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ABSTRACT

Imbalanced datasets are common in practical applications, and oversampling methods using fuzzy rules have
been shown to enhance the classification performance of imbalanced data by taking into account the relationship
between data attributes. However, the creation of fuzzy rules typically depends on expert knowledge, which may not
fully leverage the label information in training data and may be subjective. To address this issue, a novel fuzzy rule
oversampling approach is developed based on the learning vector quantization (LVQ) algorithm. In this method,
the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by
dynamically dividing attribute intervals using LVQ. Subsequently, fuzzy rules are generated and adjusted to calculate
rule weights. The number of new samples to be synthesized for each rule is then computed, and samples from the
minority class are synthesized based on the newly generated fuzzy rules. This results in the establishment of a fuzzy
rule oversampling method based on LVQ. To evaluate the effectiveness of this method, comparative experiments
are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with
the support function machine. The experimental results demonstrate that the proposed method can significantly
enhance the classification algorithm across seven performance indicators, including a boost of 2.15% to 12.34%
in Accuracy, 6.11% to 27.06% in G-mean, and 4.69% to 18.78% in AUC. These show that the proposed method is
capable of more efficiently improving the classification performance of imbalanced data.

KEYWORDS
Oversampling; fuzzy rules; learning vector quantization; imbalanced data; support function machine

1 Introduction

As one of the important research directions of machine learning, classification is a key technology
for extracting useful information from massive data. However, the imbalance in data distribution
affects the accuracy and effectiveness of classification, so it is a major challenge. Imbalanced datasets
are datasets in which the number of samples in one class is significantly different from the number
of samples in other classes [1]. Such datasets are frequently encountered in real-world scenarios
including fault detection [2], medical intelligent diagnosis [3], and text categorization [4]. Traditional
classification algorithms, such as decision tree, neural networks and support vector machines (SVM),
etc., typically operate under the assumption of a balanced data set where the number of samples for
each category is roughly equal. Nevertheless, when encountering imbalanced data, algorithms tend to
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prioritize accuracy by favoring the majority class, leading to misclassification of the minority class.
Therefore, it is crucial to address the issue of imbalanced data distribution effectively in order to
successfully accomplish tasks such as classification.

There are two primary approaches for addressing imbalanced data classification: One at the
algorithm level and the other at the data processing level. At the algorithm level, modifications are
made to algorithms to address the limitations of classifiers in handling imbalanced data, allowing
them to better handle classification issues related to imbalanced data. These algorithmic modifications
typically involve cost-sensitive learning [5], feature selection and extraction [6], ensemble learning [7],
among others. The cost-sensitive analysis seeks to reduce the expense associated with misclassification,
specifically the high cost of misclassifying a minority class as a majority class. However, this approach
may not always be feasible. Feature selection and extraction involve selecting a subset of features based
on predefined rules to enhance the classification accuracy of the classifier, but this process may result
in information loss. Ensemble learning can improve the generalizability of classifiers, but often at
the expense of increased time complexity. On the other hand, techniques at the data processing level
concentrate on adjusting the distribution of training samples to reduce the imbalance within datasets,
which is a straightforward approach to achieving balance. A typical data-oriented approach is the
resampling method that mainly encompasses the undersampling [8] and the oversampling techniques
[9]. Oversampling is frequently preferred over other data-level methods due to its capacity to improve
classification accuracy by augmenting the minority class instances. Conversely, undersampling may
lead to the elimination of crucial information during the reduction process, consequently diminishing
the classifier’s ability to generalize effectively.

At present, significant advancements have been achieved in the research methodologies for
imbalanced data, with sampling techniques displaying promising potential. The data-level sampling
approach functions independently of the classifier, providing greater applicability and improved
suitability. In particular, oversampling methods create new minority class samples without sacrificing
important information from the original data. Nonetheless, only a limited number of studies have
explored leveraging the correlation between attributes in fuzzy rules during data preprocessing.
Liu et al. [10] introduced the fuzzy rules based oversampling technique (FRO), which considers the
attribute correlation and yields better results for imbalanced data. However, the generation of fuzzy
rules in FRO relies on expert knowledge leading to subjectivity.

In order to tackle this issue, the current study endeavors to develop a novel fuzzy rule-based
oversampling technique that leverages the correlation among attributes and maximizes the utilization
of label information in training data to minimize the influence of expert subjectivity. The key
contributions of this research are as follows:

• An improved method for generating fuzzy rules is proposed to learn the distribution of training
data and effectively protect the information of minority instances.

• Utilizing the learning vector quantization (LVQ) algorithm, the data attribute interval is
dynamically partitioned, leveraging the label information from the training data to mitigate
the influence of expert subjectivity.

• By utilizing the correlation between attributes demonstrated by fuzzy rules, the minority class
data is synthesized based on the guidance of fuzzy rules to guarantee the generation of new data
within a rational range.

• The introduction of the support function machine, comparison experiments carried out on 12
publicly accessible imbalanced datasets against 5 other sampling methods demonstrate that the
proposed method significantly enhances the classification performance of imbalanced data.
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The remainder of this paper is structured as follows: In Section 2, previous studies relevant to this
paper are discussed. Section 3 introduces the details of the proposed method. Section 4 presents the
comparison experiments results and analysis. Section 5 summarizes the paper and suggests potential
avenues for future research.

2 Related Works
2.1 Sampling Techniques for Imbalanced Data

Random under sampling (RUS) [11] is a nonheuristic method that randomly selects a subset of the
majority class and removes the remaining samples to balance the class distribution. A study investi-
gating the application of RUS on tweet data to address class imbalances demonstrated its effectiveness
[12]. However, it is important to note that this method may result in the loss of crucial information
and potentially lead to underfitting. To address this issue, a clustering technique was integrated into
the undersampling approach. Considering the computational complexity, Ofek et al. [13] proposed an
undersampling method based on fast clustering to effectively manage class imbalances while achieving
a balance between computational efficiency and classification performance.

Oversampling methods alleviate the negative effects of imbalanced distribution by augmenting
the number of instances in the minority class while maintaining the size of the majority class constant.
Random oversampling (ROS) [11] is a methodology utilized to address imbalanced datasets by
replicating instances from minority classes, however, there exists a potential danger of over-fitting.
Chawla et al. [14] introduced the synthetic minority oversampling technique (SMOTE) which is
based on the concept of K-nearest neighbors. SMOTE generates new instances of the minority
class by brief linear interpolating between existing positive samples and their K-nearest neighbors,
without considering the majority class sample distribution. Han et al. [15] introduced the borderline
SMOTE technique to enhance the minority class samples near the decision boundary, resulting in an
improvement in recall performance compared to the traditional SMOTE method. Adaptive synthetic
sampling (ADASYN) was introduced by He et al. [16] to address the density distribution of data,
automatically assigning different weights to positive samples based on their surrounding context.
Borderline SMOTE and ADASYN took into account the distribution of majority class samples
in order to minimize the generation of noisy samples. However, these methods had not effectively
addressed the issue of increased overlap between classes. Barua et al. [17] proposed the majority
weighed minority (MWM) oversampling method, utilizing the Euclidean distance between majority
and minority class samples to assign weights to minority class samples, ensuring that the newly created
samples fall within the distribution of minority samples in order to mitigate the growth of overlap.

2.2 Fuzzy Methods with Class Imbalance Problem

If-Then fuzzy rules, as a crucial component of fuzzy set theory research, are effective in illustrating
data distribution and causal characteristics. They have been employed to tackle the classification
challenges associated with imbalanced datasets. Xu et al. [18] expanded upon the fuzzy classification
algorithm based on If-Then fuzzy rules, resulting in a significant enhancement in classification perfor-
mance by minimizing the impact of imbalanced data. Alshomrani et al. [19] introduced a classification
system leveraging If-Then fuzzy rules to improve classification accuracy by smoothing the boundary
region through feature weighting, particularly in cases of class overlap within imbalanced datasets.
Fernández et al. [20] explored various configurations of fuzzy rule-based classification systems and
preprocessing methods, demonstrating synergies that highlight the positive impact of applying data
sampling techniques to imbalanced datasets in generating If-Then fuzzy rules.
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Nevertheless, the effectiveness of the relationship between characteristics demonstrated in the
fuzzy rule has not been extensively applied to the data preprocessing phase. Liu et al. [21] introduced
the fuzzy information decomposition (FID) method, which effectively utilizes fuzzy information to
address class imbalance. However, the method does not fully exploit the attribute correlation issue.
Therefore, Liu et al. [10] further proposed an FRO method based on If-Then fuzzy rule to effectively
tackle class imbalance. Table 1 presents a summary of the advantage and disadvantage of several
traditional methods for addressing class imbalances as discussed earlier.

Table 1: Summary of some representative methods

Methods Advantage Disadvantage Year

Random under sampling
(RUS) [11]

High efficiency Deletion of important
information, with the risk
of under-fitting

2009

Random oversampling
(ROS) [11]

Retain complete data
information

Potential risk of over-fitting 2009

Synthetic minority
oversampling technique
(SMOTE) [14]

Reduce the risk of
over-fitting

Generate noise instances 2002

Adaptive synthetic
sampling (ADASYN) [16]

Reduce noise Easy to cause class overlap
problems

2008

Fuzzy information
decomposition (FID) [21]

Solve the problem of
missing and class imbalance
at the same time

Inter-attribute
dependencies are not taken
into account

2017

Fuzzy rules based
oversampling technique
(FRO) [10]

Correlation between
attributes can be leveraged
to address class imbalances

The generation of fuzzy
rules has the subjectivity of
expert experience

2018

3 Learning Vector Quantization-Based Fuzzy Rule Oversampling Method (LVQFRO)

The symbols and the corresponding meanings utilized in this article are presented in Table 2.

Table 2: Symbols and their meanings

Symbols Meanings

L Fuzzy division of granularity
η Learning rate
sj The number of samples synthesized
μ, σ The mean and standard deviation of the Gaussian membership function
D, D∗ Imbalanced training set and balanced data set
xi, xik The instance and its attribute value
Ci, Cj Instance label and fuzzy rule consequent label
Rj, rwj Fuzzy rule and the rule weight

(Continued)
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Table 2 (continued)

Symbols Meanings

Ajk, fjk The antecedent linguistic value of rule and its corresponding membership
function

cq, tq Prototype vectors and the corresponding label
NR, PR Rule set of majority and minority class
Nummaj, Nummin The number of samples in majority class and minority class[
αjk, βjk

]
Safety interval

3.1 LVQ-Based Fuzzy Rules

LVQ [22] operates as a prototype clustering algorithm, in contrast to alternative prototype
clustering approaches like the K-means algorithm, LVQ makes use of labeled training data. The
prototype vectors are adjusted using the label information in order to establish a set of prototype
vectors, which act as the centers of each cluster. Each sample point xi is then assigned to a cluster
represented by the prototype vector c∗

i that is closest in distance. For a more detailed explanation of
the LVQ algorithm, refer to Algorithm 1.

Algorithm 1:
Input: Training set D = {(x1, C1) , (x2, C2) , · · · , (xn, Cn)} where Ci is the label of instance xi, l is

the number of prototype vectors, the corresponding class label of each prototype vector
marked as {t1, t2, · · · , tl}, and learning rate η ∈ (0, 1).

Output: Prototype vector {(c1, t1) , (c2, t2) , · · · , (cl, tl)}.
1: Randomly generate the initialization prototype vector {c1, c2, · · · , cl}.
2: For randomly selected instances xi, calculate the distance diq = ∥∥xi − cq

∥∥
2

between xi and each
prototype vector cq.

3: Find the prototype vector c∗
q closest to the instance xi.

4: if: xi and c∗
q are labeled the same, i.e., yi = t∗

q, then perform the “draw” operation on the
instance xi and the prototype vector c∗

q and update c∗
q with c′

q = c∗
q + η

(
xi − c∗

q

)
.

else: xi is not labeled the same as c∗
q, i.e., yi �= t∗

q, then the instance xi is “away” from the
prototype vector c∗

q and update c∗
q with c′

q = c∗
q − η

(
xi − c∗

q

)
.

5: End for

In previous research [10], the authors utilized the Gaussian membership function as a basis for
generating If-Then fuzzy rules. They divided the instance attribute intervals uniformly and assigned
the middle value of each interval as the center of the Gaussian membership function μ. The standard
deviation σ was set to a fixed value of 0.35/(L − 1), based on expert knowledge and experience.
However, this approach may not fully leverage the underlying characteristics of the dataset. To address
this limitation and reduce the reliance on subjective expert experience, this study proposes constructing
If-Then fuzzy rules using LVQ. The details are outlined as follows:

• Utilize the K-means algorithm to create the initial prototype vector, which serves as the centroid
of the cluster.

• Based on the label information of the data set, the cluster center will be adjusted using LVQ
and the instance attribute intervals will be dynamically partitioned.
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• The attribute intervals are represented by fuzzy linguistic values, and a membership function is
calculated for each interval.

The Gaussian membership function is employed for its wide-ranging support characteristic,
which prevents the membership function value from being zero across the entire domain. This feature
ensures the fuzzy completeness of the If-Then fuzzy rule, which can be expressed as Eq. (1).

f = exp
(− (x − μ)

2

2σ 2

)
(1)

where the parameters σ and μ determine the width and the center of the attribute interval, respectively.
Both of them can be determined by the final prototype vector generated by LVQ.

• Divide the instance attribute values into intervals with the highest membership degree, identify
the antecedents of If-Then fuzzy rules, incorporate the consequents, and subsequently construct
the If-Then fuzzy rule set R.

Fuzzy rule typically appears as Eq. (2), in the context of fuzzy rules, the jth rule is denoted as
Rj. The antecedent of the rule, referred to as the If part, comprises the instance attribute xik and
the linguistic value Ajk (k = 1, 2, · · · , m). The determination of the linguistic value Ajk is based on its
corresponding membership function fjk. The consequent of the rule, known as the Then part, includes
the sample label Cj and the rule weight rwj.

Rule Rj : If xi1 is Aj1 and · · · and xim is Ajm,
Then Class Cj with rwj, j = 1, 2, · · · , N (2)

• Calculate the rule weights rwj for each rule R with the Eq. (3).

rwj =
∑

xi∈Class Cj
fAj (xi)∑m

i=1 fAj (xi)
(3)

where fAj (xi) = T
(
fj1 (xi1) , · · · , fjm (xim)

)
is the degree of antecedent matching between the instance xi

and the rule Rj, and T is the product t modulus, the larger the weight the higher the confidence of the
rule, and the safer the fuzzy region it represents.

3.2 Synthetic Minority Samples

In the case of imbalanced binary data with n training instances xi = (xi1, xi2, · · · , xim, Ci) , i =
1, 2, · · · , n, where the majority class has Nummaj samples and the minority class has Nummin samples,
the minority class samples are synthesized using the rule set R obtained from the learning process
detailed in Subsection 3.1. This oversampling technique is guided by fuzzy rules in order to address
the data imbalance issue. The details of this process are described below:

• Extract the fuzzy rule PR that represents the minority class from the rule set R.

For ∀Rj ∈ PR, Cj = 1, these rules in PR serve as a means to distribute information regarding the
minority class, making it justifiable to employ these rules for oversampling in order to augment the
quantity of minority class samples within fuzzy regions.

• Calculate the number of samples sj to be synthesized for each rule Rj with the Eq. (4).

sj = (
Nummaj − Nummin

) · rw−1
j /

|PR|∑
j=1

rw−1
j (4)
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The generation of more minority class samples under the fuzzy rule with reduced weight, thereby
enhancing the protection of the minority class samples in the surrounding area.

• Calculate the safety interval
[
αjk, βjk

]
.

Suppose that the three consecutive Gaussian membership functions are arranged in sequence:

fak = exp
(− (x − μak)

2

2σ 2
a

)
, fjk = exp

(
− (

x − μjk

)2

2σ 2
j

)
, fck = exp

(− (x − μck)
2

2σ 2
c

)
(5)

the safety interval
[
αjk, βjk

]
of the function fjk is determined according to the Eq. (6).

exp
(− (x − μak)

2

2σ 2
a

)
= exp

(
− (

x − μjk

)2

2σ 2
j

)
(6)

then we have αjk = x = μjkσa + μakσj

σa + σj

and βjk = x = μckσj + μjkσc

σc + σj

• Simulate random numbers within the safe interval and synthesize minority data.

The kth antecedent linguistic value of Rj is Ajk and the corresponding fuzzy membership function
is fjk, and the random number sj is simulated within the safety interval

[
αjk, βjk

]
according to the

membership function fjk, which is used as the kth attribute value corresponding to the newly generated
sj minority samples.

When applying the inverse transformation method to generate random numbers, the fuzzy
membership function fjk should satisfies that

∫ βjk
αjk

θ · fjk (x) dx = 1, then we have:

θ =
√

2
√

πσj

(
Erf

(
μjk−αjk√

2σj

)
− Erf

(
μik−βjk√

2σj

)) (7)

According to the theorem of the inverse transformation method, the corresponding distribution
function FX = ∫ x

αjk
θ · fjk (y) dy generates a uniformly distributed random number γ in [0, 1], and

calculates the value of x such that FX (x) = γ , which is the solution to the integral equation.∫ x

αjk

θ · fjk (y) dy = γ (8)

then we have:

x = μjk − √
2σjErfinv

⎡
⎢⎣−

√
πσjErf

(√
2

(
αjk − μjk

)
/2σj

)
+ √

2
γ

θ√
πσj

⎤
⎥⎦

= μjk − √
2σjErfinv

[
(1 − γ ) Erf

(
μjk − αjk√

2σj

)
+ γ Erf

(
μjk − βjk√

2σj

)] (9)

Erf (x) = 2√
π

∫ x

0
e−z2dz is the Gaussian error function, which is the inverse function of Erfinv, and

x is the random number simulated in the safety interval
[
αjk, βjk

]
according to the affiliation function fjk.

• Denormalize the simulated random number.
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xik = min
(
xk

) + xnew
ik · (

max
(
xk

) − min
(
xk

))
(10)

where xnew
ik is the kth attribute value for synthesizing the ith new sample of the minority class, xnew

ik ∈
[0, 1].

The specific process of the LVQFRO is shown in Algorithm 2.

Algorithm 2:
Input: Imbalanced training set D = {(x1, C1) , (x2, C2) , · · · , (xn, Cn)}, where Ci is the label of instance,

fuzzy division of granularity L, LVQ algorithm.
Output: Balanced data set D∗.
1: Initialize the prototype vectors using K-means clustering.
2: The LVQ algorithm is utilized to dynamically partition the attribute range into L intervals, which

are respectively represented by L fuzzy linguistic values.
3: Assign a membership function to each interval of the attribute.
4: for each instance xi = (xi1, xi2, · · · , xim, Ci) ∈ D:
5: Calculate the membership degree of the instance attribute value xik for each interval based on

the L membership functions, and assign xik to the interval with the highest membership degree.
6: Generate a rule Rj for the instance xi and calculate the rule weights rwj.
7: end for
8: Divide the rule set R into two parts: The majority rule set NR and the minority rule integration

PR.
9: Extract the minority rule set PR.
10: Calculate the number of samples that need to be synthesized sj for each rule Rj in the rule set

PR.
11: For Rj ∈ PR:
12: for k ← 1: n:
13: According to the membership function fjk, simulate sj random numbers within the

specified safety interval, and assign them consecutively to the kth attribute of the
sj synthesized sample.

14: end for
15: End for
16: Denormalize the simulated random number.
17: End

4 Experiments
4.1 Experimental Conditions

Considering that support function machine (SFM) [23] serves as an effective generalization of
SVM, it not only transforms the distribution of the original datasets but also preserves all the essential
information within the initial data. Therefore, this section will assess the efficacy of the LVQFRO
algorithm by conducting comparative experiments on publicly accessible datasets, leveraging the
capabilities of SFM.

To ensure the generalizability of the method, all experiments in this study are conducted on a PC
servers. The hardware configuration included an Intel i5-1240P processor running at 1.70 GHz and
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16 GB of memory. The software environment consisted of a 64-bit Windows 11 operating system, the
Pycharm experimental platform, and Python 3.10.

4.2 Datasets Description

In this study, 12 public datasets for binary classification from the KEEL database are chosen for
experimental validation These datasets exhibit variations in attributes, sample sizes, and imbalance
ratios (IR). Detailed information regarding the datasets can be found in Table 3. To quantify the level
of imbalance in the selected datasets, IR is defined by the following Eq. (11):

IR = Nummaj

Nummin

(11)

where Nummaj and Nummin denote the number of samples in majority class and minority class,
respectively.

Table 3: Datasets information

Number Datasets Attributes Size Majority Minority IR

D1 Iris0 4 150 100 50 2:1
D2 Haberman 3 306 225 81 2.78:1
D3 Vehicle2 18 846 628 218 2.88:1
D4 Glass0123456 9 214 163 51 3.2:1
D5 Vehicle0 18 846 647 199 3.25:1
D6 New-thyroid1 5 215 180 35 5.14:1
D7 Ecoli2 7 336 284 52 5.46:1
D8 Segment0 19 2308 1979 329 6.02:1
D9 Glass016vs2 9 192 175 17 10.29:1
D10 Glass2 9 214 197 17 11.59:1
D11 Glass4 9 214 201 13 15.47:1
D12 Glass5 9 214 205 9 22.78:1

4.3 Evaluation Metrics

In the case of imbalanced datasets, seven performance metrics are employed in this study as the
evaluation criteria for various methods: Accuracy, Precision, Specificity, Recall, F1-score, G-mean
(Geometric mean), and AUC (Area under curve).

Accuracy = TP + TN
TP + FN + FP + TN

, Precision = TP
TP + FP

(12)

Specificity = TN
TN + FP

, Recall = TP
TP + FN

, (13)

where true positive (TP) and true negative (TN) represent the count of samples correctly predicted
as belonging to the positive (minority) or negative (majority) classes, while false negative (FN) and
false positive (FP) represent the count of samples incorrectly predicted as belonging to the positive or
negative classes, respectively.
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F1 − measure = 2 · Recall · Precision
Recall + Precision

(14)

G − mean = √
Recall · Specificity (15)

AUC = 1
2

(
1 + TP

TP + FN
− FP

FP + TN

)
(16)

In addition to this study also employs three comprehensive evaluation metrics, F1-measure, G-
mean and AUC to evaluate the effectiveness of approaches for addressing imbalanced data classifi-
cation. The formulas for calculating these metrics are as Eqs. (14)–(16). F1-measure considers both
precision and recall, calculating a harmonic average of the two to provide a comprehensive evaluation
of the classifier’s ability to identify minority classes. G-mean takes into account both Recall and
Specificity, and representing the overall performance of the classifier. A higher AUC value indicates
a ROC curve closer to the upper left corner, allowing for a simultaneous evaluation of the classifier’s
ability to classify both classes and providing a reasonable assessment of its classification performance.

4.4 Granularity Analysis of Fuzzy Partitions

This section concentrates on the granularity of fuzzy partitioning in order to facilitate perfor-
mance comparison with other algorithms. For LVQ, the granularity of fuzzy partitions affects the
value of evaluation indexes to a certain extent. A smaller granularity, indicating fewer divisions, results
in wider fuzzy regions. This increases the likelihood of synthetic minority class samples overlapping
with the majority class sample region. Conversely, a larger granularity of fuzzy partitions may lead to
overfitting issues.

By leveraging the granularity of fuzzy partitions 5, 6, 7, 8, and 9 [10], which are widely accepted
division values for LVQ, Table 4 presents the performance metrics of F1-measure, G-mean, and
AUC when employing SFM across five distinct fuzzy granularities. These results are derived from
experiments conducted on 12 imbalanced public datasets.

Table 4: The average performance for different fuzzy partitions granularity (%)

Granularity F1-measure G-mean AUC

5 89.51 90.85 90.85
6 93.07 93.09 93.09
7 90.08 91.54 91.54
8 89.74 91.69 91.70
9 89.24 91.14 91.16

In the LVQFRO method, the parameter for the granularity of fuzzy partitions increases from 5
to 6, resulting in an increase in the average values of F1-measure, G-mean, and AUC. These values
reach their peak at a granularity of 6, with percentages of 93.07%, 93.09%, and 93.09%, respectively.
These values represented increases of 3.56%, 2.24%, and 2.24% compared to a granularity of 5. As the
fuzzy partition granularity increases, there is a decreasing trend in each evaluation metrics, leading to
a decline in classifier performance. Specifically, the performance indicators saw increases of 3.33%,
1.38%, and 1.37% with respect to a granularity of 8%, and 3.83%, 1.93%, and 1.91% with respect to
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a granularity of 9. In conclusion, the best classification outcomes are observed at a granularity of 6.
Therefore, the LVQFRO algorithm with a fuzzy partition granularity of 6 is chosen to preprocess the
imbalanced datasets.

4.5 Results Analysis

To assess the efficacy of the LVQFRO method constructed in this study, it is compared with four
sampling techniques, RUS [11], SMOTE [14], FID [21], FRO [10], and the original dataset (ORI) [21]
using the SFM method in a series of comparative experiments. The parameter configurations of each
sampling technique remain consistent with those outlined in the original text. Specifically, the SMOTE
algorithm utilizes a nearest neighbor count of 5, the FRO algorithm operates with a granularity value
of 7, and the LVQFRO algorithm employs a granularity value of 6. Furthermore, the oversampling
rate for all oversampling algorithms in the study is established at 1.

To objectively assess the generalization capability of various algorithms and mitigate the impact
of randomness on experimental outcomes, this study employs an 80%–20% training-test split and five
folds cross-validation methodology. The experiments are iterated five times to ensure unbiased results,
with the final outcome being the average of the experimental results.

Fig. 1 presents the Accuracy values for each algorithm. LVQFRO achieves the best results on
more than half of the 12 imbalanced public datasets (including a tie for first place), with an average
accuracy improvement of 9.97% compared to the benchmark ORI, 12.34%, 8.24%, 8.24%, 2.98% and
2.15% compared to ORI, RUS, SMOTE, FID and FRO, respectively. These findings suggest that the
LVQFRO algorithm developed in this study effectively enhances the overall accuracy of imbalanced
datasets and demonstrates strong classification performance.

Figure 1: Comparative results for accuracy with different methods

Figs. 2 and 3a display the Precision, Specificity and Recall outcomes for each algorithm. Precision
evaluates the predictive model’s capability to detect positive class samples, with the LVQFRO algo-
rithm demonstrating the highest Precision across 9 datasets (including a tie for first place), showcasing
an average enhancement of 11.04% compared to the ORI benchmark, 13.16% compared to RUS,
7.42% compared to SMOTE, 5.37% compared to FID, and 6.55% compared to the FRO algorithm.
Specificity measures the accuracy in classifying negative samples, and the LVQFRO oversampling
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approach exhibits superior Specificity results across 10 of the 12 datasets, with at least a 2.34%
improvement over other sampling methods. Recall represents the accuracy in classifying positive class
samples, with LVQFRO achieving significant values on 7 datasets (including a tie for first place),
surpassing the ORI, RUS, SMOTE, FID, and FRO algorithms by 10.70%, 9.59%, 6.54%, 5.90%, and
4.99%, respectively. These findings indicate that LVQFRO outperforms other sampling techniques in
classification outcomes across most datasets, particularly in scenarios with high data imbalance. This
method enhances the detection of minority samples while ensuring high classification accuracy across
majority classes, emphasizing high recall and specificity characteristics.

Figure 2: (a) Precision and (b) specificity comparison of different algorithms

Figure 3: (a) Recall and (b) F1-measure comparison of different algorithms
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Figs. 3b and 4 present a summary of the F1-measure, G-mean, and AUC index values for each
algorithm across 12 public datasets. Among these datasets, LVQFRO demonstrates the best F1-
measure performance on 8 datasets (including a tie for first place). Additionally, its performance on
the remaining 3 datasets is also strong, with only a small gap separating it from the optimal results.
The LVQFRO sampling method demonstrate superior performance compared to other methods in
terms of G-mean. Specifically, 11 datasets (including a tie for first place) achieve high values , that is
only slightly below the FID of 0.27% observed in the Vehicle2 data set, with insignificant difference
between them. In comparison to the other five sampling methods, LVQFRO achieve the highest AUC
values on 10 datasets (including a tie for first place), showing increases of 27.06%, 19.56%, 10.01%,
6.40%, and 6.11% on G-mean, and 18.78%, 17.90%, 6.95%, 4.92%, and 4.96% on AUC, respectively.
In terms of the F1-measure, there are varying degrees of improvement ranging from 8.01% to 12.82%.

Figure 4: (a) G-mean and (b) AUC comparison of different algorithms

In conclusion, LVQFRO enhances the recognition rate of minority samples, and improves classi-
fication accuracy. On datasets with high class imbalance ratios, such as Glass016vs2, Glass2, Glass4,
and Glass5, the original performance is subpar or even invalid. LVQFRO mitigates classification
bias stemming from imbalanced data, exhibits strong generalization capabilities, and yields superior
classification outcomes.

Table 5 displays the comparison of LVQFRO with other five algorithms. In this comparison,
symbol ‘+’ denotes an improvement in the evaluation index of LVQFRO compared to the current
algorithm, while symbol ‘–’ indicates a decrease in the index value. In comparison to the ORI bench-
mark, LVQFRO shows an average increase of 27.06% in G-mean, 26.92% in Specificity, and 8.41%
in F1-measure. When compared to RUS, LVQFRO exhibits improvements of 12.34%, 13.16%, 9.59%,
26.28%, 12.82%, 19.56% and 17.90% in different metrics. Additionally, LVQFRO shows improvements
ranging from 6.54% to 10.01% in the seven indicators compared to the SMOTE algorithm. In
comparison to the FID and FRO algorithms, LVQFRO’s improvements are relatively small, with the
lowest average increase at 2.15% and the highest at 8.01%. On the F1-measure, LVQFRO is only 0.17%
lower than the FID algorithm, indicating insignificant differences in performance.
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Table 5: Percentage improvements attained by LVQFRO (%)

Accuracy Precision Recall Specificity F1-measure G-mean AUC

ORI +9.97 +11.04 +10.70 +26.92 +8.41 +27.06 +18.78
RUS +12.34 +13.16 +9.59 +26.28 +12.82 +19.56 +17.90
SMOTE +8.24 +7.42 +6.54 +9.09 +8.23 +10.01 +6.95
FID +2.98 +5.37 +5.90 +4.04 −0.17 +6.40 +4.92
FRO +2.15 +6.55 +4.99 +2.34 +8.01 +6.11 +4.69

In conclusion, LVQFRO demonstrates superior classification performance across various datasets
with different IR. The evaluation metrics show significant improvements compared to other over-
sampling algorithms, highlighting the effectiveness of dynamically partitioning attribute intervals and
generating minority samples within the safe interval, and rational in addressing imbalanced data,
ensuring the algorithm’s comprehensiveness and stability.

To further illustrate the statistical properties of the experimental results, LVQFRO is selected as
the primary control method and a Friedman test [24] is conducted in comparison to five other methods.
Table 6 presents the average rankings obtained from the Friedman test on seven evaluation criteria.
The findings reveal that LVQFRO consistently achieves the highest rankings, suggesting that LVQFRO
performs exceptionally well and consistently in comparison to the other methods, and demonstrates
superior statistical significance.

Table 6: Average ranking results of Friedman test

Accuracy Precision Recall Specificity F1-measure G-mean AUC

ORI 4.58 4.25 4.67 4.33 4.04 5.34 5.33
RUS 3.67 4.17 4.33 5.00 3.83 4.42 4.92
SMOTE 4.25 3.88 3.83 3.13 4.04 3.50 3.33
FID 3.75 3.04 3.00 3.79 2.88 2.83 2.67
FRO 2.75 4.13 3.25 2.96 4.50 3.58 3.33
LVQFRO 2.00 1.54 1.92 1.79 1.71 1.33 1.42

5 Conclusions

In order to address the issue of imbalanced data classification more effectively, this study
introduces a novel fuzzy rule oversampling technique called LVQFRO based on LVQ. LVQFRO
determines the antecedents of If-Then fuzzy rules by taking into account the label information of
training samples and dynamically dividing data attribute intervals using LVQ. This method helps
to eliminate the subjective nature of expert experience in rule construction. Additionally, LVQFRO
utilizes the correlation between data attributes to generate minority samples based on fuzzy rules,
thus mitigating class imbalance issues. Experimental results on 12 datasets with varying imbalance
ratios, in conjunction with the SFM classifier, demonstrate that the LVQFRO method yields superior
classification performance. Furthermore, statistical analysis indicates that this method exhibits greater
stability. This paper presents a new approach for binary-class classification of imbalanced data,
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showing improved performance. However, the extension of this method to multi-class imbalanced
data classification warrants further investigation.
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