
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050949

ARTICLE

Transparent and Accountable Training Data Sharing in Decentralized
Machine Learning Systems

Siwan Noh1 and Kyung-Hyune Rhee2,*

1Industrial Science Technology Research Center, Pukyong National University, Busan, 48513, South Korea
2Division of Computer Engineering, Pukyong National University, Busan, 48513, South Korea

*Corresponding Author: Kyung-Hyune Rhee. Email: khrhee@pknu.ac.kr

Received: 23 February 2024 Accepted: 10 May 2024 Published: 20 June 2024

ABSTRACT

In Decentralized Machine Learning (DML) systems, system participants contribute their resources to assist others
in developing machine learning solutions. Identifying malicious contributions in DML systems is challenging,
which has led to the exploration of blockchain technology. Blockchain leverages its transparency and immutability
to record the provenance and reliability of training data. However, storing massive datasets or implementing
model evaluation processes on smart contracts incurs high computational costs. Additionally, current research on
preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited
by workers who contribute incorrect or misleading data. However, less attention has been paid to the scenario
where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage. This
paper proposes a transparent and accountable training data sharing method that securely shares data among
potentially malicious system participants. First, we introduce a blockchain-based DML system architecture that
supports secure training data sharing through the IPFS network. Second, we design a blockchain smart contract
to transparently split training datasets into training and test datasets, respectively, without involving system
participants. Under the system, transparent and accountable training data sharing can be achieved with attribute-
based proxy re-encryption. We demonstrate the security analysis for the system, and conduct experiments on the
Ethereum and IPFS platforms to show the feasibility and practicality of the system.

KEYWORDS
Decentralized machine learning; data accountability; dataset sharing

1 Introduction

The advent of mobile internet and networking has significantly revolutionized the way we access
and utilize information on the move. As mobile device usage continues to increase, so does the demand
for faster, more efficient, and more reliable mobile networks. Machine learning (ML), a subset of
artificial intelligence (AI), has emerged as a promising solution for improving the performance of
mobile networks and enhancing mobile internet security [1]. However, Centralized ML (CML) systems
typically involve storing all training data on a single machine. To achieve more precise and enhanced

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050949
https://www.techscience.com/doi/10.32604/cmc.2024.050949
mailto:khrhee@pknu.ac.kr

3806 CMC, 2024, vol.79, no.3

results, these systems require large, high-quality, and diverse datasets collected from various users. This
necessitates a significant investment in secure data processing infrastructure, as sensitive personal data
is often involved. Additionally, the centralized approach results in substantial costs for the computing
power required to train models and the storage space needed to hold datasets.

Decentralized Machine Learning (DML) systems leverage the power of geographically distributed
devices to tackle large-scale, complex tasks. This approach harnesses the power of crowdsourcing,
where a vast network of participants contributes to the development of AI services. DML’s numerous
advantages, including increased efficiency [2,3] and improved quality of work [4–6], are driving its
adoption across various machine learning domains. Federated Learning [2] divides complex training
tasks from a central server and distributes them to networked worker devices. Workers train the pre-
distributed model on their local data and send updated model parameters back to the requester.
The requester aggregates these updates to build a new, improved machine learning model. Golem
Network [3] is a decentralized platform that allows users to rent out their computing resources
for various tasks, including machine learning. This significantly reduces training time, enabling the
development of more complex models and the utilization of larger datasets. Data labeling, the process
of adding informative labels to raw data, plays a crucial role in machine learning model performance.
Crowdsourcing platforms like CrowdWorks [4], Appen [5], and Labelbox [6] facilitate diverse data
labeling tasks. Participants receive raw data (images, text, videos) and contribute by identifying and
assigning meaningful labels, enriching the data with context. In DML systems, anyone can participate
as a requester, contributing to model development, or as a worker, offering their resources [7]. This
flexibility fosters access to diverse datasets and empowers individuals to develop models. However, it
also presents challenges that need to be addressed.

Incentives are crucial in many systems to encourage participation and ensure high-quality contri-
butions. Various incentive mechanisms can be implemented, such as Monetary rewards, Reputation
systems, Gamification [8]. In an ideal scenario with honest participants, all workers would provide their
resources, and requesters would accurately evaluate workers’ contributions to determine fair rewards.
However, in a real-world system where participants are not guaranteed to be honest, both requester
and worker might act maliciously to maximize their own benefits [9]. In traditional CML systems,
developers have full control over all data and computing resources used for development. However, in
DML systems, control over these resources is distributed, making it possible for malicious participa-
tion to exploit this asymmetry of power and information to their advantage. For example, malicious
workers can intentionally submit incorrect data to degrade model performance or perform free-riding
attacks [10] by benefiting from the system without contributing. To address these challenges, recent
proposals leverage blockchain technology to evaluate and record worker contributions throughout the
development process [11–13], ensuring accountability [14–16] and providing resistance against such
attacks [17–20].

While malicious workers on platforms have received significant attention for exploiting workers
and manipulating data, malicious requesters pose a hidden threat that deserves equal consideration.
Amazon Mechanical Turk (MTurk) [21] is a prime example of a crowdsourcing platform vulnerable
to both malicious worker and malicious requesters. MTurk is a crowdsourcing platform that allows
businesses to outsource tasks to a global workforce of remote workers. Requesters can post tasks,
called Human Intelligence Tasks (HITs), on the platform, and workers can complete these tasks
for a fee. HITs can be a variety of tasks, such as data entry, image tagging, and machine learning.
Despite safeguards, MTurk has seen documented cases of abuse, highlighting the potential dangers
posed by malicious participants: 1) Task Payment Avoidance: Requesters refusing to pay for completed
tasks, essentially stealing workers’ effort. 2) Data Collection without Consent: Tasks may deceptively

CMC, 2024, vol.79, no.3 3807

collect workers’ personal information, raising privacy concerns. 3) Unfairly Low Pay: Some tasks offer
unreasonably low compensation, exploiting workers and undermining fair labor practices. 4) Lack of
Transparency: Unclear or misleading task descriptions and requirements hinder informed decision-
making by workers. Not only on MTurk, but also on other crowdsourcing platforms, similar ethical
issues arise [22]. These cases highlight the importance of research to address potential risks posed
by malicious requesters through technological solutions. While blockchain technology can enable
automated task management and prevent worker non-compliance or unauthorized actions, it cannot
address unfair low pay issues as long as worker evaluation and reward payments are entirely requester-
dependent.

In this paper, we propose a transparent and accountable training data sharing method to address
the aforementioned challenges. Our proposed method is designed to securely distribute training data
(including untrained ML models, training datasets, and test datasets) between potentially malicious
requesters and workers within the DML system. First, we introduce a method to transparently
split original datasets into training and test datasets using a blockchain smart contract, preventing
manipulation by malicious participant. Second, we carefully design the communication protocol
for the requester, worker, and storage manager to reduce on-chain communication costs by using
content identifiers (CIDs) in the InterPlanetary File System (IPFS) to reference the data instead of
handling large datasets directly. Third, we leverage attribute-based proxy re-encryption (ABPRE) to
split randomly the training dataset while preventing unauthorized access from malicious participants.
This paper makes the following contributions:

• We propose a transparent dataset split method that prevents malicious requester from using
inadequate test datasets for evaluation, thereby undermining the value of honest contributions.

• We only record the location of the IPFS data on the blockchain, resulting in a significant
reduction in on-chain storage compared with existing works.

• We leverage ABPRE to achieve secure dataset encryption, split, and decryption. ABPRE
prevents against malicious requester altering test data before encryption and unauthorized
access by malicious workers after splitting.

The remainder of this paper is organized as follows: We investigate related work in Section 2.
In Section 3, we provide the system model and security model of the proposed system, and present
security goals. Preliminaries and detailed constructions are presented in Sections 4 and 5, respectively.
We demonstrate security analysis in Section 6 and performance evaluation of the proposed system in
Section 7. Section 8 discusses the benefit of our work and our future work, and Section 9 concludes
this paper.

2 Related Work
2.1 Malicious Worker Issue

The U.S. Government Accountability Office (GAO) released an accountability framework (GAO-
21-519SP) [23] to help system managers ensure accountable and responsible use of AI in government
programs and processes. This framework recommends that system managers should document five
key practices (sources, reliability, categorization, variable selection, and enhancement) throughout the
development and operation of AI systems to assess the accountability of the datasets used. Despite
the GAO framework, identifying unreliable or malicious contributions in DML systems remains a
significant challenge. Selecting the right methods and mechanisms to manage data quality is essential
for ensuring the accountability of these systems. Transparency and immutability are critical in ensuring

3808 CMC, 2024, vol.79, no.3

the reliability and trustworthiness of DML systems. Blockchain technology, with its inherent features,
presents a promising solution to address these requirements. Recent works leveraging blockchain to
ensure the accountability of DML systems can be categorized into two main groups based on their
focus: Data provenance and data reliability.

The data provenance model leverages the blockchain’s immutability to prevent modification of
recorded data by attackers. Consequently, many works record the provenance of training data used
for model development through blockchain. Typically, hash values of training data are stored on the
blockchain [11–13]. For example, Desai et al. [12] and Lo et al. [13] proposed systems that record hash
values of training data (e.g., global and local models) for accountable federated learning. These systems
enable auditors to obtain a transparent and reliable development history. However, manually adding
data to the blockchain carries manipulation risks [24]. Therefore, some suggest a smart contract-based
approach to automate logging every stage of the development process without human intervention [14–
16]. For instance, Ma et al. [14] and Nguyen et al. [15] proposed a blockchain-assisted decentralized
federated learning framework where each client’s task, participation, and contributions are managed
through a smart contract. Salim et al. [16] introduced a secure Electronic Health Records (EHR)
sharing scheme using decentralized learning. Hospitals train local models on patient EHRs stored
in the private IPFS network to protect privacy. These models are then aggregated at a research center
to create a global model. The results are stored public IPFS while access to the original EHR data
remains controlled by patients through smart contracts on a blockchain. However, this approach
has the limitation that it can only be identified after a malicious worker has negatively affected
the performance of the machine learning model. This approach allows recording a wider range of
data, including not only the source of training data but also all framework-generated data. The data
provenance model aims to detect or prevent arbitrary modifications of the development history by
recording verifiable values of training data in a transparent and accountable database.

In the data reliability model, data that is sufficiently complete, accurate, and applicable for audit-
ing purposes is considered “reliable and trustworthy” [23]. This means that to develop a trustworthy
ML model, the completeness, accuracy, and applicability of the training data and its impact on the
model must be evaluated and recorded. Model evaluation [25] is a quantitative measure of how well the
ML model has been trained, typically assessed by how well it predicts for a given input. One measure is
the loss function, a mathematical metric that quantifies the difference between the model’s prediction
and the actual value [26]. This method can evaluate how closely the model’s predictions align with the
actual values for a specific test dataset. Solutions within this approach typically implement all training
operations on a blockchain smart contract with an incentive mechanism to encourage active worker
participation in training. The evaluation results provided by a chosen evaluator [7,17,18,20] or smart
contracts [19] are recorded on the blockchain with various information to assess worker contributions
and determine individual rewards based on the evaluation result stored in the block.

Blockchain smart contracts can identify malicious client contributions in DML systems. These
contracts inspect recorded data to detect tampering and evaluate model improvements before aggre-
gation [12,13,17,18]. This transparency in contribution evaluation enhances the system’s reliability [20].
However, challenges persist. While auditors can assess training data, evaluating contributions can be
delegated to potentially biased evaluators or rely on outdated datasets chosen by malicious requesters
aiming to save incentives. This lack of accountability for the evaluation data itself undermines the
transparency and reliability of the entire system, potentially leading to reduced participation, lower
performance, and ethical concerns about fairness.

CMC, 2024, vol.79, no.3 3809

2.2 Malicious Requester Issue

While existing solutions utilizing an on-chain approach are practical for small-scale storage or
simple operations, they become impractical for large-scale storage or complex operations. Storing
large datasets or implementing client contribution evaluation in a smart contract can significantly
increase the computational cost for the blockchain network, resulting in higher transaction fees for
users. Existing solutions primarily focus on ensuring worker accountability to prevent malicious
contributions, neglecting the threat of malicious requesters who can manipulate the system for their
own benefit.

In [22], Xie et al. analyzed the dark side of crowdsourcing platforms by investigating crowd-
sourcing tasks from multiple micro-task crowdsourcing marketplaces. Micro-task crowdsourcing is a
process by which requesters (Businesses) outsource simple, repetitive tasks to a large online workforce.
Requesters post tasks on crowdsourcing platforms, and workers can choose the tasks they want to
complete and receive payment for their work. Xie et al. demonstrated that ethical issues by platform
participants cannot be ignored, and highlighted the issue of requesters with high task authority
refusing to pay workers as a major example. Requesters may reject payment for completed tasks for
malicious reasons or due to issues such as badly-designed tasks, technical errors, interface design
errors, and error-prone evaluation systems. A malicious requester can intentionally obfuscate tasks,
causing workers to spend significantly more time and effort than the offered compensation warrants.
This can lead to increased task failure rates and payment rejection rates [27,28]. While communication
between requesters and workers and reputation-based evaluation systems are proposed as solutions
[29], the current DML approach of relying on requester-provided data for task evaluation can fail to
distinguish between sincere and malicious worker contributions. For example, a malicious requester
might incentivize users to participate in model development by measuring their contribution based
on improvements in the global model performance. Just as workers can use misleading data during
training, malicious requesters can manipulate the test dataset used for evaluation. While providing
machine images as evaluation data for a model trained on animal images can be helpful for assessing
generalization performance, it cannot accurately evaluate the model’s primary function of animal
image classification, and thus cannot be considered an accurate evaluation. Therefore, ensuring a
trustworthy DML system requires a recording procedure not only the training data (to address
malicious clients) but also the test data used in evaluation (to address malicious parameter servers).
This approach ensures transparency in the evaluation of task results, which previously relied on
requesters, thereby enabling the identification of malicious requesters.

Compared to existing works, our system, as shown in Table 1, fulfills the GAO requirements while
addressing malicious requester and worker issues under a practical and reasonable DML model. We
specifically tackle the accountability challenges related to the evaluation dataset.

Table 1: Summary of blockchain-based DML system

Training data’s Security requirement
Reliability Provenance Confidentiality Malicious

requester
Malicious
worker

[7] Model evaluation On-Chain Symmetric encryption N/A N/A
[12] Model evaluation On-Chain TLS/SSL N/A �

(Continued)

3810 CMC, 2024, vol.79, no.3

Table 1 (continued)

Training data’s Security requirement
Reliability Provenance Confidentiality Malicious

requester
Malicious
worker

[13] Model evaluation On/Off-Chain Asymmetric & symmetric
encryption

N/A N/A

[16] N/A On/Off-Chain Private IPFS network N/A N/A
[17] Model evaluation On-Chain N/A N/A N/A
[18] Model evaluation On/Off-Chain Elliptic-curve

Diffie–Hellman encryption
& differential privacy

N/A �

[19] Model evaluation On-Chain N/A � �
[20] Model evaluation On-Chain N/A N/A N/A
Proposed Model evaluation On/Off-Chain Attribute-based proxy

re-encryption
� �

3 Problem Statement
3.1 System Model

Our system includes the following entities: Supervising Authority (SA), Requester (RQ), Worker
(W), Evaluation Node (EV), Gateway Server (GS) and smart contracts.

• SA is responsible for supervising the DML system and issuing cryptographic keys based on
participant roles.

• RQ refers to users who want to develop ML models on the DML system. RQ can have enough
training datasets to train ML models but much fewer computing resources than a powerful
server. RQ deploys a project for ML model development on the blockchain and distributes
training dataset to be used in this project through smart contracts.

• W is a worker that is interested in the incentives of ML model development projects. For
example, W can be an IT company that can provide idle computing resources. W participates
in the project deployed by RQ and receives rewards for their contributions.

• EV evaluates the contributions of W and reports the results to the corresponding RQ. We
assume that our system has a group of evaluators managed by SA. This group has a group
leader EVL that acts as an intermediary between W and a member of EV to efficiently spread
messages within the group.

• GS is a node in the IPFS network. All system entities can retrieve a training dataset stored in the
IPFS network through this server. GS is responsible for monitoring all smart contracts deployed
by RQ. GS distributes the training and evaluation datasets to the project’s participating Ws and
EVs after RQ uploads the training dataset to the IPFS network.

• In the system, smart contracts support project creation, management, dataset shuffling, and dis-
tribution. In the proposed communication protocol, these primary functions are implemented
using two smart contracts: 1) Project Creation and Management Contract (PCMC), and 2)
Dataset Shuffling and Distribution Contract (DSDC).

CMC, 2024, vol.79, no.3 3811

Fig. 1 illustrates the proposed system’s four phases. (1) Project Setup: RQ defines project parame-
ters (e.g., rewards, goals, worker requirements) and deploys smart contracts on the blockchain network
to initiate a new project. Worker candidates applying to participate are verified by RQ against project
requirements (e.g., deposit, computing power [30], reputation [31]). Only qualified workers are selected
for the project. (2) Project Preparation: RQ encrypts the dataset with a secret key issued by SA and
uploads the encrypted datasets to the IPFS network. This secret key is unique and generated based on
the RQ’s identifiable attributes. (3) Dataset Split: PCMC and DSDC collaboratively split the dataset
into training and test datasets using a two-part split method. (4) Dataset Distribution: GS retrieves
the dataset from the IPFS network and distributes a re-encrypted training and test datasets along
with machine learning model. The training datasets are sent to W , while the test datasets are sent to
EVL. After training, W submit their trained local models to EV . EV then broadcasts these submitted
learning results to all members within EV group. Finally, EV evaluates the ML models using the
provided test datasets and reports the results to PCMC. Once all procedures are complete, RQ can
access the learning results of each worker and their corresponding evaluations through PCMC.

Figure 1: Proposed system overview

3.2 Security Model and Goals

Homo economicus [9] is an economic model that assumes humans always act rationally and aim
to maximize their own utility. This theory can be applied to crowdsourcing systems to predict the
behavior of requesters and workers. RQ aims to get the best results at the lowest cost and W tries to

3812 CMC, 2024, vol.79, no.3

complete tasks quickly and efficiently to earn more money. Therefore, our system design considers the
following malicious behaviors as security threats that need to be addressed:

• Malicious Requester: To minimize development costs, a malicious requester might attempt to
undermine the contributions of honest workers. Workers submits their trained local models,
each designed to perform well on the training data it was trained on. However, evaluating
model performance requires unseen test datasets that are large, diverse, and unknown to the
model beforehand [32]. In machine learning, a dataset consists of various features (measurable
data points) with corresponding correct answers (labels) within a specific value range (sample
space). For instance, the MNIST dataset contains handwritten digits (0–9) as images with 784
pixel values (0–255). If a malicious requester controls the test dataset, they could introduce
fake data (data outside the training dataset’s features or sample space) to manipulate the
evaluation process and unfairly devalue the workers’ contributions by generating inaccurate
model performance results.

• Malicious Worker: While malicious workers can launch both untargeted and targeted adversar-
ial attacks [12,33,34], specifically targeting individual models within small collaborative teams
provides minimal benefit in our system. Therefore, the primary concern is the untargeted “lazy
node” attack [14], which the requester can address by evaluating local model accuracy and
withholding rewards accordingly. This paper tackles a more challenging scenario: A malicious
worker who bypasses evaluation with minimal effort by generating an overfitting model using
the test dataset beforehand [19]. Overfitting describes a model that becomes overly reliant on
the training data, hindering its ability to generalize to unseen data. If a malicious worker has
access to the test data before training, they can create a model that performs well on the test set
but poorly when integrated into the final global model.

Under the system and security models, we aim to achieve the following security goals:

• Unpredictable Dataset Split: This ensures two key aspects: (1) Transparency and reliability in
the dataset splitting process; (2) Unpredictable and unalterable split results for all participants
in the system.

• Confidentiality of Test Dataset: This guarantees two critical points: (1) The test dataset remains
inaccessible to all workers; (2) Even if a malicious worker intercepts the test dataset through
network eavesdropping, they cannot obtain the original, unencrypted data (plaintext).

To address security concerns arising from potential malicious users acting as Requesters or
Workers, we propose a secure dataset sharing method for DML systems. To achieve transparency
and reliability in dataset splitting, we leverage a blockchain smart contract. Additionally, we utilize
ABPRE to guarantee data confidentiality during communication between Requesters and Workers
over the internet.

4 Preliminaries
4.1 Attribute-Based Proxy Re-Encryption

The ABPRE [35–37] is a useful cryptographic scheme that combines attribute-based encryption
and proxy re-encryption. This scheme allows a semi-trusted proxy to transform a ciphertext under an
access policy into a re-encrypted ciphertext under a designated access policy without revealing any
information related to the ciphertext. The ABPRE scheme comprises the following six algorithms:

CMC, 2024, vol.79, no.3 3813

• (param, msk) ← Setup(λ, U): The system manager executes Setup with a security parameter λ

and the attribute universe U as its inputs to generate public parameters param for the system,
and then generates its master secret key msk.

• skS ← KeyGen(msk, S): The system manager validates the user attribute set S and executes
KeyGen with its master secret key msk and attribute set S as its inputs. This algorithm outputs
the secret keys skS for system participants.

• CT ← Enc(m, P): This algorithm encrypts a message m with an access policy P and generates
a ciphertext CT (where P represents the access structure (A, ρ) ,A is an l × n matrix, and a
function ρ (j) ∈ P, j ∈ {1, . . . , l}).

• rkS→P′ ← ReKeyGen(sk, P′): This algorithm generates a re-encryption key rkS→P′ which can be
used to transform a ciphertext under P to another ciphertext under P′ (where P and P′ are two
disjoint access structures).

• CTR ← ReEnc(rkS→P′ , CT): This algorithm transforms the original ciphertext CT into a re-
encrypted ciphertext CTR using the re-encryption key rkS→P′ .

• m ← Dec (skS, CT) , m ← DecR(skS, CTR): This algorithm decrypts the encrypted ciphertext
under P and P′ using the corresponding secret key, respectively.

To ensure the confidentiality of the test datasets in the dataset distribution process, we utilize
the ABPRE scheme. After splitting the dataset, the encrypted dataset under RQ’s access policy is
transformed into a ciphertext under the corresponding participant’s access policy on the semi-trusted
IPFS server.

4.2 Blockchain Smart Contract

Blockchain smart contracts are self-executing programs stored on a decentralized ledger known
as a blockchain. These programs automate the performance of a contract when predefined conditions
are met, eliminating the need for intermediaries like lawyers or escrow services. Smart contracts offer
several advantages, including:

• Reduced Trust Dependency: By relying on cryptographic verification and tamper-proof
blockchain records, smart contracts remove the need for trusted third parties to enforce
agreements, minimizing potential manipulation or fraud.

• Enhanced Efficiency: Automating contract execution streamlines workflows, eliminates manual
processing delays, and reduces overall transaction costs.

• Increased Transparency: All participants in a smart contract can access and verify its terms and
execution history on the blockchain, fostering trust and accountability.

This paper leverages the Ethereum public blockchain to guarantee the integrity of our dataset split
results. Smart contracts are distributed and executed independently across the network’s nodes, with
the final outcome confirmed through a consensus mechanism among these nodes. To facilitate stateful
smart contracts, which can track and respond to changes over time, blockchain nodes permanently
store the current state of each contract.

However, it is crucial to recognize the resource limitations associated with complex smart
contract operations. These processes consume computational power at each node, potentially raising
transaction fees. To optimize a blockchain-based system, it is essential to design it in a way that
minimizes on-chain computations and data processing, focusing only on essential elements that require
the blockchain’s security guarantees.

3814 CMC, 2024, vol.79, no.3

4.3 IPFS Storage

The IPFS storage [38] is a peer-to-peer (P2P) hypermedia protocol that revolutionizes data
storage by enabling a decentralized network. Unlike traditional web protocols reliant on location-
based addressing, IPFS employs a content-based addressing system. This system leverages unique
cryptographic hashes called CIDs derived from the data itself. Combined with the Kademlia routing
algorithm [39], CIDs facilitate efficient data retrieval across the distributed IPFS network.

During project preparation, datasets are split into smaller fragments and distributed strategically
across a network of IPFS nodes according to predefined rules. This distributed storage approach
ensures redundancy, where multiple copies of each data block reside on various nodes. Even if
individual nodes become unavailable, the data remains accessible because users can retrieve the desired
block using its unique CID from any available node hosting that specific fragment.

In our system, all datasets are encrypted for secure transfer over the IPFS network between
requesters and worker nodes. However, assuming all participants are native IPFS nodes might not be
feasible. Therefore, we leverage a semi-trusted IPFS node to act as a gateway, facilitating access to the
decentralized storage network for other entities in the system. Ideally, a network of multiple gateway
servers would be implemented to eliminate single points of failure. However, for demonstration
purposes, this system is simplified to utilize a single gateway server.

5 Transparent and Accountable Training Data Sharing
5.1 Project Setup

We assume that supervising authority SA has executed Setup() to complete the system initializa-
tion, and that each participant has obtained a secret key sk ← KeyGen(msk, S) for their given role
(i.e., requester RQ, worker W , and evaluation node EV). The attributes set S represents the role of the
participant in the system. The secret keys of W and EV indicate their roles (SW and SEV , respectively),
whereas the secret keys of RQ are all generated from uniquely identified attributes SRQj . In other words,
W and EV who play the same role have the same decryption capability, whereas each RQ has a unique
encryption capability in the system. Thus, RQ must be certified by SA to have sufficient funds to play
the role. As shown in Fig. 2, RQ creates a new project and recruits W as follows:

1) RQ deploys the Project Creation and Management Contract (PCMC) that includes the project
description, the required deposit D, the project rewards R, the number of workers N, and the
required computing power (time, target) as project parameters.

2) Candidate worker W places deposit DW on PCMC and applies to the project.
3) PCMC evaluates W ’s computing power using Algorithm 1. If returns True, each candidate’s

ID is recorded, else deposit DW is deposited.
4) If the number of candidates who passed the test achieves goal N, PCMC determines the list of

workers listPID = {W1, . . . , Wj} to participate in the project PID.

Figure 2: Overview of project setup

CMC, 2024, vol.79, no.3 3815

Algorithm 1: evaluateComputingPower
input: D: a required deposit, DW : a deposit of the candidate W , target: the number of leading zeros,
tTime: time threshold, nonce: A solution, cTime: a cryptographic salt given to W
output: True/False
1. PCMC check amount of deposit DW

if DW < D, throws;
else return cTime ← currentTime();

2. W finds nonce and submits it to PCMC
3. PCMC compute result ← Hash(cTime, nonce)
4. if (result < target)

∧
((currentTime() − cTime) < tTime)

return True;
else return False;

5. End

5.2 Project Preparation

After the Project Setup phase is completed, requester RQ distributes his datasets to workers W
and evaluation nodes EV through project management contract PCMC. The traditional approach
uploads the datasets to the storage of the smart contract and splits them within the contract. However,
this method consumes a significant amount of resources in the blockchain network. Moreover,
in the context of dataset split for training and test purposes, maintaining an accurate representation
of the data distribution is crucial for reliable model evaluation. If the data distribution differs between
the training and test datasets, the model’s ability to generalize to unseen data may be compromised.

To address these issues and conserve the storage space required for split, we store CIDs linked with
the datasets instead of the datasets themselves and use the stratified k-fold cross-validation (SKCV)
method [40] to divide dataset into multiple data blocks with an even distribution. Regardless of the
data volume stored in the IPFS network, all CIDs have the same length of 256 bits.

As shown in Fig. 3, RQ divides the original dataset DataRQ into multiple blocks and encrypts each
block using his secret key skRQ. Subsequently, RQ uploads these blocks to the IPFS network through
gateway server GS and submits the CIDs returned from the IPFS network to PCMC as shown in
Fig. 4. PCMC then stores these CIDs in an array, which is a fixed-size sequential collection of elements
of the same type. A detailed procedure is as follows:

1) RQ determines an index ρ (where 1 ≤ ρ ≤ 9) and divides the original dataset DataRQ into 10
equal-sized parts DataRQ = {block1, . . . , block10}.

2) RQ encrypts each block under his secret key skRQ and generates ciphertext CTi ←
Enc(blocki, PRQ) for each blocki ∈ DataRQ.

3) RQ uploads CT = {CT1, . . . , CT10} to the IPFS network through GS, and obtains CID =
{cid1, . . . , cid10}, where cidi is a content identifier for retrieving CTi from the IPFS network.

4) RQ submits these CIDs to PCMC.

3816 CMC, 2024, vol.79, no.3

Figure 3: Dataset divide and encrypt

Figure 4: Overview of project preparation

5.3 Dataset Split

In this phase, the project management contract PCMC splits the original dataset DataRQ into a
training dataset for workers W and a test dataset for evaluation nodes EV on behalf of the requester
RQ. To distribute the datasets, PCMC calls a shuffle function in the dataset distribution contract
DSDC with CIDs. As shown in Fig. 5, DSDC randomly sorts CIDs and assigns the former index
number ρ to the training dataset, and the latter index number to the test dataset. An overview of this
process is shown in Fig. 6, and a detailed procedure is as follows:

1) PCMC records the CIDs as CIDRQ = {PID, CID, ρ, trD, tsD}, where PID is a contract address,
and trD and tsD are empty arrays for the training and test datasets, respectively.

2) RQ calls the shuffle function in DSDC with an array of CIDs via PCMC.
3) DSDC shuffles CIDs and returns a shuffled CIDs using Algorithm 2.
4) PCMC sets the shuffled CIDs at trD and tsD, respectively, based on ρ.

Figure 5: Dataset shuffle

CMC, 2024, vol.79, no.3 3817

Figure 6: Overview of dataset split

Algorithm 2: datasetShuffle
input: CID = {cid1, . . . , cidn}: an array of n elements, trD, tsD: an empty array for the assigned dataset,
ρ: an index to split the original dataset into a training dataset and a test dataset
output: a shuffled and split array trD, tsD
1. shuffle array CID

For i = CID.length − 1; i > 2; i– do
j = random integer such that 0 ≤ j ≤ i

swap CID [i] with CID [j]
return shuffled CID = {cidr1

, . . . , cidr10
}

2. set shuffled CID to empty array trnD, tstD
For i = 0; i < CID.length; i++ do

if (i > ρ) trD [i] = CID [i]
else tsD [i − (trD.length)] = CID [i]

return trD, tsD
3. End

5.4 Dataset Distribution

After completing Dataset Split phase, the split result becomes visible to all participants in the
system. However, the datasets are encrypted under the secret key of the requester RQ. Therefore, to
enable workers W and evaluation nodes EV to access this dataset, the encrypted dataset must be
transformed such that it can be decrypted using its decryption capabilities. The following describes
how RQ generates a re-encryption key and shares it with the gateway server GS.

1) RQ generates the re-encryption keys rkRQ→W ← ReKeyGen(skRQ, PW) and rkRQ→EV ←
ReKeyGen(skRQ, PEV) using his secret key skRQ and the access policies PW and PEV , respectively.

2) RQ sends the re-encryption keys rkRQ→W and rkRQ→EV to GS.
3) GS keeps < PID, rkRQ→W , rkRQ→EV >.

In Section 3.1, we assumed that GS monitors all projects deployed in the system. For projects that
have completed the dataset split phase, As shown in Fig. 7, GS retrieves the encrypted dataset blocks
from the IPFS network and transforms each block using a corresponding re-encryption key provided
by RQ according to the split results. When project participants request GS for the distribution of
the dataset, GS verifies the request and returns the re-encrypted datasets assigned to the role of the
requester as follows:

1) GS gets CIDRQ = {PID, CID, ρ, trD, tsD} by calling a getter function in PCMC, where trD ={
cidr1

, . . . , cidrρ

}
, tsD =

{
cidrρ+1

, . . . , cidr10

}
.

2) GS retrieves the original ciphertext CTtr = {CTr1
, . . . , CTrρ } and CTts = {CTrρ+1

, . . . , CTr10
}

encrypted under the RQ’s secret key from the IPFS network using trD and tsD, respectively.
3) GS generates re-encrypted ciphertext CT ′

tr ← ReEnc(rkRQ→W , CTri) for each CTri ∈ CTtr and
CT ′

ts ← ReEnc(rkRQ→EV , CTri) for each CTri ∈ CTts.

3818 CMC, 2024, vol.79, no.3

4) W and EV requests GS to provide datasets for their project operations.
5) GS verifies whether the requester is a participant in the project via PCMC.
6) If the request is valid, GS provides the corresponding re-encrypted ciphertext.
7) W decrypts the re-encrypted ciphertext datari ← Dec(skW , CTri) for each CTri ∈ CT ′

tr and
obtains the training dataset Datatr = {datar1

, . . . , datarρ }.
8) EV decrypts the re-encrypted ciphertext datari ← Dec(skEV , CTri) for each CTri ∈ CT ′

ts and
gets the test dataset Datats = {datarρ+1

, . . . , datar10
}.

Figure 7: Overview of dataset distribution

6 Security Analysis
6.1 Unpredictable Dataset Split

In the DML system, worker rewards are based on their local models’ contribution to the
global model. However, a malicious requester RQ can unfairly manipulate rewards by evaluating
contributions using a misleading test dataset. This dataset, with different features and samples than
the training data, provides inaccurate assessments. Our system addresses this by implementing a
trusted third-party approach. The smart contract, not RQ, splits the original dataset uploaded to the
IPFS network. By removing RQ’s control over data splitting, providing a fake test dataset becomes
significantly more difficult.

Let D be the original dataset uploaded to the IPFS network. RQ submits CID, denoted by cid(D),
to the smart contract. The immutability of the blockchain guarantees that the data associated with
cid(D) remains unchanged after upload. We can express this as:

∀t > upload_time(D) : D(t) = D(upload_time (D)) (1)

where D(t) represents the state of dataset D at time t, and upload_time(D) denotes the time at which
D was uploaded. A successful manipulation attack by RQ would require either: 1) Replacing cid(D)

with a new CID, cid(D′), pointing to a fake dataset D′. 2) Finding a distinct dataset D′ such that
cid(D′) = cid(D).

The collision resistance property of the cryptographic hash function used to generate CIDs makes
the second scenario highly improbable. Mathematically, the probability of a collision P(cid(D′) =
cid(D)) can be approximated as negligible for secure hash functions. Furthermore, modifying the
blockchain to replace cid(D) with a new CID is computationally infeasible due to the Byzantine Fault
Tolerance (BFT) consensus mechanism employed by most blockchain platforms. The BFT protocol
ensures that all honest nodes in the network agree on the current state of the blockchain, making it
nearly impossible for a malicious actor to tamper with data without detection.

CMC, 2024, vol.79, no.3 3819

Therefore, by leveraging the immutability of the blockchain and the collision resistance of
cryptographic hash functions, our trusted third-party approach demonstrably reduces the probability
of a successful manipulation attack by RQ to a negligible value.

6.2 Confidentiality of Test Dataset

DML system faces a challenge in ensuring data confidentiality, particularly for the test dataset
used to evaluate workers’ contributions. Malicious workers could potentially gain access to the test
dataset and manipulate their local models to achieve undeserved rewards or degrade the overall model
performance.

The current approach using a test dataset for evaluation is vulnerable to overfitting attacks. If
malicious workers obtain the test dataset beforehand (denoted as DT), they can overfit their local
models (denoted as MW) to achieve high performance on DT , even if MW performs poorly on unseen
data. This manipulation becomes problematic because in DML, the requester cannot directly access
the training data used by malicious workers (denoted as Dtrain).

To address this challenge and ensure data confidentiality, we propose a solution leveraging
ABPRE scheme. Let PRQ be the access policy of the requester RQ. The original dataset D is encrypted
under PRQ and transformed to a ciphertext CT , denoted as CT ← Enc(D, PRQ), and uploaded to
the IPFS network. The Project Creation and Management Contract (PCMC) splits CT into training
(CTtr) and test datasets (CTts). The Gateway Server GS then performs proxy re-encryption using
ABPRE. CTts is re-encrypted for Evaluation Node EV under its access structure PEV . This ensures
that only evaluation nodes with the corresponding decryption capability derived from skEV can access
CTts. In the above setting, the security threats of such a system can be categorized by the following
two scenarios:

Network Eavesdropping: Even if a malicious worker intercepts the communication between GS
and EV over a public network, the re-encrypted test dataset (CT ′

ts ← ReEnc(rkRQ→EV , CTri)) remains
inaccessible due to the inability to decrypt it without the corresponding key derived from skEV .

Compromised IPFS Node: If a malicious worker attempts to retrieve the test dataset stored on
IPFS by becoming an IPFS node, they will still encounter the encryption under skRQ, rendering the
data unreadable.

The security of ABPRE has been extensively studied and proven in prior work [35–37]. In this
paper, we focus on the application of ABPRE in the context of DML and demonstrate its benefits for
data confidentiality. We leverage ABPRE to address the challenges of overfitting and data leakage in
DML, without repeating the security proofs of ABPRE itself.

7 Performance Evaluation
7.1 Complexity Analysis

In the on-chain-based system, the requester RQ stores large datasets directly in the blockchain.

Therefore, the average on-chain storage cost for each dataset is
coststore∗ |Data|

256
, where coststore is the

cost of storage in the blockchain network and |Data| is the average size of the dataset. According
to the Ethereum yellow paper [41], coststore can be 20,000 gas per 256 bits in Ethereum, considering
only the cost of storage space. Suppose that the MNIST-784 dataset is submitted, which results in
the use of 76,250,000,000 gas, where the size of the MNIST-784 dataset is 122 MB. In the proposed
system, large datasets are stored in the IPFS network and only CIDs are stored in the blockchain,

3820 CMC, 2024, vol.79, no.3

resulting in a total on-chain storage cost of n∗ coststore ∗ |Data|
256

, where n is the number of data blocks. In

practice, if RQ divides the original dataset into 10 blocks, n can be 10, and |Data| is only 256 bits, which
results in 200,000 gas used. In conclusion, the proposed system offers a significantly lower storage cost
compared to the on-chain storage model by leveraging IPFS for data storage and storing only CIDs
on the blockchain.

7.2 On-Chain Overheads

For on-chain overheads, since we only upload CIDs onto the blockchain, the major factor that
increases the on-chain overhead is the number of data blocks divided from the original dataset.
Therefore, we implement and test the main functions of the dataset distribution contract DSDC on
the local Ethereum blockchain. We use the Ganache and Remix IDE to deploy contracts, execute
commands, and inspect the states of the contracts.

The storage and splitting of the CIDs are written as a Solidity function. DSDC stores each CID in
an array and uses Algorithm 2 to shuffle its elements. Therefore, the number of CIDs stored in a smart
contract increases with the number of data blocks derived from the original dataset. Table 2 shows the
relationship between the number of data blocks and the gas consumption required to execute each
DSDC function and the results of converting the gas consumption of DSDC implemented by the byte
array into US dollars. The price of the gas that we set in the test is 2∗10−8 ether (20 Gwei), and the cost
required to execute the contract is calculated as the multiply of the gas price and the used gas. Even as
the number of data blocks increases, the dataset split function consumes relatively little gas. However,
the gas consumption for the store CIDs function increases significantly compared to the split function
as the number of data blocks increases.

Table 2: Costs required to execute DSDC implemented as an array

Command Cost Number of data blocks

3 4 5 6 7 8 9 10

Store Gas 271,881 362,508 453,135 543,762 634,389 725,016 815,643 906,270
CIDs USD 10.23 13.64 17.04 20.45 23.86 27.27 30.68 34.09
Dataset Gas 80,451 121,659 140,739 167,210 186,819 243,291 255,508 258,316
Split USD 3.03 4.58 5.29 6.29 7.03 9.15 9.61 9.72

The cost associated with storing CIDs, as shown in Table 2, is unreasonably high from a practical
perspective. However, gas consumption can be significantly reduced by optimizing smart contracts.
The gas consumption required to execute a smart contract is determined by many factors such as on-
chain data, on-chain operations, and variable orderings, among others. Figs. 8a and 8b show the gas
consumption when the main functions (a) store CIDs and (b) dataset split are implemented in an array
and mapping type, respectively. The mapping type is similar to the array type in that it is a Solidity
reference type meant for storing a group of data. Although only the storage type of CIDs has been
changed, the store CIDs function can reduce the cost by 20% and the split function by 50% as shown
in Fig. 8a. Moreover, the cost can be reduced to a reasonable level by selecting a CID version that
generates CIDs with a shorter length or by changing the cryptographic hash function that creates the
CIDs. While not extensively explored here, smart contract optimization techniques present promising
avenues for cost reduction. Future work could delve deeper into these optimization strategies.

CMC, 2024, vol.79, no.3 3821

(a) Store CIDs (b) Dataset Split

0

2,00,000

4,00,000

6,00,000

8,00,000

10,00,000

3 4 5 6 7 8 9 10

G
as

 U
se

d
(G

w
ei

)

Number of data blocks

Array
Mapping

0

50,000

1,00,000

1,50,000

2,00,000

2,50,000

3,00,000

3 4 5 6 7 8 9 10

G
as

 U
se

d
(G

w
ei

)

Number of data blocks

Array
Mapping

Figure 8: Comparison of on-chain overheads

7.3 Off-Chain Overheads

Table 3 represents the off-chain operations required in each phase of the proposed system, along
with the entities responsible for performing these operations. In the project preparation, the requester
RQ uploads an encrypted dataset to the IPFS network via the gateway server GS. This dataset is then
split on IPFS through on-chain smart contracts and retrieved and re-encrypted by GS before being
distributed to each participant. As a result, the overhead of GS increases linearly with the number of
projects existing in the system in Figs. 9a and 9b. We implement and test the overhead for the off-chain
operation on a laptop with a 2.30 GHz processor, 8 GB of memory and 1 Gbps network bandwidth.
We use the Pinata platform to access data on the IPFS network. We set n as the number of users
simultaneously requesting operation from the gateway and measured the time it takes to upload and
download data to IPFS using dummy data generated with Windows fusutil, varying the size of the
dummy data from 10 to 100 MB. The following operations that can significantly affect performance
depending on the ABPRE algorithm used in this evaluation were excluded: Secret key generation,
Encryption, Decryption, and Re-encryption.

Table 3: Off-chain operations in the proposed system

Phase Entity Operation

Project setup SA Secret key generation

Project preparation
RQ Encrypt dataset
GS Upload ciphertext to IPFS

Dataset split – –

Dataset distribution

RQ Re-encryption key generation

GS
Retrieve ciphertext from IPFS
Transform ciphertext

EV Decrypt dataset
W Decrypt dataset

3822 CMC, 2024, vol.79, no.3

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

T
im

e(
s)

File Size (MB)

n = 1

n = 2

n = 3

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100

T
im

e(
s)

File Sie (MB)

n = 1

n = 2

n = 3

(a) Upload (b) Download

Figure 9: Data upload and download time on IPFS

For the dataset upload, it time around 16 s when n = 1 with the 100 MB file size. It took around
37 and 48 s when n = 2 and n = 3, respectively. As shown in Fig. 8a, the upload time increases linearly
with the file size and the number of concurrent requests. On the other hand, the dataset download
time was hardly affected by the number of concurrent requests and showed an almost constant time
as shown in Fig. 8b. This demonstrates that the overhead of GS can significantly increase depending
on the number of concurrent requests and the dataset size. However, the impact of this delay on the
system security is minimal, and it is possible to reduce the overhead to an acceptable level by deploying
multiple interconnected GSs within the system.

8 Discussions
8.1 Impacts of Proposed System

In this paper, we propose a novel DML system that addresses the challenges posed by malicious
participants aiming to maximize their own benefits in one of the operational modes of DML
systems where the requester crowdsources complex machine learning tasks to workers. Our system
leverages blockchain, IPFS, and ABPRE to mitigate these challenges and ensure secure and reliable
collaboration. Unlike existing approaches where the requester is solely responsible for all task-related
procedures, our system minimizes requester involvement by randomly splitting the ABPRE-encrypted
dataset using a smart contract. This approach minimizes the potential for malicious behavior by the
requester.

Our system offers significant benefits for both workers and requesters within the DML ecosystem,
ultimately fostering wider adoption of secure and reliable DML practices.

For Workers: 1) Transparency and Fairness: The system ensures verifiable task allocation and
compensation through tamper-proof smart contracts, promoting trust and eliminating potential
biases. 2) Data Protection: ABPRE encryption safeguards worker data from manipulation or privacy
violations, empowering them with greater control. 3) Enhanced Reputation: The transparent and
secure environment fosters trust, allowing workers to build a strong reputation within the DML
ecosystem.

For Requesters: 1) Reliable Workforce: The system facilitates access to a larger pool of motivated
workers confident in fair treatment and data security. 2) Reduced Risks: Blockchain technology

CMC, 2024, vol.79, no.3 3823

minimizes the risk of data breaches and malicious behavior by participants. 3) Efficiency and Cost-
Effectiveness: The automated and secure nature of the system streamlines workflows and potentially
reduces operational costs.

Impact on the DML Ecosystem: 1) Wider Adoption: Enhanced security and trust incentivize
broader adoption of DML systems, fostering collaboration and innovation. 2) Market Growth: The
secure and reliable environment stimulates growth within the DML market, attracting new participants
and investment. 3) Research Advancement: Our system paves the way for further research in secure
and decentralized DML solutions, shaping the future of collaborative machine learning.

Our system can be a valuable tool for data sharing between workers and requesters on crowd-
sourcing platforms like CrowdWorks, Appen, Labelbox, and Amazon Mechanical Turk, mentioned
in Section 1. Additionally, by ensuring that all task-related procedures are transparently recorded on
the system, our system enhances trust and can serve as a key motivator for participants to engage in
the system.

8.2 Future Work

Our system operates in a task-outsourcing mode, where worker computing resources are utilized.
Our approach is effective in mitigating certain security threats. However, different DML modes
present unique challenges. For instance, in federated learning mode, workers contribute their training
data (models or datasets) to the requester. While the threat of malicious worker remains similar,
these workers control the selection of the training dataset. Dataset splitting and sharing are not
relevant in this scenario. Therefore, ensuring accountability in other DML modes requires defining
and researching new security models specific to each mode. Our future work will focus on extending
our research scope to encompass these other modes, thereby ensuring comprehensive accountability
across the DML landscape.

Our proposed system leverages smart contracts to ensure a transparent random split of the original
dataset into training and test datasets. However, the inherent determinism of Solidity smart contracts
raises concerns about the predictability of generated random values, potentially introducing security
vulnerabilities. While off-chain solutions like Chainlink Verifiable Random Functions (VRF) [42]
offer cryptographically secure randomness, their associated costs necessitate a cost-effective design.
To address this trade-off, we plan to implement an off-chain random number generator in a future
iteration, achieving a balance between security and cost.

9 Conclusion

This paper proposes a novel and accountable DML system designed to address the challenge of
securing training data in environments with potentially malicious participants. Our system leverages
the strengths of both IPFS for efficient off-chain storage and blockchain technology for transparent
and tamper-proof dataset splitting. We achieve secure and accountable data sharing without relying
on trusted third parties through the innovative application of ABPRE. Our contributions are twofold:
1) Verifiable Dataset Splitting: We introduce a blockchain smart contract that executes a verifiable
split of training data into training and test sets. This eliminates participant involvement and potential
manipulation during the splitting process. 2) Secure and Trustless Collaboration: By leveraging the
transparency and immutability of the blockchain, our system enables secure and reliable collaboration
even among participants who do not have prior trust in each other. We demonstrate the system’s effec-
tiveness through a rigorous security analysis and extensive experiments conducted on the Ethereum
and IPFS platforms. These experiments showcase the system’s security, practicality, and its potential

3824 CMC, 2024, vol.79, no.3

to revolutionize DML systems. We believe this work paves the way for a future where decentralized
systems can become a trusted and reliable platform for collaborative problem-solving.

Acknowledgement: None.

Funding Statement: This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the Special R&D Zone Development Project (R&D)—Development of R&D Innovation Valley
support program (2023-DD-RD-0152) supervised by the Innovation Foundation. It was also partially
supported by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology
Research Center (ITRC) support program (IITP-2024-2020-0-01797) supervised by the Institute for
Information & Communications Technology Planning & Evaluation (IITP).

Author Contributions: The authors confirm contribution to the paper as follows: Study conception
and design: Siwan Noh, Kyung-Hyune Rhee; data collection: Siwan Noh; analysis and interpretation
of results: Siwan Noh; draft manuscript preparation: Siwan Noh, Kyung-Hyune Rhee. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data are contained within the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Gupta, I. Johri, K. Srinivasan, Y. C. Hu, S. M. Qaisar and K. Y. Huang, “A systematic review on machine

learning and deep learning models for electronic information security in mobile networks,” Sensors, vol.
22, no. 5, pp. 2017, 2022. doi: 10.3390/s22052017.

[2] A. Hard et al., “Federated learning for mobile keyboard prediction,” arXiv preprint arXiv:1811.03604,
2018.

[3] “Golem Factory,” Accessed: Mar. 22, 2024. [Online]. Available: https://www.golem.network/
[4] “Crowdworks AI,” Accessed: Mar. 22, 2024. [Online]. Available: https://works.crowdworks.kr/
[5] “Appen,” Accessed: Mar. 22, 2024. [Online]. Available: https://www.appen.com/
[6] “Labelbox,” Accessed: Mar. 22, 2024. [Online]. Available: https://labelbox.com/
[7] L. Ouyang, Y. Yuan, and F. Y. Wang, “Learning markets: An AI collaboration framework based on

blockchain and smart contracts,” IEEE Internet Things J., vol. 9, no. 16, pp. 14273–14286, 2022. doi:
10.1109/JIOT.2020.3032706.

[8] A. Ali, I. Ilahi, A. Qayyum, I. Mohammed, A. Al-Fuqaha and J. Qadir, “Incentive-driven federated learning
and associated security challenges: A systematic review,” 2021. doi: 10.36227/techrxiv.14945433.

[9] M. D. Packard and P. L. Bylund, “From homo economicus to homo agens: Toward a subjective rationality
for entrepreneurship,” J. Bus. Ventur., vol. 36, no. 6, pp. 106159, 2021. doi: 10.1016/j.jbusvent.2021.106159.

[10] Y. Fraboni, R. Vidal, and M. Lorenzi, “Free-rider attacks on model aggregation in federated learning,” in
Proc. Int. Conf. Artif. Intell. Stat., Apr. 13–15, 2021, pp. 1846–1854.

[11] K. Sarpatwar et al., “Towards enabling trusted artificial intelligence via blockchain,” Policy-Based Auton.
Data Gov., pp. 137–153, 2019. doi: 10.1007/978-3-030-17277-0.

[12] H. B. Desai, M. S. Ozdayi, and M. Kantarcioglu, “BlockFLA: Accountable federated learning via hybrid
blockchain architecture,” in Proc. Eleventh ACM Conf. Data Appl. Secur. Priv., Apr. 26–28, 2021, pp. 101–
112.

[13] S. K. Lo et al., “Toward trustworthy AI: Blockchain-based architecture design for accountability and
fairness of federated learning systems,” IEEE Internet Things J., vol. 10, no. 4, pp. 3276–3284, 2022. doi:
10.1109/JIOT.2022.3144450.

https://doi.org/10.3390/s22052017
https://www.golem.network/
https://works.crowdworks.kr/
https://www.appen.com/
https://labelbox.com/
https://doi.org/10.1109/JIOT.2020.3032706
https://doi.org/10.36227/techrxiv.14945433
https://doi.org/10.1016/j.jbusvent.2021.106159
https://doi.org/10.1007/978-3-030-17277-0
https://doi.org/10.1109/JIOT.2022.3144450

CMC, 2024, vol.79, no.3 3825

[14] C. Ma et al., “When federated learning meets blockchain: A new distributed learning paradigm,” IEEE
Comput. Intell. Mag., vol. 17, no. 3, pp. 26–33, 2022. doi: 10.1109/MCI.2022.3180932.

[15] D. C. Nguyen et al., “Federated learning meets blockchain in edge computing: Opportunities and chal-
lenges,” IEEE Internet Things J., vol. 8, no. 16, pp. 12806–12825, 2021. doi: 10.1109/JIOT.2021.3072611.

[16] M. M. Salim and J. H. Park, “Federated learning-based secure electronic health record sharing
scheme in medical informatics,” IEEE J. Biomed. Health Inf., vol. 27, no. 2, pp. 617–624, 2023. doi:
10.1109/JBHI.2022.3174823.

[17] A. R. Short, H. C. Leligou, M. Papoutsidakis, and E. Theocharis, “Using blockchain technologies to
improve security in federated learning systems,” in Proc. 44th IEEE Annu. Comput., Softw., Appl. Conf.
(COMPSAC), Madrid, Spain, Jul. 13–17, 2020, pp. 1183–1188.

[18] V. Mugunthan, R. Rahman, and L. Kagal, “BlockFLow: Decentralized, privacy-preserving and account-
able federated machine learning,” in Proc. 3rd Int. Congr. Blockchain Appl., Salamanca, Spain, Oct. 6–8,
2021, pp. 233–242.

[19] A. B. Kurtulmus and K. Daniel, “Trustless machine learning contracts; evaluating and exchanging machine
learning models on the ethereum blockchain,” arXiv preprint arXiv:1802.10185, 2018.

[20] S. Liu, X. Wang, L. Hui, and W. Wu, “Blockchain-based decentralized federated learning method in edge
computing environment,” Appl. Sci., vol. 13, no. 3, pp. 1677–1693, 2023.

[21] “Amazon Web Service,” Accessed: Mar. 22, 2024. [Online]. Available: https://www.mturk.com/
[22] H. Xie, E. Maddalena, R. Qarout, and A. Checco, “The dark side of recruitment in crowdsourcing: Ethics

and transparency in micro-task marketplaces,” Comput. Support. Coop. Work, vol. 32, no. 3, pp. 439–474,
2023. doi: 10.1007/s10606-023-09464-9.

[23] US Government Accountability Office, “Artificial intelligence: An accountability framework for federal
agencies and other entities,” 2021. Accessed: Apr. 29, 2024. [Online]. Available: https://search.proquest.
com/docview/2559990674

[24] G. Caldarelli, “Understanding the blockchain oracle problem: A call for action,” Information, vol. 11, no.
11, pp. 509, 2020. doi: 10.3390/info11110509.

[25] Q. Li, Z. Wen, and B. He, “Practical federated gradient boosting decision trees,” in Proc. AAAI Conf. Artif.
Intell., New York, NY, USA, Feb. 7–12, 2020, vol. 34, pp. 4642–4649. doi: 10.1609/aaai.v34i04.5895.

[26] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss functions in machine learning,”
Ann. Data Sci., vol. 9, no. 2, pp. 187–212, 2022. doi: 10.1007/s40745-020-00253-5.

[27] D. Martin, J. O’Neill, N. Gupta, and B. V. Hanrahan, “Turking in a global labour market,” Comput.
Support. Coop. Work, vol. 25, no. 1, pp. 39–77, 2016. doi: 10.1007/s10606-015-9241-6.

[28] M. S. Silberman, L. Irani, and J. Ross, “Ethics and tactics of professional crowdwork,” XRDS: Crossroads,
ACM Mag. Students, vol. 17, no. 2, pp. 39–43, 2010.

[29] ChrisTurk, “TurkerViewJS,” 2022. Accessed: Apr. 29, 2024. [Online]. Available: https://turkerview.com/
mturk-scripts/1-turkerviewjs

[30] J. Hao, Y. Zhao, and J. Zhang, “Time efficient federated learning with semi-asynchronous communication,”
in Proc. 26th IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS), Hong Kong, Dec. 2–4, 2020, pp. 156–163.

[31] A. Imteaj et al., “FedAR: Activity and resource-aware federated learning model for distributed mobile
robots,” in Proc. 19th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Miami, FL, USA, Dec. 14–17, 2020,
pp. 1153–1160.

[32] A. Homeyer et al., “Recommendations on compiling test datasets for evaluating artificial intelligence solu-
tions in pathology,” Mod. Pathol., vol. 35, no. 12, pp. 1759–1769, 2022. doi: 10.1038/s41379-022-01147-y.

[33] P. Rathore, A. Basak, S. H. Nistala, and V. Runkana, “Untargeted, targeted and universal adversarial
attacks and defenses on time series,” in Proc. 2020 Int. Joint Conf. Neural Netw. (IJCNN), Glasgow, UK,
Jul. 19–24, 2020, pp. 1–8.

[34] Z. Kong et al., “A survey on adversarial attack in the age of artificial intelligence,” Wirel. Commun. Mob.
Comput., vol. 2021, pp. 1–22, 2021. doi: 10.1155/2021/4907754.

https://doi.org/10.1109/MCI.2022.3180932
https://doi.org/10.1109/JIOT.2021.3072611
https://doi.org/10.1109/JBHI.2022.3174823
https://www.mturk.com/
https://doi.org/10.1007/s10606-023-09464-9
https://search.proquest.com/docview/2559990674
https://search.proquest.com/docview/2559990674
https://doi.org/10.3390/info11110509
https://doi.org/10.1609/aaai.v34i04.5895
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s10606-015-9241-6
https://turkerview.com/mturk-scripts/1-turkerviewjs
https://turkerview.com/mturk-scripts/1-turkerviewjs
https://doi.org/10.1038/s41379-022-01147-y
https://doi.org/10.1155/2021/4907754

3826 CMC, 2024, vol.79, no.3

[35] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia and L. Fang, “A verifiable and fair attribute-based proxy re-
encryption scheme for data sharing in clouds,” IEEE Trans. Depend. Secur. Comput., vol. 19, no. 5, pp.
2907–2919, 2022. doi: 10.1109/TDSC.2021.3076580.

[36] K. Liang et al., “A secure and efficient ciphertext-policy attribute-based proxy re-encryption for cloud data
sharing,” Future Gen. Comput. Syst., vol. 52, no. 1, pp. 95–108, 2015. doi: 10.1016/j.future.2014.11.016.

[37] K. Liang, L. Fang, W. Susilo, and D. S. Wong, “A ciphertext-policy attribute-based proxy re-encryption
with chosen-ciphertext security,” in Proc. 5th Int. Conf. Intell. Netw. Collab. Syst., Xi’an, China, Sep. 9–11,
2013, pp. 552–559.

[38] J. Benet, “IPFS—content addressed, versioned, P2P file system,” arXiv preprint arXiv:1407.3561, 2014.
[39] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system based on the XOR

metric,” in Proc. Int. Workshop Peer-to-Peer Syst., Cambridge, MA, USA, Mar. 7–8, 2002, pp. 53–65.
[40] S. Prusty, S. Patnaik, and S. K. Dash, “SKCV: Stratified k-fold cross-validation on ML classifiers for

predicting cervical cancer,” Front. Nanotechnol., vol. 4, pp. 054002, 2022. doi: 10.3389/fnano.2022.972421.
[41] E. Wood, “A secure decentralised generalised transaction ledger,” Yellow Paper, vol. 151, pp. 1–32, 2014.
[42] L. Breidenbach et al., “Chainlink 2.0: Next steps in the evolution of decentralized oracle networks,”

Chainlink Labs, 2021. Accessed: Apr. 29, 2024. [Online]. Available: https://research.chain.link/whitepaper-
v2.pdf

https://doi.org/10.1109/TDSC.2021.3076580
https://doi.org/10.1016/j.future.2014.11.016
https://doi.org/10.3389/fnano.2022.972421
https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v2.pdf

	Transparent and Accountable Training Data Sharing in Decentralized Machine Learning Systems
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Preliminaries
	5 Transparent and Accountable Training Data Sharing
	6 Security Analysis
	7 Performance Evaluation
	8 Discussions
	9 Conclusion
	References

