
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050921

ARTICLE

GCAGA: A Gini Coefficient-Based Optimization Strategy for Computation
Offloading in Multi-User-Multi-Edge MEC System

Junqing Bai1, Qiuchao Dai1,* and Yingying Li2

1School of Computing, Xi’an Shiyou University, Xi’an, 710065, China
2Product Center, Wingtech Technology (Wuxi) Co., Wuxi, 214028, China

*Corresponding Author: Qiuchao Dai. Email: 21212060802@stumail.xsyu.edu.cn

Received: 22 February 2024 Accepted: 10 May 2024 Published: 20 June 2024

ABSTRACT

To support the explosive growth of Information and Communications Technology (ICT), Mobile Edge Comput-
ing (MEC) provides users with low latency and high bandwidth service by offloading computational tasks to
the network’s edge. However, resource-constrained mobile devices still suffer from a capacity mismatch when
faced with latency-sensitive and compute-intensive emerging applications. To address the difficulty of running
computationally intensive applications on resource-constrained clients, a model of the computation offloading
problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper. Then a
user benefit function EoU (Experience of Users) is proposed jointly considering energy consumption and time
delay. The EoU maximization problem is decomposed into two steps, i.e., resource allocation and offloading
decision. The offloading decision is usually given by heuristic algorithms which are often faced with the challenge
of slow convergence and poor stability. Thus, a combined offloading algorithm, i.e., a Gini coefficient-based
adaptive genetic algorithm (GCAGA), is proposed to alleviate the dilemma. The proposed algorithm optimizes
the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient. The
simulation compares the proposed algorithm with the genetic algorithm (GA) and adaptive genetic algorithm
(AGA). Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the
convergence speed, and the proposed algorithm performs better in terms of convergence while obtaining higher
EoU . The simulation code of the proposed algorithm is available: https://github.com/Grox888/Mobile_Edge_
Computing/tree/GCAGA.

KEYWORDS
Mobile edge computing; multi-user-multi-edge; joint optimization; Gini coefficient; adaptive genetic algorithm

1 Introduction

With the proliferation of various smart devices (e.g., smart homes, wearables, smartphones), the
mobile data traffic generated by these emerging services has exploded [1] while also posing more
demanding challenges to both data transmission networks and core networks [2]. Moreover, new
services or applications (e.g., real-time entertainment, artificial reality (AR), virtual reality (VR),
and other technologies) are typically latency-sensitive and compute-intensive. But paradoxically, end

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050921
https://www.techscience.com/doi/10.32604/cmc.2024.050921
mailto:21212060802@stumail.xsyu.edu.cn
https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA
https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA

5084 CMC, 2024, vol.79, no.3

devices are generally pursuing miniaturization and lightweight again, resulting in limited resources
(e.g., battery capacity, size) to meet users’ expectations. Taking intelligent driving as an example,
sensors and cameras mounted on autonomous vehicles capture real-time road condition information,
generating approximately 1 GB of data per second. However, the main frequency of onboard
processors often ranges from 500 to 900 MHz (e.g., Qualcomm 8155 700 MHz), which is far from
meeting the requirements for real-time road analysis. Therefore, to cope with the increasing traffic
demand and more stringent quality of service, it is crucial to further break through the physical
limitations of end devices and expand the computing capacity of end devices.

Mobile-edge Computing (MEC) is one of the most promising solutions [3]. As one of the key
technologies in the information age, MEC allows users to offload latency-sensitive and computation-
intensive tasks to edge cloud servers for execution through wireless networks by deploying small edge
cloud servers around the user. Thus, the MEC system has made a breakthrough in the hardware
limitation of mobile terminals [4]. Compared with the traditional central cloud model, edge clouds can
reduce response time, relieve network congestion on backhaul links, and significantly reduce network
upgrade costs. Edge cloud servers inevitably have problems, i.e., small coverage and limited resources.
They are solved or studied in different ways.

For the limited coverage of edge servers, unmanned aerial vehicles (UAVs) have been employed
to improve the connectivity of ground Internet of Things (IoT) devices due to their high altitude
[5]. The UAV moves above the users and provides computing service in an orthogonal multiple-
access manner over time [6]. Because of the mobility of user equipment (UEs), the essential part
of UAVs in the MEC system is to design an algorithm for calculating the trajectory. Wang et al. [7]
proposed a multi-agent deep reinforcement learning algorithm for managing the course of each UAV
independently. Hu et al. [8] proposed an alternating optimization algorithm to jointly optimize the
computation resource scheduling, bandwidth allocation, and the UAV’s trajectory in an iterative
fashion. Zhang et al. [9] applied a Lyapunov-based approach to analyze the task queue, and the energy
consumption minimization problem is decomposed into three manageable subproblems.

For the limited computing and communication resources, many scholars have started to study
and design suitable offloading decisions and resource allocation schemes. This optimization problem
is usually abstracted as a Mixed Integer Nonlinear Program (MINLP), a nonconvex NP-hard problem.
Since solving the optimal solution of this type of problem directly is difficult and impractical when the
number of offloading tasks is too large, a large amount of literature has been devoted to this study.
The typical approach is to decouple the problem into two subproblems, i.e., resource allocation and
offloading decision, and then solve them using different algorithms. The most used algorithms are
heuristics. However, these algorithms are often faced with a lack of convergence speed and stability.
Zhao et al. [10] first applied the Gini coefficient to estimate the server energy load pressure, which
demonstrated the ability to utilize prior conditions. Inspired by the unique function, we believe that
the offloading limit of each MEC server can be estimated in the same way. Thus, the dilemma of
heuristic algorithms can be alleviated.

This paper will study the problem of resource allocation and offloading decisions. We jointly
considered the time delay and energy consumption to improve the users’ experience. Then an EoU
reward function maximization problem is proposed for optimization. To solve the challenges of
heuristic algorithms, we propose the Gini coefficient-based adaptive genetic algorithm (GCAGA).
The Gini coefficient can fully utilize the priori conditions to estimate the offloading limit of each
MEC server, and the adaptively changing genetic operators can accelerate the convergence speed of
the algorithm. The main contributions are summarized as follows:

CMC, 2024, vol.79, no.3 5085

• We characterize the EoU by energy consumption and computation time in local computing and
collaborative cloud computing, respectively. Then, an EoU minimization problem is formulated
by jointly optimizing the offloading decision, communication, computation resources, and
mobile-edge matching strategies under hard constraints. Since the formulated problem is a
MINLP and optimization variables are coupled, we decompose the original one and propose
the heuristic offloading algorithm, namely GCAGA, to solve it.

• The proposed GCAGA runs in three stages. First, the transmission power and computation
resource for each possible matching strategy under the current offloading decisions is opti-
mized. Then, the capacity bound of each server is calculated with the Gini coefficient. Finally,
AGA is used to find the offloading decisions by iterative updating resource allocation and
matching strategies to minimize system EoU .

2 Related Work

Recently, scholars have carried out much research on optimizing the factors involved in the task
offloading and resource allocation problem. In this section, some typical works will be reviewed and
compared with the proposed scheme.

Rahimi et al. [11] focused on optimizing offloading decisions without considering the resource
allocations, and thus, the full benefit of offloading cannot be reached. Yu et al. [12] minimized the total
cost by optimizing offloading decisions and resource allocation in the MEC system with the assistance
of the central cloud. However, they only considered the single-user-single-edge cloud scenario, which
simplifies the problem analysis and system model. The joint optimization of the offloading decisions
and the resource allocation for a general multi-user-multi-edge computation offloading system had
yet to be investigated. A low-complexity iterative suboptimal algorithm called FAJORA was proposed
by Du et al. [13], which jointly optimizes the offloading decision and resource allocation in a multi-
user-multi-edge system. Still, the algorithm does not achieve an optimal convergence result when the
number of tasks increases. Cong et al. [14] employed the Gray Wolf algorithm to approximate the
optimal point. Their results indicate that the algorithm performs well when tasks increase.

The latter literature is written based on a multi-user-multi-edge system, but some fail to consider
the time delay and energy consumption jointly. A socially aware dynamic computation offloading
scheme was proposed by Liu et al. [15] to use a game theoretic approach to minimize the social group
execution cost with energy harvesting devices, but the time delay was not considered. Huang et al. [16]
proposed a novel protocol for the MEC system and saved at most 80% of energy consumption
compared to other schemes. By using lexicographic max-min fairness, delay-aware task offloading was
studied by Jiang et al. [17], but the energy consumption was not analyzed. Zhang et al. [18] considered
energy consumption and time delay. They proposed a two-step fair task offloading (FTO) scheme
aiming at decreasing energy consumption but just with a fixed time delay upper limit. Several delay-
minimizing collaboration and offloading policies were proposed in [19–23] without optimizing energy
consumption.

Other studies have taken both the time delay and energy consumption into consideration. They
addressed the problem in different ways. However, only a few could consider the users’ experience,
while others added the time delay and the energy consumption directly with two weight factors.
However, the time delay and energy consumption may not necessarily have the same unit or even
magnitude. Xu et al. [24] used a combination of Deep Reinforcement Learning (DLR) and Genetic
Algorithm (GA) algorithm to obtain an approximate optimal solution that minimizes the system cost.
Some research work [25–27] relaxed this MINLP problem into a convex problem and then constructed

5086 CMC, 2024, vol.79, no.3

a suboptimal task assignment solution based on the obtained optimal solution, effectively reducing
the user’s computational latency. Ning et al. [28] considered the channel allocation problem. The
task offloading and resource allocation problem in the telematics system is studied. The problem is
decomposed into three subproblems, task allocation, sub-channel allocation, and power allocation,
to maximize the total offloading rate, and each subproblem is solved by iteration. In the research
of Xu et al. [29], a non-dominated ranking GA (NSGA-III) was proposed to solve the multi-
objective optimization problem. Wu et al. [30] designed a memory algorithm based on GA and a local
search method. Besides, in [31–35], the deep learning approach was employed to obtain the optimal
offloading policy. Still, some problems can be found in these approaches, such as poor adaptability to
new environments. Attention mechanism is employed in [36–38] to improve the convergence stability
but the convergence speed is slowed down. Zhang et al. [39] designed a novel hybrid many-objective
optimization algorithm by cascading clustering and incremental learning to solve the offloading
decision. Based on the optimal offload decision solution, they solve the resource allocation problem
with a low-complexity heuristic method. Liu et al. [40] partitioned the offloaded application into a
directed acyclic graph with multiple collaborative sub-tasks and then proposed a cooperative resource
allocation approach to optimize the problem.

The review of previous research shows that heuristic algorithms have received much attention in
the performance optimization of MEC systems. It can find the approximate optimal solution to the
problem in a reasonable time. However, such algorithms also have some inherent defects: One is easy
to fall into the dilemma of locally optimal solutions, and the other is due to the randomness of initial
solution generation, which can lead to a long iteration time of the system. These two drawbacks may
cause the slow convergence speed and poor stability of convergence results. The GA algorithm has
a fast convergence speed and stability, but it often eliminates the current lowest fitness individual
(even if the individual has a good genetic pattern), leading to getting stuck in a locally optimal
solution. The simulated annealing algorithm (SAA) can dynamically adjust its search space with the
iteration process, and escape the local optimal solution by increasing system entropy, which has strong
optimization performance. However, due to the difficulty in grasping the downward trend of system
entropy, it is difficult to ensure the convergence stability of SAA.

After reviewing the recent work, Table 1 is made to show the categorized list of the research
content, in which ‘—’ means that the corresponding factor was not mentioned in these articles.

Table 1: Categorized list of research work on the task offloading and resource allocation problem

Literature Time delay Energy
consumption

User experience Convergence
performance

[17,19–23,25–27] √ × — —
[10,15,16,28] × √ — —
[13,30–35,39,40] √ √ — —
[14,18,24,29,36–38] √ √ √ ×
Proposed scheme √ √ √ √

Unlike the above research work, we propose a user-benefit function EoU , which includes both the
time delay and energy consumption. Then, the prior conditions are fully utilized by the Gini coefficient
to estimate the offloading limit of each MEC server. Finally, the AGA is employed to optimize the

CMC, 2024, vol.79, no.3 5087

offloading decision. Experiment results indicate that the proposed GCAGA performs well on users’
experience and convergence. The specific model-building process will be described in the following text.

3 System Model

Consider a multi-user, multi-server MEC system, as shown in Fig. 1, where each base station
(BS) is equipped with an MEC server to provide high-bandwidth, low-latency cloud-based services to
surrounding user devices in proximity. Each mobile user can also choose to offload computationally
intensive program tasks to the MEC server from the nearby BSs. A program task is typically offloaded
at only one MEC server of choice. The users and MEC servers in the MEC system are denoted as
U = {1, 2, · · · , u, · · · , U} and S = {1, 2, · · · , s, · · · , S}. It is assumed that the computational tasks
generated by each user can be represented by a tuple consisting of two parameters, i.e., Tu = 〈du, cu〉,
where du [bits] refers to the amount of input data that needs to be transferred from the local device to
the MEC server, and cu [cycles] refers to the workload, i.e., the total amount of computation required to
complete the task program. Each program task can be executed locally or on one of the MEC servers.
In this section, the models of local computing, task transfer, and edge computing for mobile users are
presented separately. The meanings of the symbols in this paper are listed in Table 2.

Figure 1: The structure of the MEC system

Table 2: Symbolic meaning of basic parameters in the proposed model

Name Description

U Set of users
S Set of MEC servers
N Sub-bands of MEC servers
B The total bandwidth of a MEC server
Tu The computing task for user u
du The input data size of the task Tu

cu The workload of completing the task Tu

hus Uplink channel gain between user u to server s
�us SINR from user u to server s
Rus The uplink transmission rate of user u to server s
ρs Co-band interference density of server s
σ 2 Background noise variance
pu The transmission power of user u
Pu The maximum transmission power of user u
fs Maximum computing resource of server s
f l

u The local computing power of user u
fus Computing resources allocated by the server s to user u

(Continued)

5088 CMC, 2024, vol.79, no.3

Table 2 (continued)

Name Description

xus Task offloading indicator
k Energy factor of the chip
Pc Crossover possibility
Pm Mutation possibility
MAXV Maximum population
iterMax Maximum number of iterations

3.1 Local Computing Model

Assuming that each user u ∈ U can only generate one task Tu at a time, it will be selected as a
whole whether to offload to the MEC server for execution. For this purpose, the offloading decision
variable xus, u ∈ U , s ∈ S is introduced, in which xus = 1 denotes that task Tu will be offloaded to the
MEC server for execution. Otherwise, Tu will be executed locally. Then we have

C1 : xus ∈ {0, 1} , ∀u ∈ U , s ∈ S. (1)

The local computing power of user u is expressed in f l
u [CPU cycles/s], i.e., the local CPU frequency

size on the end device. Therefore, when xus = 0, the completion time of Tu can be defined as

tl
u = cu

f l
u

. (2)

Meanwhile, the energy consumption of Tu can be expressed as

El
u = kf l

u cu (3)

in which k is the energy factor depending on the chip architecture.

3.2 Task Transmission Model

Orthogonal Frequency Division Multiple Access (OFDMA) is used as a multiple access scheme
in the uplink [41], where each channel in a cell is orthogonal to the other channels. The operational
band A is divided into N equal subbands of size W = B/N [Hz]. This also implies that the MEC server
can serve at most N users simultaneously, which gives the following constraints:

C2 :
∑
s∈S

xus ≤ 1∀u ∈ U (4)

C3 :
∑
u∈U

xus ≤ N, ∀s ∈ S. (5)

Define Us = {u ∈ U |xus = 1} as the set of users who offload the task program to the MEC server
s. The total set of users who perform task offloading is Uoff = ∪s∈SUs. Denote the transmit power of
user u by P = {0 < pu ≤ Pu, u ∈ Uoff } [W], where Pu is the maximum transmission power of user u.
Then we have

CMC, 2024, vol.79, no.3 5089

C4 : 0 < pu ≤ Pu, ∀u ∈ Uoff . (6)

Obviously, if the task of user u is executed locally, i.e., u /∈ Uoff , then pu = 0. At this point, the
signal-to-noise from user u to MEC server s can be expressed as

�us = puhus

Bρs/N + σ 2
, u ∈ U , s ∈ S (7)

where σ 2 is the background noise variance, ρs is the co-band interference density of server s, and hus

denotes the uplink channel gain between user u and MEC server s.

Thus, by Shannon’s theorem, the rate at which the user can send data to the MEC server is limited
to

Rus(P) = W log2(1 + ϒus), u ∈ U , s ∈ S. (8)

Therefore, the transmission time when the user sends its task input data in the uplink is

tup
u =

∑
s∈S

xusdu

Rus(P)
, u ∈ U . (9)

At this point, the energy the corresponding user consumes to send data is denoted by Eu.

Eu = putup
u = pudu

∑
s∈S

xus

Rus(P)
, u ∈ U (10)

where Eu is a variable that only related to u. If user u decides to offload its task to an MEC server, then
Eu 	= 0, otherwise, if user u decides to perform local computation, then Eu = 0.

3.3 Edge Computing Model

Define F = {fus|u ∈ U , s ∈ S} as the computational resource allocation decision where fus indicates
the computing resources that server s allocates to user u. Obviously, the computational resources
allocated to the offloaded task should not exceed the total computational resources of the MEC server,
so there is a constraint

C5 : fus ≥ 0, ∀u ∈ U , s ∈ S

C6 :
∑
u∈U

fus ≤ fs, ∀s ∈ S (11)

where fs denotes the total computing resources of server s.

When the computational resource allocation decision is known, the execution time of task Tu at
the MEC server can be denoted by

texe
u =

∑
s∈S

xuscu

fus

, ∀u ∈ U . (12)

where texe
u is the task computation time on the MEC server only related to the offloading decision

performed by user u. If user u decides to offload its task to an MEC server, then texe
u 	= 0, otherwise, if

user u decides to perform local computation, then texe
u = 0.

5090 CMC, 2024, vol.79, no.3

4 Problem Formulation

In this section, the problem is described formally based on the above system model. Then
the problem is decoupled into two continuous-type extreme value problems and a discrete integer
programming problem. Finally, we will give the complete offloading strategy.

4.1 Formulaic Description

The user experience is used as the benefit evaluation criterion for resource allocation and
offloading decisions. Since the time delay and energy consumption may not necessarily have the same
unit or even magnitude, it is more reasonable that the experience of users is mainly characterized by the
relative improvement in task completion time and energy consumption in a mobile cloud computing
system [42]. Therefore, we defined the relative improvement in energy consumption and latency by
comparing the offloaded computing model with the local computing model. The relative improvement
of energy consumption and time delay is defined as El

u−Eu

El
u

and tlu−tu

tlu
, respectively. The lower the latency

and energy consumption of offloading computation compared to local computation, the better the
user experience of offloading computation. From this, we give the gain function of users, i.e., EoU
(Experience of User).

EoUu =
∑
s∈S

xus

(
αt

u

tl
u − tu

tl
u

+ αe
u

El
u − Eu

El
u

)
, u ∈ U (13)

where tu = tup
u + texe

u and αt
u, α

e
u ∈ [0, 1] , αt

u + αe
u = 1. Obviously, we have EoUu > 0. If EoUu < 0 then

it means that the task is offloaded to the MEC server with a negative gain, and it is better to execute
the task locally. At this point, we should set EoUu = 0, i.e., task A will not be offloaded.

The target is to maximize EoU through the joint optimization of resource allocation and
offloading decisions, so the problem can be described by J, i.e.,

J :
max
X ,P ,FEoU (X ,P ,F) =

∑
u∈U

EoUu

s.t.C1, C2, C3, C4, C5, C6

. (14)

In problem J, there are three variables to be optimized, i.e., X ,P ,F , where X is a discrete decision
matrix, P and F represent continuous interval variables. Obviously, J is a MINLP, which cannot be
directly solved. Therefore, it is necessary to decompose problem J.

4.2 Decomposition

In this section, we transform the high-complexity joint optimization problem into an equivalent
master problem and a set of low-complexity subproblems.

First, the constraints on the resource allocation and offloading decisions are decoupled from each
other, so with the offloading decision X fixed, problem J can be transformed into maximizing the
function EoU by optimizing the transmit power P , the resource allocation F on the MEC server, and
the new problem formulation can be expressed as J1, i.e.,

J1 :
max
P ,F

∑
u∈Uoff

(
αt

u

tl
u − tu

tl
u

+ αe
u

El
u − Eu

El
u

)
s.t.C4, C5, C6

. (15)

CMC, 2024, vol.79, no.3 5091

After replacing the corresponding parts of Eq. (13) with Eqs. (1), (2), and (10), J1 is transformed
into

J1 :
min
P

∑
s∈S

∑
u∈Us

du

(
αt

u

tl
u

+ αe
upu

El
u

)

W log2

(
1 + puhus

Bρs/N + σ 2

) +min
F

∑
s∈S

∑
u∈Us

αt
u

tl
u

cu

fus

s.t.C4, C5, C6

. (16)

Observing Eq. (16), we can see that the first term on the left side is only related to the transmission
power P and the second term is only related to the computational resource allocation F , so J1 can be
decoupled into two independent problems, i.e., the transmission power allocation problem and the
MEC server computational resource allocation problem.

As a result, the optimal resource allocation scheme P∗ and F ∗ will become a function associated
with the offloading decision X , i.e., P∗ = P∗ (X) and F ∗ = F ∗ (X), so problem J is equivalent to an
offloading problem, which can be denoted by
max
X J∗ (X) = EoU (X ,P∗,F ∗) . (17)

4.3 Resources Allocation

4.3.1 Transmission Power Allocation

The first term on the left-hand side in J1 is used as the objective function of the power allocation
strategy in the MEC system, denoted by J2

J2 :
min
P Γ (X ,P) = ∑

s∈S

∑
u∈Us

du

(
αt

u

tl
u

+ αe
upu

El
u

)

W log2

(
1 + puhus

Bρs/N + σ 2

)
s.t.C4

. (18)

However, since the transmit power of different users in the MEC system is independent, the above
equation can also be decomposed into an optimal transmit power problem for each user. The function
of J2 can be rewritten as

f (pu) = θu + λupu

W log2 (1 + μuspu)
, 0 < pu ≤ Pu, u ∈ Us (19)

where θu = αt
udu

tlu
, λu = αe

udu

El
u

, μus = hus
Bρs/N+σ2 , are given in the task program, and the channel environment

of the uplink is known and fixed. The derivation of the function is given by

f ′ (pu) = λu

W log2 (1 + μuspu)
− μus (θu + λupu) ln 2

W (1 + μuspu) ln2
(1 + μuspu)

. (20)

It is easy to see that when pu > 0, the denominator of the above equation is positive. The numerator
is then taken to be q (pu).

q (pu) = λu (1 + μuspu) ln (1 + μuspu) − μus (θu + λupu) (21)

5092 CMC, 2024, vol.79, no.3

The derivative for q (pu) is given by

q′ (pu) = λuμus ln (1 + μuspu) . (22)

For pu > 0, we have q′ (pu) > 0, i.e., q (pu) is monotonically increasing. There is also q (0) =
−μusθu < 0, so the zero point of q (pu) is the minimal value point of f (pu). Let that extreme point be
pmin

u and pmin
u > 0. When pmin

u > Pu, there is no extreme point within 0 < pu ≤ Pu. When pmin
u > Pu,

there is only a single extreme value point in 0 < pu ≤ Pu. In summary, it can be found that the function
f (pu) has at most one extreme value point in its definition domain, so it can be solved by the dichotomy
method.

4.3.2 Computational Resource Allocation

The second term of J1 is used to optimize the computational resource allocation problem, and the
objective function of this problem can be expressed by J3.

J3 :
min
F Λ (X ,F) =

∑
s∈S

∑
u∈Us

ηu

fus

s.t.C5, C6

(23)

where ηu = cu

αt
u

tl
u

. Since the constraints C5, C6 form a closed region, there is a minimum value in this

region.

Ref. [43] gives the solution to J3, i.e.,

f ∗
us = fs

√
ηu∑

u∈Us

√
ηu

, ∀s ∈ S, u ∈ Us

Λ (X ,F ∗) =
∑
s∈S

1
fs

(∑
u∈Us

√
ηu

)2

. (24)

4.4 Offloading Strategy

For a fixed task offloading strategy, it is possible to determine the resource allocation strategy P∗

and F ∗. Now we can rewrite J1 to

J1 :
min
X

∑
s∈S

∑
u∈Us

(Γ (X ,P∗) + Λ (X ,F ∗))

s.t.C4, C5, C6

. (25)

Since there is only one optimization variable X in J1, we propose the Gini coefficient-based
adaptive genetic algorithm (GCAGA). The algorithm is divided into three steps.

Step 1 Pre-offloading

We define EoUONE
us = EoU

(
X ONE

us ,P∗,F ∗), where X ONE
us = {xus = 1} indicates the offloading

decision consists only of offloading Tu to s. It is easy to see that only when EoUONE
us > 0, we

can offload Tu to server s. After pre-offloading, the pre-offloading user set is achieved, i.e., Bs ={
u ∈ U |EOUONE

us > 0
}
.

Step 2 Estimating the server capacity bound

CMC, 2024, vol.79, no.3 5093

Define the revenue function for server s, i.e., Ys = ∑
u∈Bs

EoUu, ∀s ∈ S. Then we have the cumu-
lative income ratio, i.e., yis = 1

Ys

∑i

j=1 EoUsj∀s ∈ S, i = 1, 2, . . . , |Bs| , sj ∈ Bs, j = 1, 2, . . . , |Bs| , sj 	=
sk, j 	= k. From this, the Gini coefficient Gs corresponding to server s can be calculated [44].

Gs = 1 − 1
|Bs|

(
1 + 2

|Bs|−1∑
i=1

yis

)
, ∀s ∈ S (26)

Thus, we obtain the capacity bound Is corresponding to server s.

Is = min
{⌈

1
Gs

⌉
+

⌈
Ls

|Bs|
(

|Bs| −
⌈

1
Gs

⌉)⌉
, |Bs|

}
(27)

where Ls = min
{⌊

fs
f mid
s

⌋
, |Bs| , N

}
, f mid

s is the median value of set {fus|u ∈ Bs},
⌈

1
Gs

⌉
indicates the number

of users who contribute most of the revenue, and
⌈

Ls
|Bs|

(
|Bs| −

⌈
1

Gs

⌉)⌉
is the correction factor of

⌈
1

Gs

⌉
.

Ls shows the capacity of server s. Define the average value of set {fus|u ∈ Bs} as f avg
s , there is f avg

s = fs
|Bs| . If

f mid
s ≤ f avg

s , we have
⌊

fs
f mid
s

⌋
≥ |Bs|, then there is Ls = |Bs|. If f mid

s ≥ f avg
s , we have

⌊
fs

f mid
s

⌋
≤ |Bs|. It means

half of the pre-offloaded tasks have taken over more than half of the resources on MEC server s, and
server s is not supposed to provide computing resources for all of them to achieve a better EoU result.

Thus,
⌊

fs
f mid
s

⌋
can be the up limit of Ls. Ls

|Bs| can represent the portion of tasks that might contribute to

EoU in Bs. Therefore, there are
⌊

Ls
|Bs|

(
|Bs| −

⌈
1

Gs

⌉) ⌋
tasks that should be considered aside from the⌈

1
Gs

⌉
tasks contributing most of the EoU .

Algorithm 1: Pre-offloading and capacity estimation
Input: U ,S, N, Tu, ∀u ∈ U
Output: Is, Bs, ∀s ∈ S
1: Pre-offloading

for s ∈ S do
Bs = ∅

for u ∈ U do
calculate EoUONE

us

if EoUONE
us > 0 then Bs = Bs ∪ {u}

2: Capacity estimation
for s ∈ S do

Ys = ∑
u∈Bs

EoUu

for s ∈ S do
for i = 1 to |Bs| do

yis = 1
Ys

∑i

j=1 EoUsj

Calculate Is by Eqs. (26) and (27)
Return Is, Bs

The detailed procedure of the pre-offloading and capacity estimation is shown in Algorithm 1. The
pre-offloading part requires all possible binary groups 〈u, s〉 to be traversed, so the time complexity
is O (|U | · |S|). The time complexity of the capacity estimation part is lower than the pre-offloading
part, because Bs < |U |. Thus, the time complexity of Algorithm 1 is O (|U | · |S|).

5094 CMC, 2024, vol.79, no.3

In the practical application scenarios of MEC networks, the number of servers |S| is usually a
constant value. From the above analysis, it can be seen that the time complexity of Algorithm 1 is only
related to the number of users |U | and increases linearly. Therefore, Algorithm 1 has good scalability.
Besides, Algorithm 1 can be applied to other heuristic algorithms in addition to combining with
GA, thereby reducing the solution space size and improving the convergence speed of the heuristic
algorithm.

To evaluate the generalizability of the algorithm, we need to consider whether the algorithm
depends on specific data distributions or assumptions. In Algorithm 1, we utilize the pre-offloading
operation to obtain the load capacity of each server, which indicates that Algorithm 1 relies on certain
prior knowledge. Therefore, Algorithm 1 is only applicable to MEC networks with global controllers.

Step 3 Solving offloading strategies by AGA

With Is, J can be transformed into J3, i.e.,

J3 :

max
X EoU (X ,P∗,F ∗)

s.t.C1, C2, C∗
3 :

∑
u∈U

xus ≤ Is, ∀s ∈ S (28)

where C∗
3 is an improvement of C3 based on Is.

For J3, the chromosome code is denoted by

g = [g1, g2, . . . , g|U |] (29)

where gu ∈ S, u ∈ U indicates that Tu is offloaded to server s. Each chromosome is equivalent to an
offloading strategy X .

The fitness function is given by

F =
∑
u∈U

EoUu − penalty (30)

where penalty is a punishment for violations of C1 and C2.

The penalty is not applied to C3, because we believe that a little bit of relaxation for J3 may benefit
searching for the extreme point. C3 is mainly used in the generation of the initial population. We
randomly generate chromosomes but select only those that satisfy

∣∣Is − ∑
u∈U xus

∣∣ ≤ Is
3

into the initial
population.

The parameters include the crossover probability Pc and the mutation probability Pm. In AGA,
genetic operators can be dynamically adjusted after natural selection.

Pc = P + Δc

Pm = P + Δm

Δc = Pc

(
Favg − Fmid

)
/2

(
Fmax − Favg

)
Δm = Pm

(
Favg − Fmid

)
/2

(
Fmax − Favg

)
(31)

where Fmid and Favg are the median and average values of parental fitness, respectively.

The detailed procedure of GCAGA is shown as Algorithm 2. The time complexity of the
external circulation of GCAGA is O (MAXV · iterMax), which is fixed. The internal circulation
consists of the dichotomy method and the fitness function calculation. The time complexity of fitness
function calculation is O (|S|). Take ε as the error tolerance, the time complexity of dichotomy is

CMC, 2024, vol.79, no.3 5095

O
(⌈

lg Pu
ε

⌉)
. Algorithm 1 provides the total number of users that can be uploaded to each MEC

server, i.e., I s, thereby reducing the size of the solution space and accelerating the convergence
speed of the algorithm. However, AGA must search all the users, i.e., |U |, to perform offloading.
Thus, the time complexity of AGA is O

(
MAXV · iterMax · |U | · (|S| + ⌈

lg Pu
ε

⌉))
, while GCAGA is

O
(
MAXV · iterMax · ∑s∈S Is · (|S| + ⌈

lg Pu
ε

⌉))
, which is lower than AGA. Since Algorithm 1 can

accelerate the convergence of AGA, the iterMax is not set to be a fixed value in practical scenarios.
The termination condition can be set as the unchanging of optimal individual fitness.

Algorithm 2: GCAGA
Input: U ,S, Pc, Pm, Is

Output: X ,P∗,F ∗

1: Initialization
Set the upper population limit MAXV
Generate the initial population V

2: Crossover and mutation
for iter = 1 to iterMax do

for i = 1 to MAXV do
P = r and r.v. r∼U(0,1)
if P < Pc then

Crossover V i with a random individual
Generate new individuals V a and V b

V = V ∪ {Va, Vb}
P = r
if P < Pm then

Random location of V i gene mutation
Generate new individual V m

V = V ∪ {Vm}
3: Natural selection

for i = 1 to |V | do
Solve P∗ by the dichotomy method
Solve F ∗ with Eq. (24)
Calculate Fi and sort Fi

Eliminate individuals by Fi

Generate new population V
Pc = P + Δc, Pm = P + Δm

Get X ,P∗,F ∗ of the optimal individual
Return X ,P∗,F ∗

5 Experiments

In this section, appropriate data are provided for the experiment. To prove the effectiveness of
adaptive heuristic operators and the Gini coefficient-based optimization strategy, an ablation study is
employed and the comparison groups are set in Table 3. In Table 3, ‘GA’ means applying the genetic
algorithm; ‘Gini coefficient’ means applying Algorithm 1; ‘Adaptive operators’ means combining GA
with Eq. (31) to form AGA.

5096 CMC, 2024, vol.79, no.3

Table 3: Comparison groups

Name Gini coefficient Adaptive operators GA

GA × × √
AGA × √ √
GCAGA √ √ √

We will verify the effectiveness of Algorithms 1 and 2 from three aspects, i.e., convergence
behavior, convergence results, and convergence speed. We will triple mean filter the data to make the
experimental curves easier to analyze.

5.1 Experiment Environment

The parameters are set as shown in Table 4. The parameters of the MEC system and GA are all
verified [44,45]. The experimental program is written based on Python. The simulation runs on the
PyCUDA 2021.1 framework, and one NVIDIA RTX3070 is used for accelerating the calculation. In
the simulation, each user in this article can freely choose MEC servers for computation offloading.
We use the convergence epoch to evaluate the convergence speed of each comparison group. We use
EoU as the evaluation metric for convergence results, which is equal to the fitness value of GA. In the
following text, we will not differentiate between Fitness and EoU .

Table 4: Experiment parameters

Parameter Value

B 100 MHz
Pu 0.1 W
f l

u 5 MHz
f s [5, 40] MHz
σ 2 −100 dBm
du 10 MB
k 10−11

hus (0, 2]
Pm 0.05
Pc 0.4
MAXV 64
iterMax 100

5.2 Convergence Behavior

To evaluate the convergence behavior of the three algorithms, we conducted 100 repeated
experiments for each of them, with 95% Confidence Interval (CI). The corresponding parameters are
set as U = 20,S = 5, N = 10, αt

u = 0.7, fs = 25 MHz. The uplink channel gain matrix {hus} is randomly
generated in (0, 2] for a more general situation. The comparison results are reported in Fig. 2.

CMC, 2024, vol.79, no.3 5097

(a) (b)

Figure 2: Convergence behavior comparison of three algorithms with 95% CI. (a) Fitness distribution
comparison. (b) Earliest convergence distribution comparison

As can be seen from Fig. 2a, all three algorithms have completed convergence. Among them,
GCAGA obtained 1% more EoU compared to AGA, while GCAGA obtained nearly 2% more
EoU compared to GA. We also observed that GCAGA and AGA had higher convergence stability
compared to GA according to the width of the distribution.

As shown in Fig. 2b, GCAGA has an obvious convergence speed advantage compared to the other
two algorithms. Compared to AGA, GCAGA achieved nearly 25% speed improvement. Compared to
GA, GCAGA achieved nearly 67% speed improvement. The distribution also shows that GCAGA
and AGA have higher stability compared to GA, indicating the effectiveness of the Gini coefficient
and adaptive changing genetic operators.

5.3 Convergence Results

Notice that in Fig. 3a, GCAGA does not have a significant advantage over AGA and GA when the
computational resources are insufficient or too sufficient (corresponding to both ends of the curve).
This is because when computational resources are insufficient, users prefer local computation, and
there is no need for computational offloading. When the computational resources are too sufficient,
the capacity bound Is, which is calculated by the Gini coefficient, reaches the upper limit, and GCAGA
degrades to AGA. In the middle of the curve, we can see that GCAGA outperforms other algorithms
when the computational resources are sufficient to support part of the tasks for offloading but not
very abundant, which indicates that the capacity boundary calculated by the Gini coefficient plays a
crucial role.

As shown in Fig. 3b, the total revenue gradually decreases as the number of channel divisions
increases. This is because the total bandwidth is limited. As the number of channel divisions increases,
the bandwidth allocated to each channel decreases, which leads to an increase in the offloading delay
of the uplink, i.e., the communication cost becomes larger, and the total revenue decreases.

As shown in Fig. 3c, the revenue increases while tending to be flat. When the number of servers is
smaller than the number of users, the average computing resources per user increases as the number of
servers increases. However, when the number of servers is larger than the number of users, the average

5098 CMC, 2024, vol.79, no.3

computing resources per user tends to be constant as each user offloads to at most one server, and the
revenue tends to be constant.

In Fig. 3d, the revenue curve roughly follows an increasing trend and converges when the number
of users exceeds 25. This is because the capacity of the servers is limited. If the user number has reached
the upper bound of the servers, only a fixed number of users can perform offloading. However, it is
essential to note that there is a minimal point when the number of users is around 15. Before 10, the
server load is light, and users can offload their tasks. When the user number is greater than 10, some
users cannot offload. At this time, the extreme point region of the solution space becomes narrow, and
the algorithm searches less efficiently. When the number of users exceeds 15, the extreme value point
area becomes wider with the increase of users, and the algorithm starts to function normally.

(a) (b)

(c) (d)

Figure 3: Optimal points of convergence results. (a) U = 20,S = 5, N = 10, αt
u = 0.7 Fitness varies

as the increasing of computation resources with a step of 2.5 MHz. (b) U = 20,S = 5, αt
u = 0.7, fs =

6 MHz Fitness varies as the increasing of signal channels. (c) U = 20, N = 10, αt
u = 0.7, fs = 6 MHz

Fitness varies as the increasing of MEC servers. (d) S = 5, N = 10, αt
u = 0.7, fs = 25 MHz Fitness

varies as the increasing of users

In summary, in the simulation experiments in Figs. 3a and 3b, the two factors of edge server
computing frequency and channel partition number directly relate to edge server computing and
communication resources. In the simulation experiments in Figs. 3c and 3d, the two factors, i.e., the
number of users and the number of MEC servers, directly relate to the computing complexity of the
resource allocation and task offloading problem. The experimental results of Figs. 3a and 3b indicate

CMC, 2024, vol.79, no.3 5099

that GCAGA can work effectively and stably when the resources of MEC servers are limited. The
experimental results of Figs. 3c and 3d indicate that GCAGA can achieve a better convergence result
while increasing problem complexity.

5.4 Convergence Speed

Fig. 4a shows that the curve gradually converges with the increase of compute resources. As
computational resources increase, users are more inclined to offload tasks to edge servers, and
eventually, all users will decide to perform task offloading. This means that the calculation of the Gini
coefficient for the server capacity bound will fail, and GCAGA degenerates to AGA. The experimental
curve also confirms this, and eventually, GCAGA needs the same epochs as AGA, which still has a
speed advantage compared to GA.

Figure 4: Experiment results of earliest convergence epochs. (a) U = 20,S = 5, N = 10, αt
u = 0.7

Earliest convergence epochs vary as the increasing of computation resources with a step of 2.5 MHz.
(b) U = 20,S = 5, αt

u = 0.7, fs = 6 MHz Earliest convergence epochs vary as the increasing of signal
channels. (c) U = 20, N = 10, αt

u = 0.7, fs = 6 MHz Earliest convergence epochs vary as the increasing
of MEC servers. (d) S = 5, N = 10, αt

u = 0.7, fs = 25 MHz Earliest convergence epochs vary as the
increasing of users

From Fig. 4b, the curve of GCAGA rises and falls as the number of channels increases. This is
because as the number of channels increases, the upper limit of server capacity increases, users can use
more channels for offloading, the number of users who can choose to perform offloading increases,

5100 CMC, 2024, vol.79, no.3

and the algorithms need more epochs to converge. However, as the number of channels increases
further, the number of computational resources allocated to each channel decreases, the server capacity
limit decreases, and the server capacity bound calculated by the Gini coefficient comes into play at this
time. Fewer epochs are required for GCAGA to converge.

In Fig. 4c, the epochs required for the convergence of the algorithms increase linearly as the
number of servers increases. This is because the solution space size is linearly related to the number of
servers. More servers mean more abundant computational resources and more users for offloading
computations. However, due to the limited resources set per server, the server capacity bound
calculated by the Gini coefficient still functions normally, as can be seen from the speed advantage
of GCAGA in the figure.

In Fig. 4d, the curve rises as the number of users increases. The increased number of users means
the solution space expands, and the algorithms need more epochs to converge. Due to the limited
resources in the cloud, the optimal number of users that each edge server can accommodate is constant,
in which case GCAGA has a significant advantage over AGA and GA.

To conclude, Figs. 4a and 4b show the relationship between the algorithms’ convergence speed
and the resources provided by MEC servers. The experimental results of Figs. 4a and 4b indicate that
GCAGA can accelerate convergence in the situation of insufficient resources. In Figs. 4c and 4d , the
computing and communication resources on MEC servers are set limited deliberately. Experiment
results show that the adaptive genetic operators and capacity bound calculated by the Gini coefficient
indeed accelerate the convergence of GA.

Experimental analysis shows that the proposed Gini coefficient-based offloading strategy can
reduce the size of the solution space and adaptively converge, making it effective for real-world MEC
networks. Taking the widely used MQTT (Message Queuing Telemetry Transport) protocol of IoT
as an example, both QoS 1 and QoS 2 services have reply messages from MEC servers, ensuring
that EoUONE

us can be accurately obtained by the global controller. Then, Algorithm 1 is employed to
estimate the servers’ capacity. After that, Algorithm 2 can converge stably and quickly to optimize
EoU . Therefore, the proposed algorithm can be effectively applied to improve the experience of users.

6 Conclusion

This paper studies the resource allocation and computational offloading problem in a multi-
user multi-server MEC system. First, the offloading benefit of each user is modeled as a weighted
sum of latency and energy improvement ratios. Then the total sum of offloading benefits EoU for
all users in the system is maximized by jointly optimizing the resource allocation and offloading
strategy. To solve this optimization problem in a feasible time, we decompose the problem into two
parts: The optimization of the resource allocation problem when it has a fixed offloading decision
and the optimization of the resource allocation. For problem one, it is further shown that the resource
allocation problem can be decomposed into two independent problems, i.e., the transmission power
allocation problem and the computational resource allocation problem. They can be solved by convex
optimization and proposed quasi-convex optimization techniques, respectively. For problem two,
a low-complexity algorithm is proposed to solve it. GCAGA is designed by combining the Gini
coefficient with AGA. Experiment results show that the proposed algorithm can significantly improve
the total users’ experience with an accelerated convergence speed when the resources on MEC servers
are limited.

CMC, 2024, vol.79, no.3 5101

Acknowledgement: The resources and computing environment was provided by the Xi’an Shiyou
University, Xi’an, China. We are thankful for their support.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: Study conception and design: Qiuchao Dai, Junqing Bai; data collection:
Yingying Li; analysis and interpretation of results: Qiuchao Dai, Yingying Li; draft manuscript
preparation: Qiuchao Dai, Junqing Bai. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: All data generated or analyzed during this study are included in
this published article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. He, L. Ma, and R. Zhou, “Online task allocation in mobile cloud computing with budget constraints,”

Comput. Netw., vol. 151, no. 3, pp. 42–51, Jan. 2019. doi: 10.1016/j.comnet.2019.01.003.
[2] Y. M. Saputra, D. Hoang, and D. N. Nguyen, “JOCAR: A jointly optimal caching and routing framework

for cooperative edge caching networks,” in Proc. GLOBECOM, Waikoloa, HI, USA, 2019, pp. 1–6. doi:
10.1109/GLOBECOM38437.2019.9013745.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, Aug. 2017.
doi: 10.1109/COMST.2017.2745201.

[4] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with nearby mobile devices: A work sharing
algorithm for mobile edge-Clouds,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 329–343, Apr. 2019.
doi: 10.1109/TCC.2016.2560163.

[5] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource allocation in UAV-
enabled mobile edge computing,” IEEE Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020. doi:
10.1109/JIOT.2020.2965898.

[6] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao and G. Y. Li, “Joint offloading and trajectory design for UAV-
enabled mobile edge computing systems,” IEEE Internet Things J., vol. 6, no. 2, pp. 1879–1892, Apr. 2019.
doi: 10.1109/JIOT.2018.2878876.

[7] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam and L. Hanzo, “Multi-agent deep reinforcement learning-
based trajectory planning for multi-UAV assisted mobile edge computing,” IEEE Trans. Cogn. Commun.
Netw., vol. 7, no. 1, pp. 73–84, Mar. 2021. doi: 10.1109/TCCN.2020.3027695.

[8] X. Hu, K. K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and edge computing: Scheduling
and trajectory optimization,” IEEE Trans. Wirel. Commun., vol. 18, no. 10, pp. 4738–4752, Oct. 2019. doi:
10.1109/TWC.2019.2928539.

[9] J. Zhang, “Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge com-
puting,” IEEE Internet Things J., vol. 6, no. 2, pp. 3688–3699, Apr. 2019. doi: 10.1109/JIOT.2018.2890133.

[10] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by jointly allocating radio and com-
putational resources for mobile edge computing,” IEEE Access, vol. 5, pp. 11255–11268, Jun. 2017. doi:
10.1109/ACCESS.2017.2710056.

[11] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos, “MAPCloud: Mobile appli-
cations on an elastic and scalable 2-tier cloud architecture,” in Proc. UCC, Chicago, IL, USA, 2012, pp.
83–90. doi: 10.1109/UCC.2012.25.

https://doi.org/10.1016/j.comnet.2019.01.003
https://doi.org/10.1109/GLOBECOM38437.2019.9013745
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/TCC.2016.2560163
https://doi.org/10.1109/JIOT.2020.2965898
https://doi.org/10.1109/JIOT.2018.2878876
https://doi.org/10.1109/TCCN.2020.3027695
https://doi.org/10.1109/TWC.2019.2928539
https://doi.org/10.1109/JIOT.2018.2890133
https://doi.org/10.1109/ACCESS.2017.2710056
https://doi.org/10.1109/UCC.2012.25

5102 CMC, 2024, vol.79, no.3

[12] H. Yu, Q. Wang, and S. Guo, “Energy-efficient task offloading and resource scheduling for mobile edge
computing,” in Proc. NAS, Chongqing, China, 2018, pp. 1–4. doi: 10.1109/NAS.2018.8515731.

[13] J. Du, L. Zhao, X. Chu, F. R. Yu, J. Feng and I. Chih-Lin, “Enabling low-latency applications in LTE–A
based mixed fog/cloud computing systems,” IEEE Trans. Vehicular Technol., vol. 68, no. 2, pp. 1757–1771,
Feb. 2019. doi: 10.1109/TVT.2018.2882991.

[14] Y. Cong, K. Xue, C. Wang, W. Sun, S. Sun and F. Hu, “Latency-energy joint optimization for task
offloading and resource allocation in MEC-assisted vehicular networks,” IEEE Trans. Vehicular Technol.,
vol. 72, no. 12, pp. 16369–16381, Dec. 2023. doi: 10.1109/TVT.2023.3289236.

[15] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation offloading scheme for fog computing
system with energy harvesting devices,” IEEE Internet Things J., vol. 5, no. 3, pp. 1869–1879, Jun. 2018.
doi: 10.1109/JIOT.2018.2816682.

[16] X. Huang, X. Bao, S. Feng, Z. Luo, and G. Huang, “Optimal offline energy and task scheduling algorithm
design for wireless-powered IRS-assisted mobile edge computing systems,” in Proc. ICCCS, Guangzhou,
China, 2023, pp. 337–344. doi: 10.1109/ICCCS57501.2023.10151260.

[17] Y. Jiang and D. H. K. Tsang, “Delay-aware task offloading in shared fog networks,” IEEE Internet Things
J., vol. 5, no. 6, pp. 4945–4956, Dec. 2018. doi: 10.1109/JIOT.2018.2880250.

[18] G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, “Fair task offloading among fog nodes in fog computing
networks,” in Proc. ICC, Kansas City, MO, USA, Jul. 2018, pp. 1–6. doi: 10.1109/ICC.2018.8422316.

[19] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT service delay via fog offloading,”
IEEE Internet Things J., vol. 5, no. 2, pp. 998–1010, Apr. 2018. doi: 10.1109/JIOT.2017.2788802.

[20] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud computing for IoT systems: A com-
putation offloading game,” IEEE Internet Things J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018. doi:
10.1109/JIOT.2018.2838022.

[21] J. Xin, X. Li, L. Zhang, Y. Zhang, and S. Huang, “Joint computation and traffic loads balancing task
offloading in multi-access edge computing systems interconnected by elastic optical networks,” IEEE
Commun. Lett., vol. 27, no. 9, pp. 2378–2382, Sep. 2023. doi: 10.1109/LCOMM.2023.3292364.

[22] L. Liu and Z. Chen, “Joint optimization of multi-user computation offloading and wireless-caching
resource allocation with linearly related requests in vehicular edge computing system,” IEEE Internet
Things J., vol. 11, no. 1, pp. 1534–1547, Jan. 01, 2024. doi: 10.1109/JIOT.2023.3289994.

[23] Z. Xu, Y. Xie, F. Dong, S. Fu, and J. Hao, “Joint optimization of task offloading and resource
allocation for edge video analytics,” in Proc. CSCWD, Rio de Janeiro, Brazil, 2023, pp. 636–641. doi:
10.1109/CSCWD57460.2023.10152681.

[24] J. Xu, X. Liu, and X. Zhu, “Deep reinforcement learning based computing offloading and resource
allocation algorithm for mobile edge networks,” in Proc. ICCC, Chengdu, China, 2020, pp. 1542–1547.
doi: 10.1109/ICCC51575.2020.9345089.

[25] H. Chen, D. Zhao, Q. Chen, and R. Chai, “Joint computation offloading and radio resource
allocations in wireless cellular networks,” in Proc. WCSP, Hangzhou, China, 2018, pp. 1–6. doi:
10.1109/WCSP.2018.8555588.

[26] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and resource allocation for D2D-
enabled mobile-edge computing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4193–4207, Jun. 2019. doi:
10.1109/TCOMM.2019.2903088.

[27] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge computing for latency minimization,”
IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5031–5044, May 2019. doi: 10.1109/TVT.2019.2904244.

[28] Z. Ning, X. Wang, J. J. P. C. Rodrigues, and F. Xia, “Joint computation offloading, power allocation, and
channel assignment for 5G-enabled traffic management systems,” IEEE Trans. Ind. Inform., vol. 15, no. 5,
pp. 3058–3067, May 2019. doi: 10.1109/TII.2019.2892767.

[29] X. Xu, Q. Liu, and X. Zhang, “A computation offloading method over big data for IoT-enabled
cloud-edge computing,” Future Gener. Comput. Syst., vol. 95, no. 6, pp. 522–533, Jan. 2019. doi:
10.1016/j.future.2018.12.055.

https://doi.org/10.1109/NAS.2018.8515731
https://doi.org/10.1109/TVT.2018.2882991
https://doi.org/10.1109/TVT.2023.3289236
https://doi.org/10.1109/JIOT.2018.2816682
https://doi.org/10.1109/ICCCS57501.2023.10151260
https://doi.org/10.1109/JIOT.2018.2880250
https://doi.org/10.1109/ICC.2018.8422316
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/JIOT.2018.2838022
https://doi.org/10.1109/LCOMM.2023.3292364
https://doi.org/10.1109/JIOT.2023.3289994
https://doi.org/10.1109/CSCWD57460.2023.10152681
https://doi.org/10.1109/ICCC51575.2020.9345089
https://doi.org/10.1109/WCSP.2018.8555588
https://doi.org/10.1109/TCOMM.2019.2903088
https://doi.org/10.1109/TVT.2019.2904244
https://doi.org/10.1109/TII.2019.2892767
https://doi.org/10.1016/j.future.2018.12.055

CMC, 2024, vol.79, no.3 5103

[30] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, “Delay-minimization nonorthogonal multiple access
enabled multi-user mobile edge computation offloading,” IEEE J. Sel. Top. Signal Process., vol. 13, no. 3,
pp. 392–407, Jun. 2019. doi: 10.1109/JSTSP.2019.2893057.

[31] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, “Deep learning for edge computing applications: A state-
of-the-art survey,” IEEE Access, vol. 8, pp. 58322–58336, Aug. 2020. doi: 10.1109/ACCESS.2020.2982411.

[32] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, “Edge intelligence: Paving the last mile of
artificial intelligence with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019. doi:
10.1109/JPROC.2019.2918951.

[33] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen, “Convergence of edge computing and
deep learning: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 869–904, Jan.
2020. doi: 10.1109/COMST.2020.2970550.

[34] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement learning-based task offloading
framework for edge-cloud computing,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021. doi: 10.1109/TNSM.2021.3087258.

[35] X. Chen and G. Liu, “Energy-efficient task offloading and resource allocation via deep reinforcement
learning for augmented reality in mobile edge networks,” IEEE Internet Things J., vol. 8, no. 13, pp. 10843–
10856, Jul. 2021. doi: 10.1109/JIOT.2021.3050804.

[36] Z. Gao, L. Yang, and Y. Dai, “Large-scale cooperative task offloading and resource allocation in
heterogeneous MEC systems via multi-agent reinforcement learning,” IEEE Internet Things J., vol. 11,
no. 2, pp. 2303–2321, Jan. 15, 2024. doi: 10.1109/JIOT.2023.3292387.

[37] J. A. Ansere, “Optimal computation resource allocation in energy-efficient edge IoT systems with deep
reinforcement learning,” IEEE Trans. Green Commun. Netw., vol. 7, no. 4, pp. 2130–2142, Dec. 2023. doi:
10.1109/TGCN.2023.3286914.

[38] Z. Gao, L. Yang, and Y. Dai, “Fast adaptive task offloading and resource allocation in large-scale MEC
systems via multi-agent graph reinforcement learning,” IEEE Internet Things J., vol. 11, no. 1, pp. 758–776,
Jan. 2024. doi: 10.1109/JIOT.2023.3285950.

[39] J. Zhang, B. Gong, M. Waqas, S. Tu, and Z. Han, “A hybrid many-objective optimization algorithm for
task offloading and resource allocation in multi-server mobile edge computing networks,” IEEE Trans.
Serv. Comput., vol. 16, no. 5, pp. 3101–3114, Sep. 2023. doi: 10.1109/TSC.2023.3268990.

[40] J. Liu, G. Li, Q. Huang, M. Bilal, X. Xu and H. Song, “Cooperative resource allocation for computation-
intensive IIoT applications in aerial computing,” IEEE Internet Things J., vol. 10, no. 11, pp. 9295–9307,
Jun. 2023. doi: 10.1109/JIOT.2022.3222340.

[41] E. Dahlman, S. Parkvall, and J. Skold, “Chapter 3–OFDM transmission,” in 4G: LTE/LTE-Advanced for
Mobile Broadband, 2nd ed. NY, USA: Academic Press, 2014, pp. 29–48.

[42] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu and H. Duan, “Mobility-aware multi-user offloading
optimization for mobile edge computing,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3341–3356, Mar.
2020. doi: 10.1109/TVT.2020.2966500.

[43] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-server mobile-
edge computing networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019. doi:
10.1109/TVT.2018.2881191.

[44] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task offloading and migration schemes in fog com-
puting networks,” IEEE Access, vol. 7, pp. 43356–43368, Mar. 2019. doi: 10.1109/ACCESS.2019.2908263.

[45] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient computation offloading management
scheme in the densely deployed small cell networks with mobile edge computing,” IEEE/ACM Trans. Netw.,
vol. 26, no. 6, pp. 2651–2664, Dec. 2018. doi: 10.1109/TNET.2018.2873002.

https://doi.org/10.1109/JSTSP.2019.2893057
https://doi.org/10.1109/ACCESS.2020.2982411
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/JIOT.2021.3050804
https://doi.org/10.1109/JIOT.2023.3292387
https://doi.org/10.1109/TGCN.2023.3286914
https://doi.org/10.1109/JIOT.2023.3285950
https://doi.org/10.1109/TSC.2023.3268990
https://doi.org/10.1109/JIOT.2022.3222340
https://doi.org/10.1109/TVT.2020.2966500
https://doi.org/10.1109/TVT.2018.2881191
https://doi.org/10.1109/ACCESS.2019.2908263
https://doi.org/10.1109/TNET.2018.2873002

	GCAGA: A Gini Coefficient-Based Optimization Strategy for Computation Offloading in Multi-User-Multi-Edge MEC System
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Formulation
	5 Experiments
	6 Conclusion
	References

