fused features refers to the salient regions of the information of both modalities at
the same time. To verify the effectiveness of FCEM, we replaced the FCEM in MICE-Net with the
most basic Concat module, allowing the feature vectors of the two modalities to be stacked directly.
We then compared the experimental results of this configuration with those obtained when using
FCEM. The experimental results are shown in Table 10. When we used the simple Concat module,
which directly stacks the information from the two modalities as the fusion step, it can be seen that the
recognition performance was far inferior to using FCEM. In terms of the four metrics of Precision,
Recall, mAP0.5, and mAP0.5:0.95, the use of FCEM achieved significant improvements of 1.4%, 3.5%,
3.8%, and 5.9% respectively compared to the use of Concat. Combining Tables 7 and 10, it can be seen
that the fusion method using simple stacking is even less effective than directly using visible images for
recognition. This may be because the model did not selectively combine all the information from the
two modalities. Some redundant information not only failed to play a positive role but also reduced the
model’s sensitivity to the object, resulting in unsatisfactory final recognition performance. Therefore,
it can be concluded that the FCEM we designed is very necessary and effective.
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Table 10: Performance comparison on the effects of FCEM

Module Method Precision Recall mAP0.5 mAP0.5:0.95

Visible + NIR Concat 85.6 73.6 80 58
Visible + NIR FCEM 87 (↑1.4) 77.1 (↑3.5) 83.8 (↑3.8) 63.9 (↑5.9)

Attention mechanism structure As described in Section 4.2, FCEM utilizes temporal and spatial
attention mechanisms to act on the feature maps of the two modalities separately. Based on the derived
weights of the two attention mechanisms, cross-guidance is performed on the feature vectors before
fusion. The function of the attention mechanism is inseparable from pooling operations. Therefore,
to explore a more effective FCEM architecture, we have designed three attention implementation
methods. Maximum pooling is theoretically more capable of extracting salient features of the object
from the background, so we experimented with using maximum pooling instead of the average pooling
in the spatial attention module and channel attention module. Table 11 compares the recognition
performance of different attention implementation methods on DMFGRS, where max-CA indicates
that the average pooling in channel attention is replaced with maximum pooling, and max-SA indicates
that the average pooling in spatial attention is replaced with maximum pooling. It can be seen that
compared to the other two methods, the first method has a better overall effect, with higher scores on
both mAP0.5 and mAP0.5:0.95. However, in terms of the Recall metric, the second method performs
better, achieving 77.8%.

Table 11: Performance comparison on the attention mechanism structure

Structure Precision Recall mAP0.5 mAP0.5:0.95

SA + CA 87 77.1 83.8 63.9
SA + max-CA 78.9 77.8 81.4 60.5
Max-SA + CA 85.9 76.1 81.7 60.4

DMIEF structure The depth of the network is closely related to the dimensionality of the feature
vectors and the expressive ability of modality information. The position of the feature fusion module
within the network is closely related to the fusion effect and directly impacts the final recognition
performance. Therefore, we designed to use FCEM at different positions within the network, resulting
in three DMIEF structures. These three scenarios are illustrated in Fig. 16. Table 12 compares the
recognition performance of different DMIEF structures on DMFGRS. It can be seen that structure
(A) has the best recognition effect, thus making it our final design choice. Worth mentioning is that
structure (C) performs the best in terms of accuracy, with a precision score of 88.8%.
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Figure 16: An illustration of different DMIEF structures

Table 12: Performance comparison on the DMIEF structure

Structure Precision Recall mAP0.5 mAP0.5:0.95

A 87 77.1 83.8 63.9
B 79.9 76 81 58.2
C 88.8 71.2 80.9 60.2

6 Conclusion

In this paper, a multi-modality image dataset DMFGRS for ship fine-grained recognition research
and a ship fine-grained recognition model MICE-Net based on visible and NIR remote sensing images
are proposed. The remote sensing images of DMFGRS are all derived from digital orthophoto maps
(DOM) provided by commercial remote sensing satellites. The authenticity of the image sources makes
the trained model closer to real-world scenarios and more suitable for future on-orbit applications.
DMFGRS provides high-resolution, finely annotated visible/near-infrared multimodal images as well
as object segmentation mask images, supporting research on single/dual modality object detection,
fine-grained ship recognition and segmentation tasks. MICE-Net is an end-to-end single-modality
fine-grained ship recognition model that is modified from a single-modality recognition model that
balances performance and speed. It utilizes an attention mechanism to perform cross-guidance on the
information from the two modalities, achieving multimodal feature enhancement and fusion, and thus
significantly improving recognition performance. The effectiveness and usability of DMFGRS have
been validated by conducting experiments based on commonly used object recognition algorithms.
Through comparisons of experimental data, the superior performance of MICE-Net demonstrates its
good portability and generalizability.
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However, DMFGRS has limitations in terms of the number of categories and a lack of instances
for certain types of ships. Additionally, due to the addition of an extra feature extraction backbone
network, the number of parameters in MICE-Net increases significantly, resulting in slower computa-
tion speed. In future work, the number of categories and images in DNGFRS will continue to expand,
and the number of instances for each category will be balanced and increased. For MICE-Net, we will
further optimize and lightweight to obtain better recognition and faster recognition rate, and gradually
carry out specific research tasks such as on-orbit applications.
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