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ABSTRACT

The Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT) in the medical field. It
is a cutting-edge technique that connects medical sensors and their applications to healthcare systems, which is
essential in smart healthcare. However, Personal Health Records (PHRs) are normally kept in public cloud servers
controlled by IoMT service providers, so privacy and security incidents may be frequent. Fortunately, Searchable
Encryption (SE), which can be used to execute queries on encrypted data, can address the issue above. Nevertheless,
most existing SE schemes cannot solve the vector dominance threshold problem. In response to this, we present
a SE scheme called Vector Dominance with Threshold Searchable Encryption (VDTSE) in this study. We use a
Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the
number of two equal-length vectors’ corresponding bits excluding wildcards is not less than a threshold t. Then,
we solve the problem using the proposed technique modified in Hidden Vector Encryption (HVE). This technique
makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE
schemes. A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates
the feasibility of the proposed VDTSE scheme.

KEYWORDS
Internet of Things (IoT); Internet of Medical Things (IoMT); vector dominance with threshold searchable
encryption (VDTSE); threshold comparison; electronic healthcare

1 Introduction

The Internet of Things (IoT) [1] provides safe and controllable real-time online monitoring,
positioning, and other service functions. As an important IoT application in the medical field, the
Internet of Medical Things (IoMT) can realize efficient and inexpensive healthcare and enhance
patient comfort. However, the data involved in continuous monitoring can be massive, and the devices
used to collect the data are resource-constrained. As a result, the data is often stored in the cloud, which
may seriously violate patient privacy during data collection, storage, and computation. Suspecting the
infringement of their healthcare privacy, patients may become reluctant to participate or encrypt their
medical data before uploading it to service providers. This raises another question: how to perform a

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051181
https://www.techscience.com/doi/10.32604/cmc.2024.051181
mailto:niejingjing99@gmail.com


4764 CMC, 2024, vol.79, no.3

user search about this encrypted private data. In this context, Searchable Encryption (SE) is desirable
as a prominent encryption tool for privacy-preserving IoMT [2,3].

1.1 Motivation

Consider a specific example of privacy-preserving diabetes screening (see Fig. 1) in IoMT. In this
example, a nurse tries to screen out diabetics from Personal Health Records (PHRs). However, PHRs
contain private information, and the patient is unwilling to share them with anyone. Therefore, the

patient in this example encrypts the medical record
→
X (random blood glucose = 4, fasting blood

glucose = 3, 2-h post-load glucose = 5, glycated hemoglobin = 4) and the personal information M

before uploading them to the service provider. In this case, the nurse sends a search request (
→
Δ, t)

(random blood glucose = 3, fasting blood glucose = 2, 2-h post-load glucose = 3, glycated hemoglobin
= 5, t = 2 (1 ≤ t ≤ 4)) to the service provider using a handheld Personal Digital Assistant (PDA).

When the service provider detects number
(→

X � →
Δ

)
≥ t (

→
X � →

Δ means that
→
X dominates

→
Δ [4]), it will

send the encrypted M to the nurse. In this process, the service provider has no prior knowledge of
→
X

and M.

Figure 1: Privacy-preserving diabetes screening

For the application above, it is necessary to solve number
(→

X � →
Δ

)
≥ t in SE. It is very helpful

when we need to compare multiple attributes while counting the number of matches. We call the
proposed scheme Vector Dominance [4] with Threshold Searchable Encryption (VDTSE). The vector

dominance with threshold problem determines whether the number of components in vectors
→
X =

(X1, . . . , Xn) and
→
Δ = (Δ1, . . . , Δn) (Xi > Δi, i ∈ [1, n]) reaches a certain threshold t.

Therefore, the proposed VDTSE scheme is favorable for threshold comparison queries in a public-

key SE system. When number
(→

X � →
Δ

)
≥ t holds, the encrypted M will be sent to the requester.

Besides, our algorithm can solve the problem of existing SE schemes by controlling the threshold t,
which is adaptive and can support additional functionalities such as range queries (t = 0) or similarity
searches (Xi = Δi).

1.2 Our Contribution

The main contributions of this study are outlined below:
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• We design a VDTSE scheme supporting comparable attributes that can function for the (t, n)-
threshold policy. Although existing schemes [5–8] also support this feature, they are restricted to AND-
gates (or (t, t)-threshold). We implement the threshold using a Lagrangian polynomial technique.

• The VDTSE scheme has a shorter trapdoor that makes it more suitable for data storage on
mobile devices (such as PDAs). To achieve this, we solve it using our technique modified in Hidden
Vector Encryption (HVE) [7], which makes the trapdoor size linear.

• We prove the security, flexibility, and effectiveness of the proposed scheme through theoretical
comparison with other schemes. Finally, the experiment shows that the trapdoor size of our method
is much smaller than that of other similar SE schemes.

1.3 Outline

The rest of this paper is structured as below. Section 2 describes the related work of VDTSE.
Section 3 contains the preliminaries, while Section 4 presents the scheme construction. Section 5
discusses the security proof for our scheme, Section 6 describes the performance of the proposed
scheme, and Section 7 concludes the article and suggests possible future work.

2 Related Work

Song et al. popularized the SE scheme [9] that enabled a user to generate both ciphertexts
and trapdoors under a symmetric system, so service providers could perform a match search on
encrypted information. Under the symmetric system, SE was further improved in [10–12]. In 2004,
Boneh et al. [13] considered the first asymmetric SE scheme, Public-key Encryption with Keyword
Search (PEKS). The initial public-key SE schemes, however, were limited to test keyword equality.
Among these developments, comparative searches received little attention.

To address the aforementioned issue, Boneh et al. [5] created a searchable public-key system called
HVE in 2007, which allowed for conjunctive range queries over encrypted data. That same year,
Shi et al. [6] proposed a multi-dimensional range SE scheme. However, the aforementioned methods
were inefficient and disadvantageous from an operational standpoint. As a result, Park [7] proposed
a novel HVE that was effective in prime-order groups significantly smaller than the composite-order
groups on the identical level. Later, Park et al. [8] realized a more effective HVE scheme. Although the
schemes above supported the AND gate of attribute comparison, they could not apply to arbitrary
threshold gates. Fortunately, Sun et al. [14] extended the technique by combining HVE and predicate
encryption (PE) for the inner product (called IPE) to achieve threshold comparison queries.

In addition to these references, other scholars addressed the threshold comparison. In 2007,
Bethencourt et al. [15] presented a threshold comparison scheme to realize numeric ranges search.
In 2018, Attrapadung et al. [16] developed a numeric comparison scheme under the Attribute-Based
Encryption (ABE) system. In 2017, Xue et al. [17] constructed a comparable ABE scheme that was
more efficient. Although these schemes [15–17] were under the public key system, they could not

protect the privacy of
→
X .

To the best of our knowledge, the only scheme that supported the threshold comparison was
[14], but their ciphertext and private key size increased quadratically, posing potential challenges in
resource-constrained IoT devices. Therefore, we need to design a more efficient SE scheme.
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3 Preliminaries
3.1 Bilinear Maps

Assume g is a generator in G, while G and GT are two multiplicative cyclic groups whose order is
prime p. e : G × G → GT is a function with these attributes:

1. Bilinear. We have e
(
uc, vd

) = e (u, v)cd, where u, v ∈ G, c, d ∈ Zp.

2. Nondegenerate. e (g, g) �= 1.

3. Computable. e is a computable map algorithm.

Therefore, we state that e is a bilinear pairing map within G. It is worth noting that e (, ) is
symmetric because e

(
gc, gd

) = e (g, g)
cd = e

(
gd, gc

)
.

3.2 Complexity Assumptions

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. The following describes the DBDH
problem: Provided

(
g, ga, gb, gc, Z

) ∈ G
4 × GT , identify Z = e (g, g)

abc or Z is random in GT .

Augmented Decision Linear (ADLIN) Assumption. Provided (g, gz1 , gz2 , gz2
2 , gz2/z1 , gz2

2z3 , gz4 , Z) ∈ G
8,

find Z = gz1(z3+z4) or Z is random in G.

Definition 1. The {DBDH, ADLIN} assumption holds inGwhen the advantage of any polynomial
time algorithm in dealing with the {DBDH, ADLIN} problem is negligible.

3.3 Security Model

Our scheme is characterized by a chosen plaintext security, and ciphertext CT offers no infor-

mation about the vector
→
X and the message M, which is proved in a security proof that relies on the

difficulty of DBDH and ADLIN. The following games are played between an adversary A and a
challenger C. Besides, U and � are given to A, where U is the attribute universal set and � is the length
of vector.

• Initialization (Init). A commits
→
X

∗

0,
→
X

∗

1 ∈ ��/U to C.

• Setup. C runs the KeyGen algorithm to get a public key PK and a secret key SK, offers PK to A.

• Query Phase 1. A performs a series of trapdoor queries adaptively. To any trapdoor T→
Δ i

from

queried vectors
→
Δ1, . . . ,

→
Δqη ∈ (Σ)

�/U and thresholds t1, . . . , tqη , there is a restriction of f→
Δ i ,ti

(
→
X

∗

0

)
=

f→
Δ i ,ti

(
→
X

∗

1

)
for all i = 1, . . . , qη. C uses trapdoors TK→

Δ i ,ti
← Trapdoor

(
SK,

→
Δi, ti

)
to respond to A.

• Challenge. A offers M0, M1 ∈ M. If f→
Δ i ,ti

(
→
X

∗

0

)
= f→

Δ i ,ti

(
→
X

∗

1

)
= 1, then M0 = M1. C responds

CT∗ ← PEKS
(

PK,
→
X

∗

β
, Mβ

)
to A, where β ∈ {0, 1}.

• Query Phase 2. A makes other trapdoor queries adaptively for vectors
→
Δqn+1

, . . . ,
→
ΔqTK

and
thresholds tqn+1

, . . . , tqTK
. The restrictions are the same as those in Query Phase 1 and Challenge.

• Guess. A guesses β ′. A wins the game when β ′ = β, where β ′ ∈ {0, 1}.
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We define AdvVDTSE
A = | Pr [β ′ = β] − 1/2| as the advantage that A has in breaking the VDTSE

scheme.

Definition 2. If the advantage AdvVDTSE
A is negligible, the VDTSE scheme is selectively secure.

4 Construction
4.1 A Novel Encoding

This section presents the techniques for solving number
(→

X � →
Δ

)
≥ t in the form of a novel

encoding. We set a universal set U = {1, 2, . . . , |U|}. Every bit xj of a |→
Δ| × |U|-dimension vector

→
x converted from vector

→
X is chosen from {0, 1} following Eq. (1). In a similar way, every bit σj of

another |→
Δ| × |U|-dimension vector

→
σ transformed from vector

→
Δ is selected from {1, ∗} according to

Eq. (2).

x(i−1)×|U|+j =
{

1, Xi < j,
0, otherwise, (1)

where 1 ≤ j ≤ |U|, 1 ≤ i ≤ |→
X |.

σ(i−1)×|U|+j =
{

1, Δi = j ,
∗, otherwise, (2)

where 1 ≤ j ≤ |U|, 1 ≤ i ≤ |→
Δ|.

When the VDTSE scheme is used in multi-user scenarios, a trusted private service provider needs
to be added to receive trapdoors from users and then send the trapdoors to an untrusted public service
provider. Therefore, only single-user scenarios are considered in this paper.

Applying the example of privacy-preserving diabetes screening in the Introduction, set
→
X =

(X1, X2, X3, X4) = (4, 3, 5, 4),
→
� = (�1, �2, �3, �4) = (3, 2, 3, 5), t = 2, � = |→

X | × |U| = 20,

where U ={1, 2, 3, 4, 5} and |→
X | = |→

Δ| = 4. Two 20-dimension vectors
→
x and

→
σ are transformed

from
→
X and

→
Δ following Eqs. (1) and (2), respectively.

For
→
X , the 20-dimension vector

→
x is represented by

1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0

For
→
Δ, the 20-dimension vector

→
σ is represented by

∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1

Since there are 3 (>t) equal corresponding bits of
→
x and

→
σ excluding ∗ bits, number

(→
X � →

Δ
)

≥ t

holds. The detailed scheme is as follows.
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4.2 Scheme

• KeyGen (k, �, U). The KeyGen algorithm uses a security parameter k = 1024 bit and a type-
A elliptic curve that has as input a 160-bit group order, a vector length �, a universe U , and a
random generator g ∈ G to generate our scheme parameters. It selects random exponents y1, v1, . . . , v�,
t1, . . . , t� ∈ Zp as well as random elements α, (h1, u1, w1) , . . . , (h�, u�, w�) ∈ G. It defines g1 = gα,
Y1 = gy1 , Vi = gvi , Ti = gti for i = 1, . . . , �. Furthermore, it establishes Ω = e (g1, Y1) ∈ GT . The public
key PK and the secret key SK are

PK = (g, Y1, (h1, u1, w1, V1, T1) , . . . , (h�, u�, w�, V�, T�) , 	) ∈ G
5�+2 × GT ,

SK = (α, g1 = gα, y1, v1, . . . , v�, t1, . . . , t�) ∈ Z
2�+2
p × G.

• PEKS
(

PK,
→
X

)
. With PK and vector

→
X = (

X1, . . . , X�/U

)
as input, this algorithm initially

converts
→
X into

→
x = (x1, . . . , x�) based on Eq. (1). It chooses two random parameters s1, s2 ∈ Zp,

then uses them to encrypt message M ∈ GT and vector
→
x for generating ciphertext:

CT = (
Y s1

1 , gs2 ,
(
h1u

x1
1

)s1 V s2
1 , . . . ,

(
h�u

x�
�

)s1 V s2
� , ws1

1 Ts2
1 , . . . , ws1

� Ts2
� , 	s1M

) ∈ G
2�+2 × GT .

This encryption algorithm ensures the confidentiality of M and
→
x. Their integrity can be

recognized by the Message Authentication Code (MAC), public key-based Homomorphic Linear
Authentication (HLA), Hash-based Message Authentication Code (HMAC), etc.

• Trapdoor
(

SK,
→
�, t

)
. This algorithm uses SK and vector

→
Δ = (

Δ1, . . . , ΔJ , . . . , Δ�/U

)
as input,

then chooses at random a t-1 degree polynomial q (x) where q (0) = α. It first transforms
→
Δ into

→
σ =

(σ1, . . . , σ�) ∈ (Σ∗)
� based on Eq. (2). To generate a trapdoor T→

σ
for i ∈ S

(→
σ
)

, where S
(→
σ
)

is the set

of all indexes i that satisfies σi �= ∗, it computes T→
σ

as

T→
σ

=
(

σ∗, ∀i ∈ S
(→
σ
)

:
{

gq(J)
(
hiu

σi
i

)rJ wηJ
i , Y rJ

1 , Y ηJ
1 , Y

−(virJ +tiηJ)
1 , V y1ZJ

i , Y ZJ
1 ,

(
hiu

σi
i

)ZJ
}�/U

J=1

)
∈ G

7(�/U),

i = (J − 1) U + �J .

• Test
(
CT, T→

σ

)
. Let CT = (C1, C2, C3,1, . . . , C3,i, . . . , C3,�, C4,1, . . . , C4,i, . . . , C4,�, C5) and T→

σ
=(

K1,J , K2,J , K3,J , K4,J , K5,J , K6,J , K7,J

)
for 1 ≤ J ≤ �/U . The Test algorithm computes the following:

Step 1.

e
(
K7,J , C1

) · e
(
K5,J , C2

)
e
(
K6,J , C3,i

) =
e
((

hiu
σi
i

)ZJ , Y s1
1

)
· e

(
V y1ZJ

i , gs2
)

e
((

hiu
xi
i

)s1 V s2
i , Y ZJ

1

) = e (ui, g)
y1s1ZJ(σi−xi) = 1, when σi =

xi.

Step 2.

When number (xi = σi) ≥ t holds except for ∗ bits, chooses t elements of S satisfying xi = σi. So
we have

C5

/ ∏
i∈S

[
e
(
C1, K1,J

)
e
(
C3,i, K2,J

) · e
(
C4,i, K3,J

) · e
(
C2, K4,J

)
]AJ

→ M,

where AJ is the Lagrange coefficient for i and S: AJ (x) = ∏
j∈S,j �=i[(x − j) / (i − j)].
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5 Security Proof
5.1 Overview

If the DBDH and ADLIN assumptions are met, the VDTSE scheme is selectively secure. The
adversary chooses two vectors

→
x

∗
0 = (

x∗
0,1, . . . , x∗

0,�

)
and

→
x

∗
1 = (

x∗
1,1, . . . , x∗

1,�

) ∈ �� that are transformed

from vectors
→
X

∗

0,
→
X

∗

1 at the beginning of this security game. We assume that A = {1, 2, . . . , |A|}, where
A is the set of indexes i that satisfies A = {

i ∈ {1, . . . , �} | x∗
0,i �= x∗

1,i

}
. We continue to choose random

elements (R3,1, . . . , R3,|A|, R4,1, . . . , R4,|A|) from G and R5 from GT . We assume the following games:

Game0 : CT0 = (
C1, C2, C3,1, . . . , C3,|A|, C3,|A|+1, . . . , C3,�, C4,1, . . . , C4,|A|, C4,|A|+1, . . . , C4,�, C5

)
,

Game1 : CT1 = (
C1, C2, C3,1, . . . , C3,|A|, C3,|A|+1, . . . , C3,�, C4,1, . . . , C4,|A|, C4,|A|+1, . . . , C4,�, R5

)
,

Game2,1 : CT2,1 = (
C1, C2, R3,1, . . . , C3,|A|, C3,|A|+1, . . . , C3,�, R4,1, . . . , C4,|A|, C4,|A|+1, . . . , C4,�, R5

)
,

...,

Game2,|A| : CT2,|A| = (
C1, C2, R3,1, . . . , R3,|A|, C3,|A|+1, . . . , C3,�, R4,1, . . . , R4,|A|, C4,|A|+1, . . . , C4,�, R5

)
.

When the adversary sends M0, M1, the challenger provides the ciphertext about
(→

x
∗
β
, Mβ

)
to the

adversary, where β ∈ {0, 1}. If the adversary guesses β correctly, he will win the game. Game0 is the real
security game that is given to the adversary. In this game, C3,1, . . . , C3,�, C4,1, . . . , C4,� are the ciphertext
about

→
x

∗
β
, and C5 is the ciphertext about Mβ . CT2,|A| is the challenge ciphertext of Game2,|A|, which

reveals nothing about the attributes associated with A or message Mβ . We show this in the following
games, which are all computationally indistinguishable.

5.2 Type of Trapdoor Queries

In our model (the selective security), the adversary performs trapdoor queries for any vector
→
Δ =(�1, . . . ,�J , . . . , ��/U) and a threshold t transformed to vector

→
σ = (σ1, . . . , σ�) ∈ (Σ∗)

� and t,

under the constraint that f→
Δ ,t

(
→
X

∗

0

)
= f→

Δ ,t

(
→
X

∗

1

) (
i.e., f→

σ ,t

(→
x

∗
0

)
= f→

σ ,t

(→
x

∗
1

))
. We assume S is the set of

i for which σi is not a wildcard. We divide the queries into two types:

• Type 1.
[
number

(
X0,J > �J

) ≥ t
] ∧ [

number
(
X1,J > �J

) ≥ t
]

(i.e.,
[
number

(
σi = x∗

0,i

) ≥ t
]∧

[number
(
σi = x∗

1,i

) ≥ t]). If the challenge message meets M0 = M1, this type of query can be performed.

• Type 2. [number(X0,J > �J < t] ∧ [number(X1,J > �J) < t] (i.e., [number
(
σi = x∗

0,i

)
< t]∧

[number(σi) = x∗
1,i) < t].

Case 1. Type 1 does not match. Additionally, there is an index i ∈ S ∩ A for which σi �= x∗
β,i.

Case 2. Type 1 and Case 1 fail to hold, and there exist i ∈ S ∩ A for which σi = x∗
β,i, while there

exists j ∈ S for which σi �= x∗
β,i.

5.3 Proof of Lemmas

Lemma 1. Suppose that the DBDH assumption holds. In other words, the distinct difference in
the advantage of A who is an adversary of any polynomial time in Game0 and Game1 is negligible.
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Proof. Suppose A has a non-negligible difference about the advantage of G. If Z = e (g, g)
abc holds

for a random instance
(
g, ga, gb, gc, Z

)
, B returns 1, otherwise, B returns 0. B communicates with A in

the following ways:

• Init. At the start of the game, A produces two vectors
→
X

∗

0,
→
X

∗

1 that have been converted to
→
x

∗
0,

→
x

∗
1 ∈

��. B internally changes β ∈ {0, 1}.
• Setup. B selects exponents at random γ , y1, v1, . . . , v�, t1, . . . , t�, θ1, . . . , θ�, φ1, . . . , φ�, λ1, . . . , λ�

∈ Zp. It sets Y1 = gy1 , hi = gθi
(
gb

)−φi ·x∗
β,i , ui = (

gb
)φi , wi = gλi , Vi = gvi , Ti = gti . Besides, B establishes

Ω = e (g1, Y1) = e
(
ga, gb

)y1 e (g, g)
γ y1 . Take note that g1 = gabgγ , and this is secret to B. A is handed

the public key PK = (g, Y1, (h1, u1, w1, V1, T1) , . . . , (h�, u�, w�, V�, T�) , 	).

• Query Phase 1. A triggers the trapdoor queries. Assume A searches for
→
Δ that has been changed

to
→
σ = (σ1, . . . , σ�) ∈ (Σ∗)

�. Let S = {i|σi �= ∗}, where ∗ is a wildcard. The queries of A are divided
into the following two types.

Type 1. A sends a Type 1 query, and B answers an arbitrary guess. The query above shows that
M0 = M1, and B provides the message’s encryption. Since in this circumstance the two games, Game0

and Game1, are identical, there ought to be no difference in A’s advantage.

Type 2. These two scenarios imply that there exists at least one index j ∈ S that satisfies σj �= x∗
β,j. B

initially defines the three sets, �, �′, S, as follows: � = {
i | σi = x∗

β,i

}
, �′ is any set such that � ⊆ �′ ⊆ S

and |�′| = t−1, and S = �′∪{0}. Following that,B specifies the trapdoor KJ , where J = (i−�J)/U+1.
B selects a random t-1 degree polynomial q (x) by randomly selecting its value for the t-1 points and
having q (0) = ab + γ .

If i ∈ �′, B chooses a random rJ , ηJ ∈ Zp, q (J) = τJ .

K1,J = gq(J)
(
hiu

σi
i

)rJ wηJ
i = (g)

τJ +θi+λiηJ
(
gb

)rJ
(
σi−x∗

β, i

)
φi ,

K2,J = Y rJ
1 = (g)

y1rJ ,

K3,J = Y ηJ
1 = (g)

y1ηJ ,

K4,J = Y
−(rJ vi+ηJ ti)
1 = (g)

−y1(rJ vi+ηJ ti) ,

K5,J = V y1ZJ
i = (g)

y1viZJ ,

K6,J = Y ZJ
1 = (g)

y1ZJ ,

K7,J = (
hiu

σi
i

)ZJ =
(

(g)
θi
(
gb

)(
σi−x∗

β,i

)
φi

)ZJ

If i ∈ S − �′ : σi − x∗
β,i �= 0, q (J) = �i∈�′q (J) �J + q (0) �0, rJ = (

r̃J − a/
[(

σi − x∗
β,i

)
φi

])
�0.

K1,J = gq(J)
(
hiu

σi
i

)rJ wi
ηJ = g�i∈�′ q(J)�J +q(0)�0

(
(g)

θi
(
gb

)(
σi−x∗

β,i

)
φi

)rJ (
gλi

)ηJ

= (g)
�i∈�′ q(J)�J g(ab+γ )�0

(
(g)

θi
(
gb

)(
σi−x∗

β,i

)
φi

)(
r̃J −a/[

(
σi−x∗

β,i

)
φi]

)
�0 (

gλi
)ηJ

= (g)
�i∈�′ q(J)�J +γ�0 gab�0 (g)

θi r̃J �0 (ga)
(
θi/[

(
σi−x∗

β,i

)
φj]

)
�0

(
gb

)(
σi−x∗

β,i

)
φi r̃J �0

(
g−ab�0

) (
gλi

)ηJ

= (g)
�i∈�′ q(J)�J +γ�0+θi r̃J �0+λiηJ (ga)

(
θi/[

(
σi−x∗

β,i

)
φj]

)
�0

(
gb

)(
σi−x∗

β,i

)
φi r̃J �0 ,
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K2,J = Y rJ
1 = (gy1)

(
r̃J −a/[

(
σi−x∗

β,i

)
φi]

)
�0 = (g)

y1 r̃J �0 (ga)
−(y1�0)/[

(
σi−x∗

β,i

)
φi] ,

K3,J = Y ηJ
1 = (g)

y1ηJ ,

K4,J = Y
−(rJ vi+ηJ ti)
1 = (gy1)

−
((

r̃J −a/[
(
σi−x∗

β,i

)
φi]

)
�0vi+ηJ ti

)
= (g)

−y1(r̃J �0vi+ηJ ti) (ga)(
y1�0vi)/

(
σi−x∗

β,i

)
φi ,

K5,J = V y1ZJ
i = (g)

y1viZJ ,

K6,J = Y ZJ
1 = (g)

y1ZJ ,

K7,J = (
hiu

σi
i

)ZJ =
(

(g)
θi
(
gb

)(
σi−x∗

β,i

)
φi

)ZJ

= (g)
θiZJ

(
gb

)(
σi−x∗

β,i

)
φiZJ .

• Challenge. A sends M0 and M1 to B. If M0 = M1, B finishes the game and guesses β ′ ∈ {0, 1}.
Otherwise, B chooses s1, s2 ∈ Zp randomly and generates the challenge ciphertext CT∗, where s1 = c.

C∗
1 = Y s1

1 = (gy1)
c = (gc)

y1 ,

C∗
2 = gs2 = (g)

s2 ,

C∗
3,1 =

(
h1u

x∗
β,1

1

)s1

V s2
1 =

(
(g)

θ1
(
gb

)(
x∗
β,1−x∗

β,1

)
φ1

)c

gv1s2 = (gc)
θ1 (gv1)

s2 , . . . ,

C∗
3,i =

(
hiu

x∗
β,i

i

)s1

V s2
i = (gc)

θi (g)
vis2 , . . . ,

C∗
3,� =

(
h�u

x∗
β,�

�

)s1

V s2
� = (gc)

θ� (g)
v�s2 ,

C∗
4,1 = ws1

1 Ts2
1 = (

gλ1
)c (

gt1
)s2 = (gc)

λ1 (g)
t1s2 , . . . ,

C∗
4,i = ws1

i Ts2
i = (gc)

λi (g)
tis2 , . . . ,

C∗
4,� = ws1

� Ts2
� = (gc)

λ� (g)
t�s2 ,

C∗
5 = e (g1, Y1)

s1 Mβ = e
(
gab+γ , gy1

)c
Mβ = Ze (gc, g)

y1γ Mβ ,

where Z = e (g, g)
abc.

• Query Phase 2. A carries on issuing questions that were not asked in Query Phase 1. B reacts
the same way as previously.

• Guess. For the challenge ciphertext, A provides a guess β ′ ∈ {0, 1}. If β ′ = β, B returns 1, else B
returns 0.

B’s advantage in solving the DBDH problem is related to A’s advantage of distinguishing Game0

and Game1. Allow Game1 = Game2, 0, and the following lemma is true for j = 0, 1, . . . , |A| − 1.

Lemma 2. Suppose that the ADLIN assumption is true. In other words, the difference in the
advantage of A in Game2, j and Game2, j + 1 is negligible for every polynomial time adversary A.

Proof. Consider A with a non-negligible difference ε about its advantage between Game2, j and
Game2, j + 1. We hope to create an algorithm in which B employs A’s ability to work out the ADLIN

issue in G. Given
(

g, gz1 , gz2 , gz2
2 , gz2/z1 , gz2

2z3 , gz4 , Z
)

∈ G
8, B outputs 1 when Z = gz1(z3+z4), otherwise B

generates 0. B communicates with A using the subsequent process:

• Init. At the start of the game,A commits two vectors
→
X

∗

0,
→
X

∗

1 converted to
→
x

∗
0,

→
x

∗
1 ∈ ��.B internally

throws a coin β ∈ {0, 1}.
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• Setup. δ denotes the (j + 1)-th index in A. B randomly selects γ , y1, v1, . . . , v�, t1, . . . , t�, θ1, . . . , θ�,

φ1, . . . , φ�, λ1, . . . , λ�, then places g1 = gγ , Y1 =
(

gz2
2

)y1
, and 	 = e (g1, Y1). Take note that ỹ1 = y1z2

2.

Following that, B sets hδ = (gz1)
θδ (gz2)

−φδ ·x∗
β,δ , uδ = (gz2)

φδ , wδ = (gz1)
λδ , Vδ = (gz1)

θδ gvδ , Tδ = (gz1)
λδ gtδ .

For all i �= δ, B sets hi =
(

gz2
2

)θi

(gz2)
−φi ·x∗

β,i , ui = (gz2)
φi , wi =

(
gz2

2

)λi

, Vi = gvi , and Ti = gti . B sends the

public key PK = (g, Y1, (h1, u1, w1, V1, T1) , . . . , (h�, u�, w�, V�, T�) , 	) to A. Because g and all exponents
are chosen at random, the public key PK has the same distribution as the original construction.

• Query Phase 1. A offers trapdoor queries, where a trapdoor vector
→
Δ from A is changed to

→
σ = (σ1, . . . , σ�) ∈ (�∗)

� and S is the set of indexes i such that σi �= ∗. We consider the two types of
trapdoor queries stated previously.

Type 1. This describes the situation with δ /∈ S. B then selects at random r1, . . . , rJ , η1, . . . , ηJ ,
Z1, . . . , ZJ ∈ ZJ for all i ∈ S, and makes rJ = r̃J , ηJ = η̃J , ZJ = Z̃J . Next, B calculates i /∈ S, q (J) = γ .

K1,J = gq(J)
(
hiu

σi
i

)rJ wηJ
i = gγ

((
gz2

2

)θi

(gz2)
(
σi−x∗

β,i

)
φi

)r̃J (
gz2

2

)λi η̃J = gγ

(
gz2

2

)θi r̃J +λi η̃J
(gz2)

(
σi−x∗

β,i

)
φi r̃J ,

K2,J = Y rJ
1 =

(
gz2

2

)y1 r̃J
,

K3,J = Y ηJ
1 =

(
gz2

2

)y1 η̃J
,

K4,J = Y1
−(rJ vi+ηJ ti) =

(
gz2

2

)−y1(rJ vi+ηJ ti)
,

K5,J = V y1ZJ
i = (g)

y1viZ̃J ,

K6,J = Y1ZJ =
(

gz2
2

)y1Z̃J
,

K7,J = (
hiu

σi
i

)ZJ =
((

gz2
2

)θi Z̃J
(gz2)

(
σi−x∗

β,i

)
φi Z̃J

)
.

Type 2. Case 1. Assume δ ∈ S and σδ �= x∗
β,δ. Then, for each i ( �= δ) ∈ S, B chooses random

r1, . . . , rJ , η1, . . . , ηJ , Z1, . . . , ZJ ∈ Zp. K1,J , . . . , K7,J are identical as those in Type 1. When i = δ, B then
calculates q (J) = γ , rJ = (

r̃J/z2 + η̃J/z2
2

)
λδ, ηJ = − (

r̃J/z2 + η̃J/z2
2

)
θδ − [φδη̃J

(
σδ − x∗

β,δ

)
]/(z1z2), and

ZJ = Z̃J .

K1,J = gq(J)
(
hδu

σδ
δ

)rJ wηJ
δ = gγ

(
(gz1)

θδ (gz2)
(
σδ−x∗

β,δ

)
φδ

)(r̃J /z2+η̃J /z2
2)λδ (

gz1λδ
)−(r̃J /z2+η̃J /z2

2)θδ−[φδ η̃J
(
σδ−x∗

β,δ

)
]/z1z2

= gγ (g)
(
σδ−x∗

β,δ

)
φδλδ r̃J ,

K2,J = Y rJ
1 =

(
gz2

2y1

)(r̃J /z2+η̃J /z2
2)λδ = (gz2)

y1 r̃J λδ (g)
y1 η̃J λδ ,

K3,J = Y ηJ
1 =

(
gz2

2y1

)−(r̃J /z2+η̃J /z2
2)θδ−[φδ η̃J

(
σδ−x∗

β,δ

)
]/(z1z2) = (gz2)

−y1 r̃J θδ (g)
−y1 η̃J θδ

(
gz2/z1

)−y1φδ η̃J
(
σδ−x∗

β,δ

)
,

K4,J = Y
−(rJ vδ+ηJ tδ)
1 =

(
gz2

2y1

)−
(
(r̃J /z2+η̃J /z2

2)λδvδ+[−(r̃J /z2+η̃J /z2
2)θδ−[φδ η̃J

(
σδ−x∗

β,δ

)
]/(z1z2)]tδ

)

= (gz2)
−y1 r̃J(vδλδ−tδθδ) (g)

−y1 η̃J(λδvδ−tδθδ)
(
gz2/z1

)y1 η̃J φδ tδ
(
σδ−x∗

β,δ

)
,
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K5,J = V y1ZJ
δ = (g)

y1vδ Z̃J ,

K6,J = Y ZJ
1 =

(
gz2

2

)y1Z̃J
,

K7,J = (
hδu

σi
δ

)ZJ = (gz1)
θδ Z̃J (gz2)

(
σδ−x∗

β,δ

)
φδ Z̃J .

Case 2. Assume δ ∈ S and σδ = x∗
β,δ, yet there exists an index j ∈ S such that σj �= x∗

β,j. As in Case
1, B chooses at random r1, . . . , rJ , η1, . . . , ηJ , Z1, . . . , ZJ ∈ Zp for each i ( �= δ) ∈ S. K1,J , . . . , K7,J are
identical to those in Type 1. Otherwise (i.e., i (= δ) ∈ S), B generates q (J) = γ , rJ = (r̃J/z2

2+ η̃J/z2)λδ,
ηJ = − (

r̃J/z2
2 + η̃J/z2

)
θδ −φjη̃J

(
σj − x∗

β,j

)
, ZJ = Z̃J .

K1,J = gq(J)
(
hδu

σδ
δ

)rJ wηJ
δ = gγ

(
(gz1)

θδ (gz2)
(
σδ−x∗

β,δ

)
φδ

)rJ (
gz1λδ

)ηJ

= gγ

(
(gz1)

θδ (gz2)
(
σδ−x∗

β,δ

)
φδ

)(r̃J /z2
2+η̃J /z2)λδ (

gz1λδ
)−(r̃J /z2

2+η̃J /z2)θδ−φj η̃J
(
σj−x∗

β,j

)

= gγ (gz1)
−λδφj η̃J

(
σj−x∗

β,j

)
,

K2,J = Y rJ
1 =

(
gz2

2y1

)(r̃J /z2
2+η̃J /z2)λδ = (g)

y1 r̃J λδ (gz2)
y1 η̃J λδ ,

K3,J = Y ηJ
1 =

(
gz2

2y1

)−(r̃J /z2
2+η̃J /z2)θδ−φj η̃J

(
σj−x∗

β,j

)
= (g)

−y1 r̃J θδ (gz2)
−y1 η̃J θδ

(
gz2

2

)−y1φj η̃J
(
σj−x∗

β,j

)
,

K4,J = Y
−(rJ vδ+ηJ tδ)
1 =

(
gz2

2y1

)−
(
(r̃J /z2

2+η̃J /z2)λδvδ+
[
−(r̃J /z2

2+η̃J /z2)θδ−φj η̃J
(
σj−x∗

β,j

)]
tδ

)

= (g)
−y1 r̃J(λδvδ−tδθδ) (gz2)

−y1 η̃J(λδvδ−tδθδ)
(

gz2
2

)y1tδφj η̃J
(
σj−x∗

β,j

)
,

K5,J = V y1ZJ
δ = (g)

y1vδZJ ,

K6,J = Y ZJ
1 =

(
gz2

2

)y1Z̃J
,

K7,J = (
hiu

σi
i

)ZJ = (gz1)
θδ Z̃J (gz2)

(
σδ−x∗

β,δ

)
φδ Z̃J .

We verify that it is a well-formed trapdoor via random exponents i ∈ S (including δ). Based on
the exponents above, the subsequent formulas hold for every i ∈ S as in the actual construction.

• Challenge. A sends B with M0 and M1. B chooses random R6 ∈ GT , R3,1, . . . , R3,δ−1, R4,1, . . . ,
R4,δ−1 ∈G. If s1 = z3, s2 = z4, B gives the challenge ciphertext CT∗ as

C∗
1 = Y s1

1 =
(

gz2
2

)y1z3 =
(

gz2
2z3

)y1
,

C∗
2 = gs2 = gz4 ,

C∗
3,1 = R3,1, · · · ,

C∗
3,δ−1 = R3,δ−1,

C∗
3,δ = (hδu

x∗
β,δ

δ )s1V s2
δ = ((gz1)θδ (gz2)

(x∗
β,i−x∗

β,δ )φδ )z3((gz1)θδ (gvδ ))z4 = (gz1(z3+z4))θδ (gz4)vδ = (Z)θδ (gz4)vδ ,
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C∗
3,δ+1 =

(
hδ+1u

x∗
β,δ+1

δ+1

)s1

V s2
δ+1 =

((
gz2

2

)θδ+1z3
(gz2)

(
x∗
β,δ+1−x∗

β,δ+1

)
φδ+1z3

)
(gvδ+1z4)

=
(

gz2
2z3

)θδ+1
(gz4)

vδ+1 , · · · ,

C∗
3,� =

(
h�u

x∗
β,�

�

)s1

V s2
� =

(
gz2

2z3

)θ�

(gz4)
v� ,

C∗
4,1 = R4,1, · · · ,

C∗
4,δ−1 = R4,δ−1,

C∗
4,δ = ws1

δ Ts2
δ = (gz1)

λδz3
(
gz1λδ gtδ

)z4 =
(

gz1(z3+z4)
)λδ

(gz4)
tδ = (Z)

λδ (gz4)
tδ ,

C∗
4,δ+1 = ws1

δ+1T
s2
δ+1 =

(
gz2

2

)λδ+1z3 (
gtδ+1

)z4 =
(

gz2
2z3

)λδ+1
(gz4)

tδ+1 , · · · ,

C∗
4,� = ws1

� Ts2
� =

(
gz2

2z3

)λ�

(gz4)
t� ,

C∗
5 = e (g1, Y1)

s1 Mβ = R6,

where s1 = c and Z = e (g, g)
abc.

If M0 = M1, B substitutes R6 with e
(

g, gz2
2z3

)γ y1
M0; otherwise, it follows the preceding procedure.

If Z = gz1(z3+z4), we can deduce that Zθδ (gz4)
vδ =

(
gz1(z3+z4)

)θδ

(gz4)
vδ =

(
(gz1)

θδ (gz2)
−φδx∗

β,δ (gz2)
φδx∗

β,δ

)z3

(
(gz1)

θδ gvδ
)z4=

(
hδu

x∗
β,δ

δ

)s1

V s2
δ . In this case, B plays Game2,j. Otherwise, Z is chosen at random and B

performs Game2, j + 1.

• Query Phase 2. A keeps asking queries that were not asked in Query Phase 1. B responds in the
same manner as before.

• Guess. A returns a guess β ′ ∈ {0, 1} to the challenge ciphertext. If β ′ = β, B offers 1, else 0.

If A guesses properly, B also guesses correctly, implying that Z = gz1(z3+z4) holds in the ADLIN
problem. In addition, B considers that Z �= gz1(z3+z4). Consequently, any advantage obtained by A in
distinguishing between Game2, j and Game2, j + 1 is transferred to B’s advantage when dealing with the
ADLIN problem.

6 Performance
6.1 Theoretical Comparison

To analyze the vector dominance threshold problem in a public key system, we compare the
proposed scheme with the schemes in [5–8] and [14–17] and show the results in Table 1. In [5–8], the
authors create searchable public-key systems that support comparison. Unfortunately, these schemes
cannot conduct threshold comparisons, which means some of their search results are not flexible.
Although the schemes in [14–17] can perform it, the schemes in [15–17] are not attribute-hiding.
Besides, the scheme in [14] is not efficient. Our scheme requires a ciphertext size of O (wn) and
merely a trapdoor size of O (w) when any threshold comparison queries are constructed. Overall, our
scheme performs better than the other SE methods in terms of computational efficiency and resource
utilization.
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Table 1: Storage overhead

Scheme System CT size Trapdoor size Threshold
comparison

Attribute-hiding Standard
model

[5] SE O (wn) O (w) × √ √
[6] SE O (w log n) O (w log n) × √ √
[7] SE O (wn) O (1) × √ √
[8] SE O (wn) O (1) × √ √
[14] SE O (nw) O (nw)

√ √ √
[15] ABE O (w log n) O (w log n)

√ × ×
[16] ABE O (w log n) O (w log n)

√ × ×
[17] ABE O (w log n) O (w log n)

√ × √
Ours SE O (wn) O (w)

√ √ √
Note: w is the number of query keywords; n is the universal set (the length of the maximum vector).

6.2 Computation Overhead

Since the scheme in [14] deals with the same problem and system as our scheme, we make a further
comparison between the two in Table 2. The computation tasks involve pairing and exponentiation
operations where pairing operations cost the most time.

Table 2: Computation overhead

Scheme PK size CT size Trapdoor size Decryption cost

[14] O (nw) (nw + 3)G + GT (nw + 2)G (nw + 4) p1
Ours O (wn) (2nw)G + GT 7wG (w) p1 + (w) e
Note: w is the number of query keywords; G, GT is the measured length for each element of G, GT ; n is the universal
set; p1 and e are the pairing and exponentiation of G, respectively.

For [14], its PK size expands exponentially with w, while the PK size of our scheme only increases
linearly. The ciphertext size (CT size) of [14] requires (nw + 3)G+GT actions, and ours is (2nw)G+GT .
Furthermore, to compute a trapdoor, reference [14] requires (nw + 2)G group operations, whereas our
scheme requires just 7wG group operations. Finally, reference [14] requires (nw + 4) p1 operations and
our scheme needs (w) p1 + (w) e. Because p1 requires more processing resources than e in general, our
technique outperforms the scheme in [14]. Overall, it is clear that our system outperforms the scheme
of [14] in terms of computation efficiency.

6.3 Storage Overhead

To compute the storage overhead, we set |G| = 1024 and |ZP| = 160 in the simulation. We assume
that the number of our query keywords ranges from 0 to 50, then count the storage overhead of the
parameters in the algorithm. Fig. 2 compares the results between our scheme and [14]. According to
Fig. 2a, our PK size is smaller than that of [14]. In Fig. 2b, the CT size of our scheme grows linearly
with the number of query keywords while the CT size of the scheme in [14] increases exponentially
and is larger than ours. From Fig. 2c, the storage overheads of our method and the scheme in [14] also
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grow linearly and exponentially, respectively. The simulation results show that the overheads of the
proposed scheme are much smaller than those of [14], indicating higher efficiency of our scheme.

Figure 2: Storage overhead of each parameter as a function of the number of query keywords

6.4 Experimental Evaluation

We implement the algorithm with C language employing the GNU Multiple Precision Arithmetic
(GMP) and Pairing-Based Cryptographic (PBC) libraries. Furthermore, this experiment makes use of
the Pima Indians Diabetes Dataset at https://www.kaggle.com/uciml/pima-indians-diabetes-database.

The execution time of the scheme of [14] and our scheme for the KeyGen, PEKS, Trapdoor, and
Test algorithms is displayed in Figs. 3a–3d, respectively. The universal set is set to 100. According to
[14], as the number of query keywords grows from 0 to 100, the cost time required for KeyGen creation
rises from 0.024 to 50 s and the cost time for PEKS generation increases from 0.37 to 300 s. Considering
that the generation time of the Trapdoor and Test algorithms is excessive, we change the number of
query keywords to 0–50. In [14], the cost time required for trapdoor generation climbs from 0.24 to
500 ms, while the test generation time rises from 0.37 to 600 ms. Our algorithm, however, takes almost
no time. The execution time for KeyGen represents the time for PK and SK to be generated, and the
PEKS time indicates the ciphertext generation time. The Trapdoor and Test algorithms involve the
time of trapdoor generation and the time of cloud server search, respectively.

It can be seen from Fig. 3 that the runtime of our algorithm increases slowly with the increase
of query keywords, while the runtime of [14] increases exponentially. The experiment shows that our
scheme is more efficient. In addition, our scheme uses real data sets and is carried out on a cloud
outsourcing platform, therefore it will be feasible and effective in real-world scenarios.

https://www.kaggle.com/uciml/pima-indians-diabetes-database
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Figure 3: Time cost of each algorithm as a function of the number of query keywords

In addition to the number of query keywords, the varying size of encrypted diabetes data also
has a great effect on algorithm performance. As the encrypted data increases, the service provider will
continuously run the VDTSE scheme to search until it finds all matched ciphertexts. Therefore, the
performance of VDTSE degrades linearly with the increase of encrypted data. Note that although
the threshold t has a range, it takes a fixed value every time the algorithm runs so it has no impact on
the performance of the scheme.

7 Conclusion

In theoretical comparison to existing schemes, the proposed VDTSE scheme obtains a shorter
trapdoor that makes it more suitable for storage on mobile devices. It supports comparable attributes
that can work for the (t, n)-threshold policy. Then, its security, flexibility, and effectiveness are proved
through comparison with other SE schemes.

However, there are also some limitations in this research. Although our scheme is more efficient
than other existing SE schemes, it does not work well on large real-world datasets. The larger data
is transformed into a longer vector, lowering the efficiency. Besides, when dealing with floating data,
the scheme converts the floating data to integer data through multiple expansions. For example, 0.1
is expanded 10 times and converted to 1. In addition, the Lagrangian polynomial technique is not
efficient in dealing with the vector dominance threshold problem, but it is currently the most suitable
technique. We will look for a better technique to solve these issues.

More fascinating, this work inspires some excellent open problems. Firstly, our research does not
address video encryption [18,19], which is an engaging research direction. In the future, we will apply
SE algorithms to more scenarios, such as images [20] and other situations [21–23]. Secondly, it will be
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an intriguing path to demonstrate how to reduce the ciphertext size, which appears difficult to achieve
at the moment.
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