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ABSTRACT

The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection
through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis
increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across
datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning
architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create
a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity,
and Area Under the Curve (AUC) were utilized for evaluation. The findings revealed that ResNet-50 surpassed
DenseNet-121 in all evaluated categories. It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy
of 98.77% and 98.88%, precision of 98.78% and 98.89% and sensitivity of 98.76% and 98.86% for training and
validation, hinting at its advanced capability for AFib detection. These insights offer a substantial contribution
to the existing literature on deep learning applications for AFib detection from ECG signals. The comparative
performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.
Moreover, the outcomes of this study are anticipated to stimulate the development of more advanced and efficient
ECG-based AFib detection methodologies, for more accurate and early detection of AFib, thereby fostering
improved patient care and outcomes.
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1 Introduction

The prevalence of cardiovascular illnesses has been increasing in contemporary society, affecting
not only older individuals but also younger populations because of their primarily inactive way of
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life. Atrial fibrillation is a prevalent cardiac disorder often seen in adults, characterized by anomalous
electrical impulses within the heart’s atria. This cardiac arrhythmia is often seen and is distinguished
by atypical, irregular, and frequently accelerated cardiac contractions. Could be paraphrased as Atrial
Fibrillation (AFib) is associated with significant morbidity and mortality, particularly when not
promptly managed. This condition has been associated with an elevated likelihood of experiencing
significant cardiac consequences, including heart failure, thromboembolic events, and cerebrovascular
accidents [1].

Based on data provided by the World Health Organization (WHO), it is anticipated that AFib
impacts around 33.5 million individuals globally. Furthermore, the incidence of this condition is
projected to rise because of population aging and the escalating rates of obesity and diabetes among
younger individuals [2]. In AFib cases, blood pooling in the atria may occur, potentially leading to the
formation of blood clots. These clots can induce heart failure or migrate to the cerebral region, posing
a risk to the brain. Suppose a blood clot migrates to the cerebral region. In that case, it can potentially
induce a cerebrovascular accident, often referred to as a stroke, which typically has a high mortality
rate. AFib is a prominent risk factor for stroke since those diagnosed with AFib have a much higher
likelihood of experiencing a stroke compared to those without this condition [3]. During an episode
of AFib, the cardiac rhythm becomes erratic, resulting in an aberrant heart rate. Electrocardiogram
(ECG) monitoring is a diagnostic technique that is both non-invasive and readily accessible. It can
identify AFib and other irregular heart rhythms, enabling prompt management and improving patient
outcomes [4].

The analysis of vast ECG signal data poses challenges for medical professionals, given its
complexity and the need to process substantial information. The presence of noise and abnormalities
in ECG readings poses a significant challenge to human observers’ reliable identification of AFib.
Nevertheless, deep learning algorithms can analyse ECG data and acquire knowledge of patterns
linked to AFib, enabling enhanced precision and efficiency in identification. Moreover, it is possible
to train deep learning algorithms using extensive datasets of ECG signals, enabling them to acquire
knowledge from a wide array of data and enhance their precision as time progresses [5]. Therefore, the
use of deep learning models has the potential to enhance the dependability and uniformity of AFib
diagnosis, therefore playing a crucial role in enhancing patient outcomes and mitigating the likelihood
of problems.

Designing a precise algorithm capable of effectively discerning AFib with a notable level of
accuracy and a minimal occurrence of false alarms while avoiding misclassification of AFib as other
arrhythmic disorders is a considerable challenge. The exact timing of an AFib episode experienced by
a patient is of utmost importance in precisely capturing the event via ECG signals [6]. Deep learning
algorithms often encounter challenges in accurately detecting AFib due to arrhythmias with similar
features, such as repeated premature atrial contractions. The primary contribution of this work is in the
design and development of a deep learning model that exhibits a high level of accuracy and precision
in predicting AFib while also demonstrating efficient computing performance. Various deep learning
models are analysed concerning metrics such as accuracy, precision, and computational time. The
selection of the best-fit model is based on its ability to achieve optimal accuracy in identifying AFib
while minimizing the occurrence of erroneous diagnoses.

The detection of Atrial Fibrillation (AFib) through Electrocardiogram (ECG) signals is a critical
step in preventing severe cardiac events and enhancing patient recovery. However, the application
of deep learning techniques to accurately identify AFib faces challenges such as overfitting and
inconsistent performance across various datasets. These issues underline the need for robust, reliable
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deep learning models that can adapt to the complexities of ECG data to improve diagnostic accuracy
and patient outcomes.

There is a gap in the comprehensive comparison of deep learning architectures for AFib detection.
Particularly, studies comparing the performance of advanced models like ResNet-50 and Dense
Net-121 in processing ECG signals are limited. This gap indicates a need for systematic evaluations that
can guide the selection of optimal architectures for specific clinical applications. Another significant
gap lies in addressing the consistency of model accuracy across different datasets. Many existing studies
fail to thoroughly investigate or mitigate the variations in model performance when applied to diverse
ECG datasets. This inconsistency poses a barrier to the deployment of deep learning solutions in a
real-world clinical setting, where data variability is a common challenge.

In this paper contribution are following:

• Showcased ResNet-50’s Superiority: Proved through rigorous evaluation that ResNet-50 outper-
forms DenseNet-121 in detecting AFib from ECG signals, based on metrics such as accuracy,
precision, and sensitivity.

• Advanced Methodological Evaluation: Employed a comprehensive set of metrics, including loss,
accuracy, precision, sensitivity, and Area Under the Curve (AUC), to assess the performance of
deep learning models in AFib detection.

• Addressed the Need for Robust Detection: Highlighted the effectiveness of ResNet-50 in offering
a more consistent and accurate method for AFib detection, for its application in clinical settings.

• Contributed to Research Foundation: The findings provide a solid foundation for future research
to build more efficient and accurate deep learning models for ECG-based AFib detection,
addressing critical gaps in the literature and clinical practice.

2 Related Works

The topic of atrial fibrillation has been extensively investigated in prior research. A one-
dimensional Convolutional Neural Network (CNN)-based real-time ECG categorization system
was shown. Each patient’s individual demands have been considered when designing the system.
Kiranyaz et al. [7] used 1-Dimensional Convolutional Neural Networks (1-D CNN) has resulted in
a success rate of 98.3%. In their work, the authors introduced a unique method that used a wavelet-
based method for ECG delineation with the express goal of diagnosing AFib. A 96.8% accuracy
rate was discovered after completing validations to identify AFib using the described technique [8].
The automatic identification of ventricular fibrillation was made possible with the introduction of
a deep learning-based method. To improve the quality of the ECG data, wavelet processing and
sliding window filtering techniques were created. A technique has been created to recognize R waves
that exhibit competence. According to the research results, the algorithm designed to detect atrial
fibrillation has an accuracy rate of 84.0%, a sensitivity rate of 84.26%, and a specificity rate of
93.23% [9].

The objective is to assess and compare the suggested methods for atrial fibrillation detection. The
research findings indicated a high validation accuracy of 0.8765 when using the final technique [10],
which incorporated a Convolutional Long Short-Term Memory (CLSTM) model for categorizing P
wave detection. Convolutional layers and Long Short-Term Memory (LSTM) are both a part of the
present structure. Another method involves gathering ground truth data by personally examining the
model’s output [11]. This data is used to compare the frequency of true positive and true negative
predictions about the patients’ mobile settings. the development of a deep-learning classification
scheme for cardiac arrhythmias, including atrial fibrillation. The study employed a CNN model that
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was trained on a significant dataset of 91,232 single-lead ECG recordings from 53,549 patients. The
CNN model’s 34 layers were utilized in its development. The model’s excellent effectiveness in detecting
atrial fibrillation is shown by the Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) value of 0. 97. The results of the study show that deep learning models can accurately diagnose
and categorize arrhythmias with the same efficacy as skilled human cardiologists [12]. The use of
deep CNN for the identification of AFib in ECG data was examined in the study by Xia et al. [13].
The researchers came up with a two-stage process, where they first employed a shallow CNN to
extract essential details from ECG segments. Based on the examination of 25 two-channel ECG
recordings taken from the Physio Net MIT-BIH Atrial Fibrillation Database, the researchers in this
study developed and validated a model. The method used in this study, which makes use of deep
learning techniques, has proven to be remarkably effective at spotting atrial fibrillation. According to
the data reported Xia et al. [13], there is 98.4% sensitivity and 96.3% specificity. Based on concise single-
lead ECG data, a deep learning approach was presented that employed 1D-CNN to categorize AFib.
The model’s improved F1-score indicated that it performed at a better level than traditional machine
learning techniques [14]. The researchers used the dataset provided by the 2017 PhysioNet/CinC
Challenge for their analysis. The study’s authors have established a standard for future research efforts
by comprehensively analyzing the strengths and weaknesses of different approaches [15]. Development
of an extensive deep-learning framework that utilizes CNNs and bidirectional LSTM to identify
AFib in single-lead ECG data. The research presented in the study showcased positive results and
indicated the possibility of detecting AFib in real-time using wearable technology [16]. A deep-learning
methodology to identify AFib was introduced by using morphological and rhythm data derived from
ECG recordings. The study presented evidence of the effectiveness of using a combination of traits
in identifying AFib, as the proposed strategy showed superior performance compared to competing
approaches [17]. Data obtained from a single-lead ECG to construct a deep-learning model to conduct
AFib screening. The researchers used a rigorous approach to accurately detect AFib in a particular
population, demonstrating a sensitivity of 95.6% and a specificity of 97.5% [18].

The identification of atrial fibrillation in two-dimensional ECG was suggested. The methodology
employed in their research, which showcased the potential advantages of employing two-dimensional
representations for deep learning-based identification of AFib [19], entailed transforming one-
dimensional ECG data into two-dimensional images. This approach yielded notable levels of precision
in the detection of AFib.

One limitation of the literature review studied, as represented in Table 1 and shows that it relies
on the assumption that the P wave is the most reliable fiducial point for detecting atrial fibrillation.
While this may be true in many cases, there may be patients with other ECG features more indicative
of atrial fibrillation. Additionally, the model is only trained on P waves, which may limit its ability to
detect other important ECG features. Another area for improvement is that the model’s performance
is only validated on a feed-forward neural network, which may not represent the performance on other
types of neural networks. Valuing the model’s performance on various network architectures would
be beneficial to ensure its effectiveness.

Furthermore, the model only investigates the relationship between the False Positive Rates (FPR),
which may not comprehensively assess the model’s performance. Evaluating other performance
metrics such as sensitivity, specificity, and accuracy would be helpful. Finally, the dataset size used
in the study is limited to only two-channel ECG data, which may need to be increased for training a
robust and accurate model for detecting atrial fibrillation. It would be beneficial to train the model on
larger datasets with more channels to improve its accuracy and generalizability.
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Table 1: Summary of literature review and limitation of previous work

Study Method Dataset Performance Limitations

[7] 1-D convolutional
neural networks

PTB diagnostic
ECG database

98.3% accuracy The need for individualized
CNN training for each
patient might hinder the
scalability of the system

[8] Wavelet-based ECG
delineator for AFib
detection

MIT-BIH
arrhythmia
database

96.8% accuracy Relies on the assumption
that the P wave is the most
reliable fiducial point for
detecting atrial fibrillation

[9] Atrial fibrillation
detection using a
feedforward neural
network

Mixed dataset
composed of the
challenge-2017
database and the
MIT-BIH

84.00% accuracy,
84.26% sensitivity,
93.23% specificity

Performance is validated
only on feed forward
neural network which is
not enough to show the
best model performance

[10] Convolutional long
short-term memory
(CLSTM) model and
P wave detection

4th China
physiological signal
challenge-2021

Training accuracy:
0.9788, validation
accuracy (based on
P wave detection):
0.8765

Model is only Trained by P
waves

[11] Technique examining
really positive and
negative rates in
relation to patient’s
mobile settings

Three public
arrhythmia datasets
from Physio Net

93.40% accuracy Only investigate the
relationship between the
false positive rate (FPR)
did not discuss other
parameters which are vital
for performance evaluation

[12] 34-layer CNN model
for arrhythmia
detection and
classification

91,232 single-lead
ECG recordings
from 53,549
patients

AUC of 0.97 Only single-lead ECG data
used

[13] Two-stage framework
with shallow CNN and
deep CNN for feature
extraction and
classification

PhysioNet’s
MIT-BIH atrial
fibrillation database
(25 two-channel
ECG recordings)

Sensitivity: 98.4%,
specificity: 96.3%

Limited dataset size, only
two-channel ECG data
used

3 Methodology

In this study, CNN is used for the classification of ECG arrhythmia. The methodology is divided
into sections such as follows: a) Data Set b) Data Pre-processing c) Data Engineering d) ResNet-50
and DenseNet-121.
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3.1 Data Set

Heartbeat signals from the MIT-BIH Arrhythmia Dataset and the PTB Diagnostic ECG Database
were combined to create the dataset for this investigation [20]. To train deep neural networks for
the categorization of heartbeats, this dataset provides sufficient instances. Researchers have looked
at deep neural network architectures and transfer learning’s capacity to classify ECG heartbeats as
either normal or affected by various arrhythmias and myocardial infarction. The dataset consists of
109,446 samples in total, which are divided into the following five groups: N, S, V, F, and Q. The
MIT-BIH dataset is the source of these samples.

The dataset also includes 14,552 samples from the PTB Diagnostic Database that have been
divided into two categories. For both datasets, the sampling rate is set at 125 Hz. Preprocessing,
segmentation, and image conversion were applied to the ECG arrhythmias. The dataset has been
divided into training and validation halves, with 80% of the samples going to training and 20% going
to validation.

Table 2 shows the number of samples of each class in the data set.

Table 2: Data samples

Class N M Q V S F

Samples 18,926 2101 1608 1447 556 161

Combining heartbeat signals from the MIT-BIH Arrhythmia Dataset and the PTB Diagnostic
ECG Database significantly enhances the dataset’s diversity, essential for developing robust deep
learning models for ECG signal classification. The integration of these datasets introduces a broader
spectrum of ECG patterns, encompassing various arrhythmias and myocardial infarction types across
different patient demographics. This diversity aids in improving the models’ generalization ability,
reducing the risk of overfitting to specific dataset characteristics, and ensuring the models learn to
identify genuine underlying patterns indicative of cardiac conditions. Moreover, the merger results
in a larger dataset size, offering 109,446 and 14,552 samples from each dataset respectively, which is
beneficial for deep learning as it provides more examples for the model to learn from, leading to better
performance and reliability.

The methodology for combining the datasets involves preprocessing and segmentation to nor-
malize and ensure consistency between the datasets, including filtering, noise reduction, and signal
amplitude normalization. ECG signals were then segmented into individual heartbeats or fixed-
length segments, suitable for analysis. Additionally, the data was converted into a format conducive
to deep learning, potentially using image conversion techniques to transform time-series data into
spectrogram or waveform images, facilitating the use of convolutional neural networks. Both datasets
shared a sampling rate of 125 Hz, maintaining consistency in temporal resolution across the combined
dataset. Finally, the dataset was randomly divided into training and validation subsets, allocating
80% for training to maximize learning opportunities and 20% for validation to assess the model’s
performance and its ability to generalize across unseen data. This meticulous process of combining
datasets underpins the development of more accurate, reliable, and generalizable models for detecting
cardiac conditions through ECG signals [21].
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3.2 Data Pre-Processing

In the dataset preprocessing phase, critical steps are undertaken to ensure the ECG signal data
is optimally prepared for input into deep learning models, focusing on normalization, noise removal,
and amplitude scaling. The aim is to standardize the data to achieve uniformity in value ranges across
different sensors and leads, enhancing the model’s ability to learn and identify patterns indicative of
arrhythmias.

Normalization is a pivotal preprocessing step where each ECG signal lead’s data is scaled to ensure
that all values lie within a standardized range, facilitating faster and more efficient model convergence.
This is achieved using the formula.

X = (X − x_min)

(x_max − x_min)
(1)

where x_min an x_max represent the minimum and maximum amplitude values within a lead,
respectively. As a result, the processed signals have amplitudes normalized to a range greater than
0 and less than 1, making the data consistent and easier for the model to process.

To address the issue of noise, which can significantly affect the accuracy of ECG signal interpre-
tation, a Gaussian filter is applied. This method is chosen for its proficiency in reducing Gaussian
noise—common in ECG recordings—while preserving essential signal features. The inclusion of
Gaussian noise into the signal mimics real-world signal disturbances, providing a realistic scenario
for the model to learn from. Furthermore, amplitude scaling is employed to reflect real variations
in signal strength, adjusting the ECG signal’s amplitude by a factor to simulate these fluctuations
authentically. Additionally, to simulate baseline drifts often seen in ECG data, a random shift in the
signal’s baseline is introduced.

After these preprocessing steps, the dataset is divided into training and validation subsets. The
training set is used to teach the convolutional neural network (CNN) model, allowing it to learn
and adapt to the characteristics of ECG signals. In contrast, the validation set serves to evaluate the
model’s performance and guide the adjustment of its hyperparameters. This thorough preparation
of the ECG data is essential for developing a model capable of accurately classifying arrhythmias,
ensuring that it is trained and validated on data that closely resembles the conditions encountered in
clinical environments.

3.3 Data Engineering

By using CNN, it is possible to categorize ECG data into arrhythmia and normal categories.
The CNN model is a well-known deep learning strategy that has been shown to be very effective in
several medical fields, particularly in arrhythmia identification. Following the use of pre-processing
methods, the dataset is divided into several subsets for the purposes of training and validation. While
the training set is used to train the CNN model, the validation set is used to pick a model and tune
its hyperparameters. Multiple convolutional layers, max-pooling layers, and finally fully linked layers
make up the architecture of a CNN. By examining the characteristics noticed by the convolutional
layers, fully connected layers are used to identify the input ECG data [22].

The categorical cross-entropy loss function and the Adam optimizer are used in the training
method to improve the performance of the CNN model. The model’s training phase is carried out
across several epochs with a batch size of 32. A popular strategy is to use a learning rate that is
initially set at 0.001 and then progressively dropped over the course of the learning process to reduce the
possible problem of overfitting. Following the training process, the effectiveness of the CNN model is
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assessed using several measures, including accuracy, precision, sensitivity, and F1-score. The confusion
matrix shows that the model distinguishes between arrhythmia signals and normal signals with a high
degree of accuracy and few instances of misclassification.

Fig. 1 provides a thorough representation of the intended system. The system consists of a
dataset that undergoes initial preprocessing. Subsequently, the preprocessed dataset is divided into
subsets during the data splitting phase. These subsets are then utilized in the prediction model, which
constitutes the processing phase of the system. The accuracy of classification outcomes is assessed
by comparing them to the expected outcomes. If the desired outcomes are obtained and the model is
saved in the cloud, the classification results are considered satisfactory. Otherwise, the model is sent
back to the training phase for further refinement. The models are subsequently imported from the
cloud, and predictions are generated using the validation data. Classifications results are displayed at
the end which shows that the person is arrhythmic or not [23].

Figure 1: Complete system overview diagram

For data pre-processing Google Compute Engine backend (GPU) is used where data set is trained
and validated using ResNet-50 and DenseNet-121 based on DCNN architectures. Firstly, data set is
divided in two sets, i.e., training data set and validation data set. The training data set consists of 80%
while validation data set comprises of about 20%.

3.4 ResNet-50 and DenseNet-121

The classification of arrhythmia employs two contemporary convolutional neural network archi-
tectures, namely ResNet-50 and DenseNet-121. Object recognition is a prevalent task in computer
vision that can be effectively accomplished through the utilization of ResNet-50’s convolutional neural
network architecture. In recent years, the technique of ECG signal analysis has been utilized for the
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purpose of identifying and categorizing arrhythmia, resulting in significant benefits. ResNet-50 is the
superior deep neural network architecture in terms of accuracy and training time when compared
to other CNN models. The research utilizes ResNet-50 modelling. Skip connections are utilized to
facilitate the training of neural networks with significant depth. A ResNet-50 residual block comprises
of a batch normalization layer, two convolutional layers, and a Rectified Linear Unit (ReLU) activation
function. The residual block’s output is augmented by the input via a shortcut connection that bypasses
the convolutional layers. The residual block generates an output that is the result of an element-
wise addition operation between the input and the residual, resulting in their summation (i.e., the
difference between the input and output of the convolutional layers). The ResNet-50 architecture is
characterized by an increasing quantity of residual blocks, with each layer of the network featuring one
such block. The process of feature extraction commences with the utilization of a convolutional layer in
the network, which employs a sequence of filters to the input ECG signal. After the convolutional layer,
a batch normalization layer is employed to standardize the output of the former, thereby reducing the
covariate shift that may occur within the neural network. Subsequently, a ReLU activation function is
employed to introduce nonlinearity to the output. The residual block comprises of two convolutional
layers, batch normalization, and ReLU activation. The output of the residual block is then fed back
into the network after the first layer. The final layer of a fully interconnected network is responsible
for producing the output classification [24].

Represent the output of each Convolutional Layer as follows shown in Eq. (2).

Y = f (w.x + b) (2)

The output of each Residual Block is then concatenated with the input tensor and passed to the
next block shown in Eq. (3).

Z = f (W2.f (W1.X + b1) + b2 + X) (3)

Represent the global average pooling operation as shown in Eq. (4).

V = 1
H ∗ W

∗ sum (Z) (4)

The output of the fully connected layer is then passed through a SoftMax function to obtain a
probability distribution over the classes as shown in Eq. (5).

P = softmax (W .V + b) (5)

The convolutional layer in our model produced Eq. (1). W refers for the weight’s matrix, X is the
input tensor, b stands for the bias term, and f stands for the activation function applied elementwise
to the input tensor. Y is the resultant output tensor. To extract spatial characteristics and patterns
from the input data, the convolutional layer applies a number of filters to the data. In Eq. (2), residual
blocks are used to enhance the model’s learning capacity after the convolutional layers. X is the input
tensor, W1 and W2 stand for the weight matrices, b1 and b2 for the bias terms, and f for the activation
function. These residual blocks mitigate the vanishing gradient issue and enable the direct flow of
gradients across the network, enhancing the model’s ability to learn complicated features. A global
average pooling technique is used in Eq. (3) after the remaining blocks. V is the result, Z is the input
tensor from the preceding layer, and H and W are the feature maps’ respective height and breadth. The
global average pooling technique shrinks the feature maps’ spatial dimensions, condensing the data
while lowering computational complexity and overfitting risk. To produce a probability distribution
across the classes, the output of the global average pooling is then sent via a fully connected layer and
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a SoftMax function in step Eq. (4). W stands for the weight’s matrix, V for the global average pooling
layer output, and b for the bias term. The SoftMax function makes sure that all class probabilities
add up to one, giving the model’s output a coherent interpretation. Together, these equations describe
the network’s forward pass, which enables it to efficiently learn hierarchical features and categorize
incoming samples. Convolutional layers, residual blocks, global average pooling, and a fully connected
layer with a SoftMax function make up the model’s architecture, which supports effective feature
extraction and reliable input data categorization.

When compared to other CNN designs, convolutional neural networks, like DenseNet-121, are
renowned for their high accuracy and efficient parameter use. The building’s framework is made
of substantial blocks with several, intricately interwoven layers. Because of the network’s extensive
connectedness, it may quickly acquire complicated characteristics by using learnt features at each layer.
The final output of the network is generated by sending the outputs of all dense blocks through a fully
connected layer and summing them together. The input of the DenseNet-121 architecture is a pre-
processed 12-lead ECG signal. The input signal undergoes a convolutional process using a 7 × 7 kernel
and 64 filters. Subsequently, a ReLU-based activation function and a batch normalization layer are
employed. The output of the initial convolutional layer is subjected to a compact arrangement of six
convolutional layers, with each layer comprising 32 filters. After the compact block, a transition layer
is employed, which comprises of a 1 × 1 convolutional layer and average pooling, with the purpose of
reducing the spatial dimensions of the resultant feature maps. Subsequently, the output of the layer is
passed through an additional transition layer and a dense block. The final dense block comprises 23
convolutional layers, with each layer consisting of 32 filters. Following the combination of the output
of each dense block with the output of the remaining blocks, the resultant output is subjected to global
average pooling, where it is averaged. The final classification is obtained by utilizing a fully connected
layer that employs a SoftMax activation function to process the output of the global average pooling
layer [25].

The dataset that has undergone pre-processing and enhancement is utilized for the training of
the DenseNet-121 architecture. The Adam optimization algorithm is employed for the purpose of
training, utilizing a batch size of 64 and a learning rate of 0.001. To mitigate the issue of overfit-
ting, the model’s training process is concluded prematurely after multiple epochs. The monitoring
of the model’s advancement during training can be accomplished by utilizing the validation set, while
the evaluation of the outcome can be conducted by means of the validation set. The evaluation of the
model is based on several metrics, including accuracy, precision, sensitivity, F1-score, and area under
the receiver operating characteristic curve [26].

The output of each Dense Block is then concatenated with the input tensor and passed to the next
block shown in Eq. (6).

Z = concat (X, Y) (6)

As the output of each Dense Block is concatenated with the input tensor and passed to the next
block as shown in Eq. (5): Z = concat (X, Y). The concatenation operation used here is typically along
the feature axis (also known as the channel axis). This operation retains the spatial dimensions (height
and width) of the input and output tensors while increasing the number of channels (features) [27].

For our investigation into ECG signal classification using DenseNet-121 and ResNet-50, the
models were deployed within the TensorFlow and Keras frameworks, chosen for their comprehensive
support for convolutional neural networks. The training was conducted over 50 epochs, incorporating
the Adam optimizer and categorical cross-entropy as the loss function, to best suit the multiclass
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classification challenge presented by our dataset. Aware of the potential for overfitting, an early
stopping mechanism was employed, designed to halt the training if the validation loss failed to
improve over a span of 5 consecutive epochs. This precaution was essential for maintaining the models’
generalization capabilities over unseen data [28,29].

Addressing the issue of class imbalance—a common challenge in medical datasets where certain
conditions are significantly more prevalent than others—was crucial for ensuring equitable model
sensitivity across all arrhythmia categories. To this end, class weights were adjusted during the training
phase, thereby amplifying the importance of underrepresented classes in the dataset. Furthermore,
data augmentation techniques were applied to enhance the dataset’s diversity, effectively enriching the
models’ training environment. The progress of both models was closely monitored through the analysis
of training and validation curves, enabling the timely identification and correction of overfitting or
underfitting, thus assuring a balanced and effective learning process for both DenseNet-121 and
ResNet-50 in their task of ECG signal classification [30–32].

4 Results and Discussion

The results of ResNet-50, DenseNet-121 based on DCNN architectures are evaluated based
on classification performance metric, validation Loss, validation Accuracy, validation Precision,
validation Sensitivity, and validation AUC and all of them are for training set as well of a complete
model.

4.1 ResNet-50

The performance of the ResNet-50 models in a multi-class classification task that includes six
unique classes, namely F, M, N, Q, S, and V, is valuably revealed by the evaluation metrics given in this
work. Analyzing the accuracy, sensitivity, F1-score, and support measures for each class will allow us
to assess the model’s performance in detail.

An accuracy of 0.97, sensitivity of 0.99, and F1-score of 0.98 were shown by the model for
class N (supported by 15,140 examples), indicating remarkable detection and classification skills. The
performance of Class M was excellent, with accuracy, sensitivity, and F1-score all coming in at 0.97
over 1680 cases.

With 1286 examples, Class Q showed accuracy of 0.94, sensitivity of 0.76, and an F1-score of
0.84, suggesting some memory inconsistencies. A balanced performance was shown by Class V, which
had 1157 occurrences and had accuracy, sensitivity, and F1-scores of 0.93, 0.95, and 0.94, respectively.
Class S achieved accuracy of 0.90, sensitivity of 0.86, and F1-score of 0.88 with 444 cases whereas
class F achieved precision of 0.91 with 128 instances but lower sensitivity and F1-score of 0.73 and
0.81, respectively. These findings highlight the overall effectiveness of the model in classifying instances
across categories, with specific areas for potential refinement and investigation as seen in Table 3.

Table 3: Classification performance metric for training

Class Precision Sensitivity F1-score Support

N 0.97201 0.995403 0.98356 15140
M 0.973872 0.973872 0.97387 1680
Q 0.944615 0.756158 0.83994 1286

(Continued)
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Table 3 (continued)

Class Precision Sensitivity F1-score Support

V 0.931034 0.950704 0.94076 1157
S 0.901786 0.855932 0.87826 444
F 0.90909 0.73170 0.81081 128

According to the validation findings, the model performs differently in each class. The model
successfully recognized 98.94% of instances expected to be class N and caught 99.60% of the
occurrences of class N, as shown by its accuracy of 0.9894 and sensitivity of 0.9960 for class N.
Class N has an exceptional overall classification performance, as seen by its F1-score of 0.9927. Class
M has excellent accuracy and sensitivity values of 0.9661 and 0.9713, with an F1-score of 0.9687,
demonstrating the model’s efficacy in accurately predicting and detecting real occurrences of class
M. With an accuracy of 0.9495, sensitivity of 0.9539, and F1-score of 0.9517, class Q exhibits good
performance, demonstrating a great ability to categorize class Q instances. The accuracy, sensitivity,
and F1-score for class V are 0.9644, 0.9367, and 0.9503, respectively, indicating strong performance
in categorizing class V cases.

With an accuracy of 0.8423, sensitivity of 0.9373, and F1-score of 0.8873, the model likewise
does well in categorizing class S. Class F, on the other hand, has a more variable performance with
a precision of 0.8516, a sensitivity of 0.4291, and an F1-score of 0.5707, demonstrating the model’s
effectiveness in predicting class F cases but pointing to room for improvement in recognizing the real
examples of this class. The classification performance metrics such as precision, sensitivity, F1-score,
and support are used for evaluation and is represented in in Table 4.

Table 4: Classification performance metric for evaluation

Class Precision Sensitivity F1-score Support

N 0.989432 0.996011 0.99271 3786
M 0.966071 0.971275 0.968666 421
Q 0.949456 0.953906 0.951676 322
V 0.964379 0.936709 0.950342 290
S 0.842342 0.937343 0.887307 112
F 0.851563 0.429134 0.570681 33

The observed phenomenon where validation precision surpasses training precision in our model’s
performance can be attributed to effective regularization and generalization strategies that have been
successfully implemented. By applying techniques such as class weighting and data augmentation,
and carefully monitoring overfitting through early stopping, the model has been honed to generalize
well to unseen data, as evidenced by its superior precision metrics on the validation set compared
to the training set. The rigorous approach to training and validation, coupled with meticulous
data preprocessing, contributes to the authenticity and reliability of the results. The validation set’s
precision, particularly for class ‘N’, is a testament to the model’s ability to accurately classify true
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positive cases, reflecting a balanced and robust classification system that upholds the integrity of our
methodology and the veracity of our findings.

The ResNet-50 model demonstrates strong performance across all six classes, with varying degrees
of precision, sensitivity, and F1-scores. The model’s ability to minimize false predictions and accurately
identify instances of each class is evidenced by the evaluation metrics provided also seen through
confusion matrix shown in Fig. 2 plotted between the true and predicted class labels.

Figure 2: Confusion matrix of training and validation is shown respectively

In the Training Confusion Matrix, a total of 14,980 true positives for class ‘N’, indicating that
14,980 ‘N’ samples were correctly identified. There are also small counts of misclassifications, such
as 27 ‘N’ samples incorrectly predicted as ‘M’ and so on. The other classes (‘M’, ‘Q’, ‘V’, ‘S’, ‘F’)
show lower true positive counts—1623, 1221, 1110, 374, and 109, respectively—with varying degrees
of misclassification between them. Notably, class ‘F’ shows misclassifications predominantly with class
‘N’, which might suggest a pattern that could be investigated further.

Turning to the Validation Confusion Matrix, it includes a total of 3681 true positives for ‘N’,
significantly lower than the training dataset due to the size of the validation set being smaller. As with
the training matrix, there are misclassifications among all classes, but the overall magnitudes are lower,
reflecting the smaller dataset size. For example, ‘V’ has 12 instances misclassified as ‘N’, and class ‘S’
has 101 true positives with a few misclassified as ‘N’ or ‘V’.

Both matrices reveal that most predictions fall along the diagonal, which indicates correct
classifications. The color gradation, with darker colors representing higher numbers, clearly highlights
where the model performs well and where it may be struggling. For instance, the lighter shades in the
off-diagonal cells of classes ‘M’, ‘Q’, ‘V’, ‘S’, and ‘F’ suggest fewer occurrences of these classes, which
may reflect class imbalance issues.

The ResNet-50 model has demonstrated excellent performance metrics on both the training and
validation sets. The training loss is 0.0315, while the validation loss is slightly lower at 0.0305, showing
the model’s effectiveness in minimizing errors during learning. Accuracy on the training and validation
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sets is very high, at 98.77% and 98.88%, respectively, indicating a high percentage of correct predictions
made by the model. Precision, which denotes the percentage of correct positive predictions, stands at
98.78% for the training set and 98.89% for the validation set. The model’s sensitivity, representing its
ability to find all the positive samples, is also high for both sets, at 98.76% and 98.86%, respectively.
Additionally, the AUC score, which signifies the model’s ability to distinguish between the classes,
is almost perfect for both the training set and validation set, with values of 0.9998 and 0.9997,
respectively. This underlines the model’s robustness and high generalization capability as shown in
Table 5.

Table 5: Model performance evaluation

Model: ResNet-50

Metric Train Validation

Train loss 0.0315 0.0305
Train accuracy 98.77% 98.88%
Train precision 98.78% 98.89%
Train sensitivity 98.76% 98.86%
Train AUC 0.9998 0.9997

Fig. 3 shows the training and validation losses plotted against the number of epochs. A well-
trained model exhibits decreasing training and validation losses over time. Accuracy graph plots the
training and validation accuracies against the number of epochs. In our study, the model was trained
for 50 epochs using the following parameters: A batch size of 32, which resulted in 3072 training steps
per epoch and 768 validation steps per epoch with learning rate of 0.001 and dropout factor of 0.5.
Both training and validation accuracies increase over time and eventually stabilize.

Figure 3: Training, validation accuracies and losses
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4.2 DenseNet-121

The model accurately classifies 94.11% of examples as belonging to class N out of all the instances
it predicts as belonging to class N, and it captures 99.64% of the instances belonging to class N in
the dataset. In the context of class N, the model displays a precision of 0.9411 and a sensitivity of
0.9964. The F1-score for class N is 0.9679, which indicates a balanced performance. An accuracy
value of 0.9264, a sensitivity value of 0.9398, and an F1-score value of 0.9330 make up the performance
measures for class M. With an accuracy of 0.8792, sensitivity of 0.5855, and F1-score of 0.7029, class
Q exhibits performance.

This demonstrates the model’s ability to predict instances of class Q, but it also shows that real-
world class Q examples may still be better identified. The model performs well in class V, obtaining an
F1-score of 0.9014, a precision of 0.8828, and a sensitivity of 0.9209. The performance measurements
for class S show the model’s capacity to predict a sizable number of class S instances and successfully
identify a sizable portion of the actual class S instances within the dataset with precision values
of 0.8919, sensitivity values of 0.7226, and an F1-score of 0.7984. A precision value of 0.8485, a
sensitivity value of 0.4058, and an F1-score of 0.5490 make up the performance metrics for class F.
The performance of the DenseNet-121 deep learning model varies among the six classes, as shown by
the precision, sensitivity, and F1-score metrics provided in Table 6.

Table 6: Classification performance metric for training

Class Precision Sensitivity F1-score Support

N 0.941114 0.996366 0.967952 15140
M 0.926366 0.939759 0.933014 1680
Q 0.879154 0.585513 0.702899 1286
V 0.882759 0.920863 0.901408 1157
S 0.891892 0.722628 0.798387 444
F 0.848485 0.405797 0.54902 128

The DenseNet-121 model exhibits varied performance across six different classes. For class N, the
model demonstrates a precision of 0.9624 and a sensitivity of 0.9880, accurately identifying 96.24% of
instances predicted as class N and capturing 98.80% of the actual class N instances. The F1-score for
class N is 0.9750.

Class M displays precision and sensitivity values of 0.9233 and 0.9333, respectively, with an F1-
score of 0.9282, reflecting strong proficiency in identifying instances of class M. Class Q exhibits a
precision of 0.8643, a sensitivity of 0.8656, and an F1-score of 0.8649, demonstrating solid handling
despite room for improvement. In class V, the model shows a precision of 0.9435 and a sensitivity of
0.7892, with an F1-score of 0.8595, indicating effective performance. Class S performance consists of
a precision value of 0.8248, a sensitivity value of 0.8025, and an F1-score of 0.8135, signifying good
classification ability for class S instances. Lastly, class F exhibits a precision of 0.8819, a sensitivity
of 0.3721, and an F1-score of 0.5234, reflecting the model’s capacity to predict class F instances but
indicating a significant area for improvement in identifying the true instances of this class. Overall, the
DenseNet-121 model proves its effectiveness in classifying and identifying instances across all classes,
despite varying degrees of performance as shown in Table 7.
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Table 7: Classification performance model for evaluation

Class Precision Sensitivity F1-score Support

N 0.962417 0.98799 0.97504 3786
M 0.92326 0.93325 0.92823 421
Q 0.864275 0.86562 0.86494 322
V 0.943527 0.78924 0.85951 290
S 0.824786 0.80249 0.81348 112
F 0.88189 0.37209 0.52336 33

The DenseNet-121 model performed quite well overall, achieving high precision and sensitivity
scores for most of the classes. However, there are some variations in performance across classes. The
model performed particularly well for classes N and Q, achieving perfect precision for class N and a
high F1-score for class Q.

On the other hand, the model’s performance was comparatively weaker for classes M and V,
achieving lower precision and F1-scores for those classes shown in Fig. 4 plotted between the true
and predicted class labels.

Figure 4: Confusion matrix of training and validation

Training, validation accuracies and losses are shown in Fig. 5. Multiple epochs are used in training
to ensure that the model has seen the data multiple times, allowing it to learn and generalize better.
After 50 epochs the model achieves highest accuracy with minimum.

The DenseNet-121 model the training and validation outcomes of the model demonstrate its
remarkable efficacy. The loss values for both the training and validation sets are rather low, with
values of 0.0444 and 0.0417, respectively. This suggests that the mistakes were effectively minimized
throughout the learning process. The sets exhibit excellent levels of accuracy, precision, and sensitivity,
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with values ranging from 98.5% to 98.7%. This demonstrates the model’s adeptness in accurately
categorizing cases and effectively detecting positive samples. Moreover, it is worth noting that the
AUC for both sets is very high, reaching a value of 0.9998. This highlights the model’s exceptional
capacity to effectively differentiate across classes. This information can be seen in Table 8.

Figure 5: Training, validation accuracies and losses

Table 8: DenseNet-121 model performance evaluation

Metric Train Validation

Loss 0.0444 0.0417
Accuracy (%) 97.5354 97.6635
Precision (%) 97.5703 97.6688
Sensitivity (%) 97.4965 97.6347
AUC 0.9998 0.9998

4.3 Comparative Analysis

The ResNet-50 and DenseNet-121 are two deep-learning models exhibiting high-performance
metrics on training and validation sets. The ResNet-50 model performs slightly better with a lower loss
for the training and validation sets (0.0315 and 0.0305, respectively) than DenseNet-121’s loss (0.0444
and 0.0417, respectively). The accuracy, precision, and sensitivity for ResNet-50 are also higher, around
98.7%–98.8%, vs. DenseNet-121’s metrics, which fall around 97.5%–97.6%. Although both models
display a nearly perfect AUC score, the ResNet-50 model’s AUC for the validation set is marginally
better than DenseNet-121’s.

Considering these factors, the ResNet-50 model is the optimal choice in this scenario. The key
reason for choosing ResNet-50 over DenseNet-121 is its superior performance across all metrics. It
exhibits lower loss and higher accuracy, precision, and sensitivity values in training and validation sets.
Moreover, the slightly higher AUC for the validation set demonstrates ResNet-50’s more robust ability
to distinguish between classes. This decision to choose ResNet-50 is based on the available dataset and
metrics, and the choice may vary with different data or evaluation parameters.
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To address the existing research gap, the present study aimed to broaden the scope of investigation
beyond the exclusive reliance on the P wave. Specifically, this research endeavors to examine additional
ECG characteristics, including the QRS complex, T wave, and heart rate variability, with the objective
of enhancing the precision of atrial fibrillation identification. Two deep convolutional neural network
architectures are utilized to train ECG characteristics to choose the optimal architecture. The
assessment of other performance criteria, including accuracy, precision, sensitivity, and F1-score,
enhances the rigor of the study and provides more refined performance data. Expanding the amount
and diversity of the dataset is a crucial aspect in the development of a more robust system. The model
was able to surpass a 98% accuracy rate by addressing and enhancing the various restrictions.

It is imperative to acknowledge certain limitations and areas for potential enhancement. A
notable absence in our research was the use of explainable AI tools like LIME (Local Interpretable
Model-agnostic Explanations) or SHAP (SHapley Additive exPlanations), which are instrumental
in deciphering model decision-making processes. The incorporation of these tools could provide
deeper insights into the features most influential in the model’s predictions, thereby increasing the
interpretability and trustworthiness of the AI system, especially in a high-stakes medical context.
Their omission was primarily due to the focus on predictive performance and the complexity of
integrating explainability into highly sophisticated models. However, future iterations of this research
could certainly benefit from such methodologies, bridging the gap between raw performance and
clinical applicability, and ensuring that practitioners can understand and rationalize the AI-driven
diagnoses made by our models. This move towards a more transparent AI could greatly enhance the
model’s utility and facilitate its acceptance in clinical practice.

5 Conclusion

In conclusion, the results of our study firmly establish the effectiveness of the ResNet-50 deep
learning architecture in the detection of Atrial Fibrillation (AFib) using ECG data. ResNet-50’s
impressive performance is demonstrated by its low loss rates of 0.0315 for training and 0.0305 for
validation, alongside outstanding accuracy of 98.77% in training and 98.88% in validation scenarios.
Moreover, the precision and sensitivity metrics, standing at 98.78% and 98.76% for training and
98.89% and 98.86% for validation, respectively, further reinforce the model’s diagnostic precision and
reliability. These figures not only reflect the robustness of the model in accurately classifying AFib
but also highlight the potential of deep learning approaches in revolutionizing cardiac healthcare.
By significantly outperforming the DenseNet-121 architecture, ResNet-50 promises to enhance early
AFib detection, which is crucial for the timely treatment of this condition. This study sets the way for
future advancements in cardiac diagnostic technologies, potentially expanding to a variety of cardiac
conditions beyond AFib, thereby improving patient care and outcomes in the field of cardiology.
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