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ABSTRACT

Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously
more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation,
industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new
security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature
extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is
high-dimensional and complex. This data not only increases the computational burden of model training but also
makes information extraction more difficult. To address these issues, this paper proposes an MD-MRD-ResNeXt
model for abnormal network traffic detection. To fully utilize the multi-scale information in network traffic, a
Multi-scale Dilated feature extraction (MD) block is introduced. This module can effectively understand and
process information at various scales and uses dilated convolution technology to significantly broaden the model’s
receptive field. The proposed Max-feature-map Residual with Dual-channel pooling (MRD) block integrates the
maximum feature map with the residual block. This module ensures the model focuses on key information, thereby
optimizing computational efficiency and reducing unnecessary information redundancy. Experimental results
show that compared to the latest methods, the proposed abnormal traffic detection model improves accuracy by
about 2%.
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1 Introduction

With the continuous advancement of Internet of Things (IoT) technology, network terminals have
become more intelligent. It has been widely applied in manufacturing, healthcare, and transportation,
profoundly influencing both our work and daily lives. By the end of June 2022, global IoT connections
rose to 14.4 billion [1]. However, the rapid development and wide application of IoT have made IoT
security face an increasingly severe situation. For example, in 2016, Dyn Inc. in the United States was
attacked by a Distributed Denial of Service (DDoS), which infected nearly 65,000 IoT devices and
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led to the disruption of services of many Uniform Resource Locator (URL) [2]. IoT attacks pose a
significant challenge to IoT security, and it is a crucial component of IoT security.

In smart manufacturing factories, many devices such as robotic arms, sensors, and control systems
are interconnected. Meanwhile, vast different kinds of production figures, equipment status reports,
and environmental monitoring information are generated, which contain many redundancies and
irrelevant data. In other words, these data increase computational complexity and complicate the
monitoring and detection of abnormal traffic. Furthermore, the distinguishing between abnormal and
regular patterns becomes challenging due to the variety and intricacy of the network traffic patterns.
In general, the precision of feature selection directly impacts the effectiveness of abnormal detection.
Therefore, it is crucial to identify the feature representation of abnormal traffic.

In recent years, machine learning has provided new ways to detect abnormal traffic with its
powerful data analysis and pattern recognition capabilities. Existing machine learning methods rely
on manual feature extraction, which is not only inefficient in high-dimensional space but also easily
leads to insufficient and inaccurate features. Considering the significant advantages of deep learning
in automatic feature extraction and pattern recognition, current abnormal traffic detection technology
is mainly based on deep learning methods. Although deep learning has advantages in automatic
feature extraction. It may lead to incomplete feature extraction and computational inefficiency when
processing multidimensional data.

Although machine learning and deep learning have made certain progress in abnormal traffic
detection, they still have problems such as incomplete feature extraction, low computational efficiency,
and insufficient accuracy when processing multi-dimensional complex data. In order to detect complex
features of different scale data in abnormal traffic. This paper proposes a Multi-scale Dilated feature
extraction (MD) block. At the same time, in order to effectively process high-dimensional data and
maintain key features, a Max-feature-map Residual with Dual-channel pooling (MRD) block is
proposed. Therefore, we propose an MD-MRD-ResNeXt model, to solve the problem of insufficient
feature extraction in abnormal traffic detection.

The main contributions of this paper are described as follows:

(1) This paper introduces the MD block, a feature integration mechanism that addresses the
limitations of existing deep learning models in capturing the multidimensionality of data. Unlike
methods that rely solely on single-scale feature extraction, MD block combines multi-scale feature
extraction with dilated convolution techniques. MD block can significantly enlarge the model’s
receptive field, enabling it to more effectively understand and process information across various scales
for capturing details and broad context.

(2) In accordance with the diverse features and complex relationships in high-dimensional data of
IoT data, a MRD block is proposed to combine maximum feature mapping and residual blocks. In
order to accurately extract key features and maintain their continuity and stability in deep networks.
The method alleviates overfitting and improves generalization ability. Furthermore, computational
efficiency is optimized through the use of parallel dual-channel pooling technology.

The paper is organized as follows: Section 2 reviews related work. Section 3 introduces the details
of the proposed methods. Section 4 reports the experimental results and analyses. Section 5 concludes
our work and looks forward to future research directions.
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2 Related Work

Identifying and distinguishing normal and abnormal network traffic is one of the important tasks
in the field of network security. In order to achieve this goal efficiently, machine learning and deep
learning methods have been widely used in the analysis and identification process of network traffic.

2.1 Machine Learning-Based Methods

In abnormal traffic detection, the application of machine learning technology has become a
key research direction. For example, Autoencoder (AE), eXtreme Gradient Boosting (XGBoost) and
XGBoost combined with Principal Component Analysis (PCA) are advantageous in identifying and
processing spatial data features.

In network traffic detection, an AE as a neural network architecture is employed for dimensional-
ity reduction or feature extraction [3–5]. Ieracitano et al. [3] proposed an AE-based Intrusion Detection
System (IDS). It combines statistical analysis with AE to extract more optimized and strongly
correlated features. Andresini et al. [4] introduced a deep metric learning strategy that learns feature
embeddings through triplet networks combined with Hnamte et al. [5] introduced a two-stage deep
learning model (LSTM-AE) by combining Long Short-Term Memory networks (LSTM) with AE.
This model aims to effectively identify anomalous behaviors in complex network data. In abnormal
traffic detection, XGBoost applications address complex data challenges [6–8]. Kasongo et al. [6]
used the XGBoost algorithm to reduce the dimensionality of the feature space, which improves the
performance of various Machine Learning (ML) models and addresses challenges such as high-
dimensional data spaces and dataset imbalance. On the other hand, the model combining particle
swarm optimization and XGBoost is proposed by Jiang et al. [7]. This method focuses on improving
the parameter settings of XGBoost through the Particle Swarm Optimization (PSO) algorithm,
which enables the model to find optimal solutions within a wider parameter space. This approach
significantly improves the performance of XGBoost on classification problems. Further research
has improved model performance by combining PCA with XGBoost [9–11]. Bhattacharya et al. [9]
demonstrated the effectiveness of PCA in spatial feature extraction and dimensionality reduction,
especially when it is combined with the Firefly algorithm and XGBoost. This approach lays the
foundation for data classification by reducing data dimensions while retaining important information.
Pan et al. [10] further expanded the application of PCA on this basis, especially in dealing with class
imbalance problems. By integrating with the Adaptive Synthetic Sampling (ADASYN) algorithm,
PCA not only reduces the complexity of the data but also enhances the balance of the dataset, which
provides a more optimized feature set for XGBoost. With the issues of feature redundancy and the
neglect of feature mean, Chen et al. [11] proposed an optimized feature extraction algorithm. This
method initially applies Kernel PCA (KPCA) to project the original data into a high-dimensional
space, removing redundant and irrelevant features. Subsequently, it utilizes Linear Discriminant
Analysis (LDA) to perform secondary feature extraction in the new feature space, taking into account
the mean differences between and within classes, thereby improving the effect of feature extraction.
Diwan et al. [12] proposed a novel, lightweight feature selection method for IoT intrusion detection,
which leverages rank-based chi-square, Pearson correlation, and score correlation to identify key
dataset features. Similarly, Jhansi et al. [13] used Ant Lion Optimization, Cuckoo Search Optimization,
and Firefly Optimization alongside autoencoders for efficient Application Programming Interface
(API) scheduling in malware detection.
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Although existing machine learning methods have achieved good results in detecting anomalous
traffic, many models highly depend on manually extracted features. This approach is not only time-
consuming but may also overlook some important complex features in the data. Furthermore, manual
feature extraction can lead to models struggling to adapt to new or unknown attack patterns, limiting
their generalization and practicality. Therefore, employing methods that automatically learn and
extract features is particularly important to overcome the limitations of current approaches in feature
extraction and processing.

2.2 Deep Learning-Based Methods

Compared with machine learning methods, deep learning performs better in terms of learning
accuracy and portability because it does not require manual design of features. Abnormal traffic
detection typically always relies on spatial and temporal features, as well as a combination of
both. Spatial features are usually extracted using Convolutional Neural Network (CNN) [14–16].
Li et al. [14] proposed a multi-CNN fusion method. This method divides feature data into four
parts for processing and fusion, aiming to enhance the precision and efficiency of network intrusion
detection. In order to further optimize the problem of feature extraction caused by sample data
differences, Shi et al. [15] proposed the Deep Abnormal Network Traffic Detection (DANTD) method
for effective spatial feature extraction. This model uses deep convolutional autoencoders for high-
order feature extraction and employs Generative Adversarial Networks (GAN) for data augmentation.
The extraction of temporal features relies on the temporal convolution model [17,18]. Li et al. [17]
proposed a method using dynamic chaotic Cross-optimized bidirectional residual-gated recurrent
unit and Wasserstein generative adversarial network with generated feature domains. This approach
leverages the strengths of GRU for processing time series data, which optimizes weights to achieve
more efficient feature extraction and reduced time complexity. Cai et al. [18] developed a method using
Bidirectional Temporal Convolutional Network (BiTCN) and Multi-Head Self-Attention (MHSA)
mechanism. The method employs BiTCN to capture bidirectional semantic features of network traffic
and uses MHSA to assign varying weights to different subsequence segments. Recent studies highlight
the significant advantages of hybrid models that focus on extracting both spatial and temporal features
[19–23]. Kanna et al. [19] introduced a model combining an Optimized CNN and Hierarchical Multi-
Scale LSTM (HMLSTM). This model employs Lion Swarm Optimization (LSO) to enhance CNN
spatial feature extraction, while HMLSTM handles temporal feature extraction. Anitha et al. [20]
developed a network integrating Bidirectional Long Short-Term Memory (BiLSTM) with a CNN,
where the BiLSTM captures long-term dependencies in time series data and the CNN processes and
classifies the data. Zhu et al. [21] proposed a model that combines 1D-CNN and BiLSTM. This
method effectively extracts time series and spatial features. It also employs a cost penalty matrix
and an improved cross-entropy loss function to enhance the recognition of minority class samples.
Wang et al. [22] further proposed a model for spatial-temporal feature fusion, using a simplified CNN
for spatial learning and BiLSTM for temporal feature learning, incorporating an attention mechanism
for effective feature integration. To address overfitting in training, Hassan et al. [23] developed a hybrid
deep learning model that combines CNN with Weighted Decreasing LSTM (WDLSTM) to extract key
features efficiently. Since the accurate extraction of spatial features directly affects the sensitivity and
accuracy of abnormal traffic detection. It is a core link to ensure network security. We mainly focus
on the extraction of spatial features in this paper.

Multi-scale feature extraction methods are crucial for improving model accuracy, generalization,
capturing data features at various levels [24–27]. Duan et al. [24] introduced a Multi-Scale Residual
Classifier (MSRC) for anomaly traffic detection, utilizing wavelet transform to effectively process
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multi-scale network traffic features. This enhances the accuracy of detecting network traffic anomalies.
Yu et al. [25] developed a high-precision intrusion detection system using a Multi-Scale CNN, which
extracts features from disordered data to increase the accuracy of intrusion detection. He et al. [26]
proposed a method combining a Variational Gaussian Model with a One-Dimensional Pyramid Depth
Separable Convolution (PyDSC) network. This approach simplifies complex features using PyConv
with added DSC to reduce network complexity. Addressing high-dimensional and complex datasets,
Zhang et al. [27] firstly analyzed spatial features using a Multi-Scale Convolutional Neural Network,
and processed temporal features with LSTM. Sathya et al. [28] introduced a classification method,
which utilizes a dual weight update mechanism to differentiate between attack and non-attack data in
IoT devices. Ravi Kiran Varma et al. [29] proposed a software-defined IoT intrusion attack detection
method based on enhanced Elman spiking neural network.

In summary, existing abnormal traffic detection methods have obvious limitations in multi-
dimensional data feature extraction, identification and maintenance of high-level features. Specifically,
(1) some existing methods usually only focus on feature extraction at a single scale, ignoring other
levels of information in the data. This limits the model’s ability to understand and process complex
data structures. (2) With the complex high-dimensional data, it is difficult to identify subtle differences
and high-dimensional features. Therefore, this paper proposes an MD block to effectively capture
and integrate features of different scales in multi-dimensional data. And a MRD block is designed to
identify complex patterns in high-level features with subtle differences.

3 Methodology
3.1 Overall Network Model

Raw data with pcap format generated by industrial IoT need to be converted to images with
grayscale format by method in [30]. This paper adopts the ResNeXt network [31] as its main
architecture. The preprocessed data are fed into MD block with different scales to cover more global
features. Dilated convolutions are used in the MD block to enhance the receptive field. The output of
the MD block serves as the input for the MRD block, which combines the Max-Feature-Map (MFM)
with residual blocks and dual-channel pooling for the enhancement of precision and efficiency. The
MR block of MRD is used to enhance the extraction of key features and maintain feature continuity
in deep networks. Finally, the classification results are obtained through the fully connected layer. The
overall structure of the MR-MRD-ResNeXt model is shown in Fig. 1a. Meanwhile the detailed MD
and MR block are shown in Figs. 1b and 1c, respectively.

3.2 Multi-Scale Dilated Feature Extraction

With the introduction of deep learning, feature extraction has been automated and the ability to
process complex data has been improved. However, some feature extraction methods in deep learning
are still limited to a single scale, which often focuses only on local details or overall patterns and
neglects other important dimensions of the data.

Inspired by the multi-scale feature processing method [32], a four-layer multi-scale feature
extraction module is used as shown in Fig. 1b. In this structure, a 1 × 1 convolution is used in the
first branch to enhance the feature representation capabilities of the model, improve the detail capture
capability of the networks, and optimize computational efficiency. In the last three branches, dilated
convolution is added to the 3 × 3 convolution. The dilation rate of the dilated convolution is adjusted
to 1, 2, and 3. A convolution with a dilation rate of 1 is equivalent to a regular convolution and
it can capture the potential local features. Gradually increasing the expansion rate to 2 and 3, the
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receptive field’s distribution is optimized. It captures multi-scale information without changing the size
of the feature map, thereby capturing a wider range of spatial features. Consequently, this approach
avoids excessive sparseness in feature maps and enhances model sensitivity to small-scale features.
The features extracted at different scales are integrated to ensure them work collaboratively in the
final decision-making process. Afterwards, by integrating batch normalization and ReLU activation
function in the post-convolution stage, the training stability and nonlinear expression ability of the
model are improved.

Figure 1: (a) Overall architecture of the proposed model (b) Multi-scale dilated feature extraction (c)
Detailed information about the MR module

3.3 Max-Feature-Map Residual with Dual-Channel Pooling

When dealing with high-dimensional data with multiple characteristics and complex relationships,
traditional methods are often difficult to effectively distinguish and maintain these key features. In
addition, as the network depth increases, the model may lose sensitivity to important features, which
results in insufficient feature recognition and generalization capabilities. In order to avoid the fuzzy
identification of high-dimensional data with multiple characteristics, in this paper we propose an MRD
block. The feature extraction is optimized by combining MFM and residual blocks. As illustrated in
Fig. 1c. MFM selects the most significant feature responses across channels to enhance key features.
Assume Xhi ,wj ,ck

represents the value of channel ck at position (hi, wj) in feature map X ∈ RC×H×W , then
MFM(X)hi ,wj ,ck

is calculated as Eq. (1).

MFM(X)hi ,wj ,ck
= maxck∈C

(
Xhi ,wj ,ck

, Xhi ,wj ,c
k+ C

2

)
(1)

The residual block helps maintain the continuity and stability of features in deep networks through
its skip connections. In each layer of the residual block, through skip connections. In each layer of the
residual block, skip connections allow the model to retain the feature information from the previous
layer, to reduce information loss, and to improve the accuracy of feature recognition. This combination
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strategy not only improves the model’s ability to maintain features in complex data, but also effectively
reduces overfitting and enhances generalization capabilities.

In addition, because dual-channel pooling can capture features more comprehensively in feature
extraction, it combines the advantages of the significant feature response of max pooling and the
global information capture of average pooling. Therefore, we adopt it to process key information in
complex data and improve the performance of the model in abnormal traffic detection. Assume D(X)

and MaxPool(X) represent the feature map obtained after dual-channel pooling and the result after
the maximum pooling, then D(X) = MaxPool(X)⊕ AvgPool(X). AvgPool(X) is the result after using
the average pooling and ⊕ represents the element-wise phase.

Through the combination of MFM, residual block and dual-channel pooling. The MRD block
enhances the model’s feature capture capabilities and optimizes computational efficiency to achieve
more efficient and accurate abnormal traffic detection. The detailed MRD is shown in Algorithm 1.

3.4 Model Training Process

The preprocessed dataset is divided the training set and validation set into a ratio of 8:2. The
training set is used for the learning process of the model, while the validation set is used for the
evaluation of model performance. In the first stage of the model, the MD block is responsible for
capturing features of different scales through dilated convolution technology, which helps the model
learn more detailed data representation. Next, in the MRD block, we use the MFM method to
capture the most significant feature responses in the deep network structure. At the same time, we
enhance the ability of the model to maintain deep features through residual connections. This method
helps avoid information loss during training, especially when the network depth is large. Additionally,
by combining the advantages of maximum pooling and average pooling, it can retain rich feature
information while reduce the number of parameters.

Algorithm 1: Max-Feature-Map Residual with Dual-Channel Pooling (MRD)
Input: Feature map X
Output: Optimized feature map D(X)

1: Initialize feature map X, including channel number C, width W and height H;
2: For hi ∈ H do:
3: For wj ∈ W do:
4: For ck ∈ C do:
5: Calculate MFM(X)hi ,wj ,ck

by Eq.(1);
6: EndFor
7: EndFor
8: X = MFM(X)hi ,wj ,ck

+ X
9: EndFor
10:D(X) = MaxPool(X) ⊕ AvgPool(X)

11: Return D(X)

During the training process, we choose Adam [32] as the optimizer to adjust and optimize the
model weights with its effective adaptive learning rate. Training is performed in small batches (the
batchsize is 32), which helps to increase the updating frequency of model and improve the accuracy
of gradient estimation. In addition, we use the ReduceLROnPlateau learning rate [33] scheduler to
dynamically adjust the learning rate. This strategy determines whether to reduce the learning rate
based on the model’s performance in terms of loss on the validation set, which ensures that the model
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does not get stuck in a local minimum during the training process. Model training is scheduled for
50 epochs to ensure sufficient iterations to train the network. The learning rate starts at 0.001, and
after the 46th epoch, the learning rate is reduced to 1 ∗ 10−6. After each epoch, the validation set is
employed to assess the model’s performance by accuracy and loss metrics. And the classification result
is calculated with the average of multiple experiments. Finally, after a series of training processes, our
model showed excellent performance on the abnormal traffic detection, verifying the effectiveness of
the MD and MRD blocks.

4 Experiments and Analyses

In this paper, the experimental environment are running on a server with RTX A5000 GPU and
24 GB RAM using Python3.8 + TensorFlow 2.10.0.

4.1 Datasets

To verify the effectiveness of the MD-MRD-ResNeXt and its variants of the network proposed
in this paper for abnormal traffic detection, this section conducts detailed performance comparison
experiments. The experimental datasets used are USTC-TFC2016 [30] and ToN-IoT-Network [34].
The USTC-TFC2016 dataset is composed of two segments. The first segment includes a collection
of ten varieties of malicious traffic, gathered by CTU (Czech Technical University) researchers in
real-world network settings from 2011 to 2015. The second segment comprises a set of ten kinds of
benign traffic, obtained through IXIA BPS (Ixia Breaking Point Systems). A total of 202,921 records
from the USTC-TFC2016 dataset are used. The ToN-IoT-Network dataset was developed by the IoT
lab at UNSW (The University of New South Wales) Canberra in collaboration with Cyber Range. It
encompasses telemetry data from connected devices, logs from both Linux and Windows operating
systems, as well as network traffic from IIoT systems. This heterogeneous data was collected from
a medium-sized IoT network. A total of 260,462 records from the ToN-IoT-Network dataset are
considered. The data used in USTC-TFC2016 and ToN-IoT-Network is detailed in Table 1. All these
data are converted to images with grayscale format by method in [30].

Table 1: Statistics of samples with different categories in two datasets

USTC-TFC2016 ToN-IoT-Network

Category Train Test Category Train Test Category Train Test

BitTorrent 6752 750 Cridex 14752 1639 Normal 54000 6000
Facetime 5400 600 Geod 11743 1305 Password 22513 2502
FTP 11184 1243 Htbot 9566 1063 Dos 25552 2839
Gmail 4945 550 Miuref 8017 891 DDos 17243 1916
MySQL 12571 1397 Neris 13466 1496 Injection 38782 4309
Outlook 6267 748 Nsis-ay 9805 1089 MITM 5909 657
Skype 5480 609 Shifu 12920 1436 XSS 54000 6000
SMB 5031 559 Tinba 13910 1546 Scanning 9560 1062
Weibo 4112 457 Virut 10110 1123 Backdoor 6692 744
WorldOfWarcraft 6841 760 Zeus 9709 1079 Ransomware 164 18
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4.2 Evaluation Metrics

In evaluating the efficacy of the MD-MRD-ResNeXt model, this paper employs four evaluation
metrics: Accuracy (AC), Precision (PR), Recall (RC) and F1 score, which are computed by Eqs. (2)–
(5). Among all these evaluation criteria, True Positive (TP) refers to the cases where abnormal network
traffic is accurately identified by the MD-MRD-ResNeXt. False Positive (FP) refers to the instances
where the MD-MRD-ResNeXt incorrectly labels normal network traffic as anomalous. False Negative
(FN) refers to the cases where abnormal network traffic that the MD-MRD-ResNeXt fails to identify.
True Negative (TN) refers to the cases where normal network traffic is accurately identified by the
MD-MRD-ResNeXt.

AC = TP + TN
TP + TN + FP + FN

(2)

The ratio of the proportion of correct predictions by the model to the total number of predictions.

PR = TP
TP + FP

(3)

The proportion of positive examples predicted by the model that are actually positive.

RC = TP
TP + FN

(4)

Among all actual positive examples, the proportion of positive examples correctly predicted by
the model.

F1 = 2 ∗ PR ∗ RC
PR + RC

(5)

The harmonic means of precision and recall.

4.3 Experimental Analyses

4.3.1 Ablation Experiments

Differences in network architectures can lead to variations in performance. Table 2 presents
the comparison results between MD-MRD-ResNeXt and MD-MRD-ResNet, both of which are
based on the same strategy but utilize different backbone networks. As evident from Table 2, MD-
MRD-ResNeXt outperforms MD-MRD-ResNet across most evaluation metrics. This can primarily
be attributed to the structural differences between ResNeXt and ResNet. ResNeXt enhances the
expressive capacity of the model by incorporating grouped convolutions and cardinality connections.
This is achieved without significantly increasing the number of parameters. This gives it a superior
ability to capture intricate features. In contrast, ResNet strengthens the training capabilities of the
network through residual connections. While it might not capture the same features as ResNeXt
in certain scenarios. However, within the MD-MRD architecture, the specific structure of ResNeXt
provides additional advantages for certain tasks. The selections of ResNeXt as the backbone network
in a specific MD-MRD architecture can provide effective performance. This further highlights the
importance of considering subtle differences and potential impacts when choosing network structures
for specific tasks. In the subsequent section, various ablation study strategies for the proposed MD-
MRD-ResNeXt are designed.
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Table 2: Verification results of different network structures on USTC-TFC2016 dataset

Model AC PR RC F1

MD-MRD-ResNeXt 97.16% 97.24% 96.78% 96.94%
MD-MRD-ResNet 96.51% 96.81% 96.32% 96.56%

To validate the effectiveness of each module, the following ablation experiments were conducted,
which are shown in Table 3. From Table 3, it can be observed that MD-MRD-ResNeXt demonstrates
superior performance in Accuracy, Recall, and F1 score. The primary reason is the MD block
enlargement of the receptive field of the convolutional kernel, enabling the model to capture richer
information from the input and recognize various low-level abnormal traffic features. Meanwhile, the
MRD block allows the network to focus more intently on crucial information, discarding irrelevant
features, thereby enhancing feature quality. In contrast, when only employing the MD or MRD, there
is a performance improvement, but it does not reach the optimum situation. This indicates that the MD
and MRD are contributed to feature extraction and attention for essential information, especially in
the MC-MRD-ResNeXt (MC represents multi-scale feature extraction without dilated convolution)
experiment. The efficiency of the MD block was further validated too.

Table 3: Ablation verification results on USTC-TFC2016 dataset

Model Block Results

MC MD MRD ResNeXt AC PR RC F1

ResNeXt × × × √ 95.24% 95.07% 94.76% 95.09%
MC-ResNeXt √ × × √ 95.89% 96.07% 95.90% 96.21%
MD-ResNeXt × √ × √ 96.52% 96.74% 96.40% 96.72%
MRD-ResNeXt × × √ √ 95.94% 96.08% 95.89% 95.98%
MC-MRD-
ResNeXt

√ × √ √ 96.28% 96.59% 96.05% 96.32%

MD-MRD-
ResNeXt

× √ √ √ 97.16% 97.24% 96.78% 96.94%

4.3.2 Comparison Experiment

In this study, eight existing abnormal traffic detection methods: 2D-CNN [30], BiDLSTM [35],
CNN-BiLSTM [36], PCNN [37], RESNETCNN [38], ResNet-GRU [39], MTC-BYOL [40] and DC-
AAE [41] are compared with our MD-MRD-ResNeXt. These methods were chosen because they are
not only theoretically well-studied but also empirically validated across various datasets and scenarios,
providing a solid benchmark for comparison. These detection methods were evaluated alongside our
model based on AC, PR, RC, and F1 score. To provide a comprehensive assessment of the performance
of each method, experiments were conducted on the USTC-TFC2016 and ToN-IoT-Network datasets.

Table 4 compares various methods’ performance on the USTC-TFC2016 dataset. Experimental
results show that BiDLSTM has the worst effect. Although BiDLSTM is effective for time-series data,
it struggles to capture multi-dimensional spatial features. 2D-CNN falls short in capturing sufficient
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contextual information from complex IoT traffic data, which also results in poorer performance.
The comparisons of CNN-BiLSTM, PCNN, and DC-AAE with an encoder-decoder can capture
more stable and smooth features to enhance extraction performance. Models RESNETCNN and
ResNet-GRU can obtain better performance by a residual network, while they always need more
computational resources and meticulous parameter tuning for less optimal performance. The model
MD-MRD-ResNeXt in this article performed the best on all evaluation indicators, which is attributed
to the unique structure of the model. Because the MD block and MRD block are designed to deeply
mine the spatial characteristics of network traffic data. The MD block enables the model to capture
richer contextual information and fine-grained anomaly indicators. The use of maximum feature
mapping and residual blocks further enhances the weight of these features in model decision-making.
At the same time, our model adopts an innovative training strategy and dynamically adjusts the
learning rate through adaptive learning rate to accelerate the convergence speed of the model. In
addition, we introduce early stopping to prevent overfitting and ensure that the model can achieve the
best generalization ability on different data sets during training. The results on the ToN-IoT-Network
dataset are similar to those of Table 4, which further prove the effectiveness of our model as shown in
Table 5.

Table 4: Verification results of all comparative abnormal traffic detection in USTC-TFC2016

Model AC PR RC F1

2D-CNN [30] 92.93% 93.26% 90.18% 91.69%
BiDLSTM [35] 90.11% 91.69% 88.64% 90.16%
CNN-BiLSTM [36] 94.67% 95.39% 95.07% 95.20%
PCNN [37] 94.36% 94.82% 93.71% 94.26%
RESNESTCNN [38] 95.13% 95.47% 94.95% 95.21%
ResNet-GRU [39] 95.30% 95.58% 95.22% 95.22%
MTC-BYOL [40] 96.24% 96.67% 96.03% 96.34%
DC-AAE [41] 95.30% 95.64% 94.67% 95.15%
MD-MRD-ResNeXt 97.16% 97.24% 96.78% 97.17%

Table 5: Verification results of all comparative abnormal traffic detection in ToN-IoT-Network

Model AC PR RC F1

2D-CNN [30] 88.83% 89.87% 88.25% 89.05%
BiDLSTM [35] 86.23% 91.71% 81.63% 86.37%
CNN-BiLSTM [36] 88.43% 89.95% 87.33% 88.61%
PCNN [37] 91.64% 92.59% 91.12% 91.85%
RESNESTCNN [38] 92.77% 94.07% 91.84% 92.95%
ResNet-GRU [39] 90.29% 92.92% 88.61% 90.68%
MTC-BYOL [40] 91.87% 92.25% 90.28% 91.25%

(Continued)
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Table 5 (continued)

Model AC PR RC F1

DC-AAE [41] 90.26% 92.45% 88.97% 90.67%
MD-MRD-ResNeXt 93.12% 94.41% 92.36% 93.38%

Figs. 2 and 3 demonstrate the distribution of results for all the compared methods of abnormal
traffic detection on the USTC-TFC2016 and ToN-IoT-Network datasets, respectively. On the USTC-
TFC2016 dataset, our model exhibits superior performance compared to the results on the ToN-IoT-
Network dataset. The difference can be partly attributed to the more consistent and rule-conforming
feature distribution of the USTC-TFC2016 dataset. This dataset exhibits some anomalous traffic
characteristics, which enables the model to capture key information more effectively. Furthermore,
this dataset might offer more balanced sample diversity and category distribution, reducing the risk
of overfitting during training. Conversely, the ToN-IoT-Network dataset, with its more varied and
complex IoT device traffic patterns, demands a higher level of generalization from the model. This is
because each type of device might generate distinct traffic features. And the diversity and complexity of
attack traffic in the dataset pose greater challenges. In summary,our proposed model has demonstrated
a notable performance across different datasets compared to other popular methods, reaffirming its
effectiveness and robustness.

Figure 2: Verification results of all comparative abnormal traffic detections in USTC-TFC2016
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Figure 3: Verification results of all comparative abnormal traffic detections in ToN-IoT-Network

5 Conclusion

To address the issues of multidimensionality and complexity in feature extraction, this paper
proposes the MD-MRD-ResNeXt model for abnormal network traffic detection. By introducing a
multi-scale dilated feature extraction module, the model expands its receptive field to capture and
integrate features of various scales in parallel. MD block can fully consider all relevant data informa-
tion in the decision-making process. The proposed MRD block further ensures that the model can
accurately extract key features for the diverse features and complex relationships in high-dimensional
data. The MD-MRD-ResNeXt model not only optimizes the model’s computational efficiency but
also significantly improves its generalization ability in abnormal network traffic detection tasks.
Experimental results show that the MD-MRD-ResNeXt model performs well in terms of AC, PR,
RC, and F1, highlighting its efficiency and practicality in identifying abnormal network traffic. With
the development of emerging attack patterns (including unknown zero-day attacks), our model needs
to be further improved to address these new attacks in broader network environments. Meanwhile,
the imbalanced data always have a significant influence on abnormal detection, which is also our
future work.

Acknowledgement: The authors thank all research members who provided support and assistance in
this study.

Funding Statement: This work is supported by the Key Research and Development Program of
Xinjiang Uygur Autonomous Region (No. 2022B01008), the National Natural Science Foundation
of China (No. 62363032), the Natural Science Foundation of Xinjiang Uygur Autonomous Region
(No. 2023D01C20), the Scientific Research Foundation of Higher Education (No. XJEDU2022P011),
National Science and Technology Major Project (No. 2022ZD0115803), Tianshan Innovation Team
Program of Xinjiang Uygur Autonomous Region (No. 2023D14012) and the “Heaven Lake Doctor”
Project (No. 202104120018).



4446 CMC, 2024, vol.79, no.3

Author Contributions: Research conception and design: Tingting Su; Data collection: Gaoqiang Dong;
Result analysis and interpretation: Tingting Su, Jia Wang; Manuscript preparation: Tingting Su, Jia
Wang, Wei Hu and Jeon Gwanggil.

Availability of Data and Materials: The datasets used in this article are public data sets: The first
dataset is the USTC-TFC2016 dataset, and the access method is as follows: https://github.com/
yungshenglu/USTC-TFC2016. The dataset was further processed using the tools in https://github.
com/yungshenglu/USTC-TK2016 to adapt to the needs of this study. The second dataset is the TON-
IoT-Network dataset, which can be accessed as follows: https://research.unsw.edu.au/projects/toniot-
datasets.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L. Errico, “An innovative approach for

real-time network traffic classification,” Comput. Netw., vol. 158, pp. 143–157, Jul. 2019. doi:
10.1016/j.comnet.2019.04.004.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and other botnets,” Comput.,
vol. 50, no. 7, pp. 80–84, Jul. 2017. doi: 10.1109/MC.2017.201.

[3] C. Ieracitano, A. Adeel, F. C. Morabito, and A. Hussain, “A novel statistical analysis and autoencoder
driven intelligent intrusion detection approach,” Neurocomputing, vol. 387, pp. 51–62, Apr. 2020. doi:
10.1016/j.neucom.2019.11.016.

[4] G. Andresini, A. Appice, and D. Malerba, “Autoencoder-based deep metric learning for network intrusion
detection,” Inf. Sci., vol. 569, pp. 706–727, Aug. 2021. doi: 10.1016/j.ins.2021.05.016.

[5] V. Hnamte, H. Nhung-Nguyen, J. Hussain, and Y. H. Kim, “A novel two-stage deep learning model
for network intrusion detection: LSTM-AE,” IEEE Access, vol. 11, pp. 37131–37148, Apr. 2023. doi:
10.1109/ACCESS.2023.3266979.

[6] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection systems using a feature
selection method on the UNSW-NB15 dataset,” J. Big Data, vol. 7, pp. 1–20, Nov. 2020. doi:
10.1186/s40537-020-00379-6.

[7] H. Jiang, Z. He, G. Ye, and H. Zhang, “Network intrusion detection based on PSO-Xgboost model,” IEEE
Access, vol. 8, pp. 58392–58401, Mar. 2020. doi: 10.1109/ACCESS.2020.2982418.

[8] N. Saini, V. Bhat Kasaragod, K. Prakasha, and A. K. Das, “A hybrid ensemble machine learning model
for detecting APT attacks based on network behavior anomaly detection,” Concurr. Comput.: Pract. Exp.,
vol. 35, no. 28, pp. e7865, Jul. 2023. doi: 10.1002/cpe.7865.

[9] S. Bhattacharya et al., “A novel PCA-firefly based XGBoost classification model for intrusion detection in
networks using GPU,” Electronics, vol. 9, no. 2, pp. 219, Jan. 2020. doi: 10.3390/electronics9020219.

[10] L. Pan and X. Xie, “Network intrusion detection model based on PCA + ADASYN and XGBoost,” in
Proc. 3rd Int. Conf. on EBIMCS. Association for Computing Machinery, New York, USA, Dec. 2020, pp.
44–48. doi: 10.1145/3453187.3453311.

[11] J. Chen, Y. Chen, S. Cai, S. Yin, L. Zhao and Z. Zhang, “An optimized feature extraction algorithm for
abnormal network traffic detection,” Future Gener. Comput. Syst., vol. 149, pp. 330–342, Dec. 2023. doi:
10.1016/j.future.2023.07.039.

[12] T. D. Diwan et al., “Feature entropy estimation (FEE) for malicious IoT traffic and detection using machine
learning,” Mob. Inf. Syst., vol. 2021, pp. 1–13, Dec. 2021. doi: 10.1155/2021/8091363.

[13] K. S. Jhansi, P. Varma, and S. Chakravarty, “Swarm optimization and machine learning for
android malware detection,” Comput. Mater. Contin., vol. 73, no. 3, pp. 6327–6345, 2022. doi:
10.32604/cmc.2022.030878.

https://github.com/yungshenglu/USTC-TFC2016
https://github.com/yungshenglu/USTC-TFC2016
https://github.com/yungshenglu/USTC-TK2016
https://github.com/yungshenglu/USTC-TK2016
https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/toniot-datasets
https://doi.org/10.1016/j.comnet.2019.04.004
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1016/j.neucom.2019.11.016
https://doi.org/10.1016/j.ins.2021.05.016
https://doi.org/10.1109/ACCESS.2023.3266979
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.1109/ACCESS.2020.2982418
https://doi.org/10.1002/cpe.7865
https://doi.org/10.3390/electronics9020219
https://doi.org/10.1145/3453187.3453311
https://doi.org/10.1016/j.future.2023.07.039
https://doi.org/10.1155/2021/8091363
https://doi.org/10.32604/cmc.2022.030878


CMC, 2024, vol.79, no.3 4447

[14] Y. Li et al., “Robust detection for network intrusion of industrial IoT based on multi-CNN fusion,”
Measurement, vol. 154, pp. 107450, Mar. 2020. doi: 10.1016/j.measurement.2019.107450.

[15] G. Shi, X. Shen, F. Xiao, and Y. He, “DANTD: A deep abnormal network traffic detection model for
security of industrial internet of things using high-order features,” IEEE Internet Things J., vol. 10, no. 24,
pp. 21143–21153, Mar. 2023. doi: 10.1109/JIOT.2023.3253777.

[16] B. Xia, D. Han, X. Yin, and G. Na, “RICNN: A ResNet & inception convolutional neural network for
intrusion detection of abnormal traffic,” Comput. Sci. Inf. Syst., vol. 19, no. 1, pp. 309–326, 2022. doi:
10.2298/CSIS210617055X.

[17] K. Li, W. Ma, H. Duan, H. Xie, J. Zhu and R. Liu, “Unbalanced network attack traffic detection
based on feature extraction and GFDA-WGAN,” Comput. Netw., vol. 216, pp. 109283, Oct. 2022. doi:
10.1016/j.comnet.2022.109283.

[18] S. Cai, H. Xu, M. Liu, Z. Chen, and G. Zhang, “A malicious network traffic detection model based on
bidirectional temporal convolutional network with multi-head self-attention mechanism,” Comput. Secur.,
vol. 136, pp. 103580, Jan. 2024. doi: 10.1016/j.cose.2023.103580.

[19] P. R. Kanna and P. Santhi, “Unified deep learning approach for efficient intrusion detection system
using integrated spatial-temporal features,” Knowl.-Based Syst., vol. 226, pp. 107132, Aug. 2021. doi:
10.1016/j.knosys.2021.107132.

[20] T. Anitha, S. Aanjankumar, S. Poonkuntran, and A. Nayyar, “A novel methodology for malicious traffic
detection in smart devices using BI-LSTM-CNN-dependent deep learning methodology,” Neural Comput.
Appl., vol. 35, no. 27, pp. 20319–20338, Jul. 2023. doi: 10.1007/s00521-023-08818-0.

[21] S. Zhu, X. Xu, H. Gao, and F. Xiao, “CMTSNN: A deep learning model for multiclassification of abnormal
and encrypted traffic of internet of things,” IEEE Internet Things J., vol. 10, no. 13, pp. 11773–11791, Feb.
2023. doi: 10.1109/JIOT.2023.3244544.

[22] H. Wang, X. Di, Y. Wang, B. Ren, G. Gao and J. Deng, “An intelligent digital twin method based on spatio-
temporal feature fusion for IoT attack behavior identification,” IEEE J. Sel. Areas Commun., vol. 41, no.
11, pp. 3561–3572, Aug. 2023. doi: 10.1109/JSAC.2023.3310091.

[23] M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and G. Fortino, “A hybrid deep learning model
for efficient intrusion detection in big data environment,” Inf. Sci., vol. 513, pp. 386–396, Mar. 2020. doi:
10.1016/j.ins.2019.10.069.

[24] X. Duan, Y. Fu, and K. Wang, “Network traffic anomaly detection method based on multi-scale residual
classifier,” Comput. Commun., vol. 198, pp. 206–216, Jan. 2023. doi: 10.1016/j.comcom.2022.10.024.

[25] J. Yu, X. Ye, and H. Li, “A high precision intrusion detection system for network security communication
based on multi-scale convolutional neural network,” Future Gener. Comput. Syst., vol. 129, pp. 399–406,
Apr. 2022. doi: 10.1016/j.future.2021.10.018.

[26] J. He, X. Wang, Y. Song, and Q. Xiang, “A multiscale intrusion detection system based on pyramid
depthwise separable convolution neural network,” Neurocomputing, vol. 530, pp. 48–59, Apr. 2023. doi:
10.1016/j.neucom.2023.01.072.

[27] J. Zhang, Y. Ling, X. Fu, X. Yang, G. Xiong and R. Zhang, “Model of the intrusion detection system
based on the integration of spatial-temporal features,” Comput. Secur., vol. 89, pp. 101681, Feb. 2020. doi:
10.1016/j.cose.2019.101681.

[28] M. Sathya et al., “A novel, efficient, and secure anomaly detection technique using DWU-ODBN for IoT-
enabled multimedia communication systems,” Wirel. Commun. Mob. Comput., vol. 2021, pp. 1–12, Dec.
2021. doi: 10.1155/2021/4989410.

[29] P. Ravi Kiran Varma, R. R. Sathiya, and M. Vanitha, “Enhanced Elman spike neural network based
intrusion attack detection in software defined internet of things network,” Concurr. Comput., vol. 35, no.
2, pp. e7503, 2023. doi: 10.1002/cpe.7503.

[30] W. Wang, M. Zhu, X. W. Zeng, X. Z. Ye, and Y. Q. Sheng, “Malware traffic classification using
convolutional neural network for representation learning,” in Proc. Int. Conf. on Information Networking,
Da Nang, Vietnam, Apr. 2017, pp. 712–717. doi: 10.1109/ICOIN.2017.7899588.

https://doi.org/10.1016/j.measurement.2019.107450
https://doi.org/10.1109/JIOT.2023.3253777
https://doi.org/10.2298/CSIS210617055X
https://doi.org/10.1016/j.comnet.2022.109283
https://doi.org/10.1016/j.cose.2023.103580
https://doi.org/10.1016/j.knosys.2021.107132
https://doi.org/10.1007/s00521-023-08818-0
https://doi.org/10.1109/JIOT.2023.3244544
https://doi.org/10.1109/JSAC.2023.3310091
https://doi.org/10.1016/j.ins.2019.10.069
https://doi.org/10.1016/j.comcom.2022.10.024
https://doi.org/10.1016/j.future.2021.10.018
https://doi.org/10.1016/j.neucom.2023.01.072
https://doi.org/10.1016/j.cose.2019.101681
https://doi.org/10.1155/2021/4989410
https://doi.org/10.1002/cpe.7503
https://doi.org/10.1109/ICOIN.2017.7899588


4448 CMC, 2024, vol.79, no.3

[31] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neu-
ral networks,” in Proc. IEEE Conf. on CVPR, Honolulu, HI, USA, Jul. 2017, pp. 5987–5995. doi:
10.1109/CVPR.2017.634.

[32] H. Xia, J. Ma, J. Ou, X. Lv, and C. Bai, “Pedestrian detection algorithm based on multi-scale feature
extraction and attention feature fusion,” Digit. Signal Process., vol. 121, pp. 103311, Mar. 2022. doi:
10.1016/j.dsp.2021.103311.

[33] Q. Chen et al., “Neighborhood rough residual network-based outlier detection method in IoT-Enabled
maritime transportation systems,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 11800–11811, Nov.
2023. doi: 10.1109/TITS.2023.3285615.

[34] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection system using machine learning for
vehicular Ad Hoc networks based on ToN-IoT dataset,” IEEE Access, vol. 9, pp. 142206–142217, Oct.
2021. doi: 10.1109/ACCESS.2021.3120626.

[35] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional LSTM deep learning approach for
intrusion detection,” Expert. Syst. Appl., vol. 185, pp. 115524, Dec. 2021. doi: 10.1016/j.eswa.2021.115524.

[36] J. Sinha and M. Manollas, “Efficient deep CNN-BiLSTM model for network intrusion detection,” in Proc.
3rd Int. Conf. on AIPR, Association for Computing Machinery, New York, USA, Jun. 2020, pp. 223–231.
doi: 10.1145/3430199.3430224.

[37] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng and X. Wang, “PCCN: Parallel cross convolutional neural
network for abnormal network traffic flows detection in multi-class imbalanced network traffic flows,”
IEEE Access, vol. 7, pp. 119904–119916, Aug. 2019. doi: 10.1109/ACCESS.2019.2933165.

[38] Y. Li, D. Han, M. Cui, F. Yuan, and Y. Zhou, “RESNETCNN: An abnormal network traffic flows detection
model,” Comput. Sci. Inf. Syst., vol. 20, no. 3, pp. 997–1014, 2023. doi: 10.2298/CSIS221124004L.

[39] G. Zhao, C. Ren, J. Wang, Y. Huang, and H. Chen, “IoT intrusion detection model based on gated
recurrent unit and residual network,” Peer Peer Netw. Appl., vol. 16, pp. 1887–1899, Jun. 2023. doi:
10.1007/s12083-023-01510-z.

[40] M. S. Towhid and N. Shahriar, “Encrypted network traffic classification using self-supervised learning,”
in Proc. IEEE 8th Int. Conf. on NetSoft, Milan, Italy, Aug. 2022, pp. 366–374. doi: 10.1109/Net-
Soft54395.2022.9844044.

[41] L. Zhang, J. Yin, J. Ning, Y. Wang, B. Adebisi and J. Yang, “A novel unsupervised malware detection
method based on adversarial auto-encoder and deep clustering,” in Proc. 9th Int. Conf. on DSA, Urumqi,
China, Oct. 2022, pp. 224–229. doi: 10.1109/DSA56465.2022.00038.

https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1016/j.dsp.2021.103311
https://doi.org/10.1109/TITS.2023.3285615
https://doi.org/10.1109/ACCESS.2021.3120626
https://doi.org/10.1016/j.eswa.2021.115524
https://doi.org/10.1145/3430199.3430224
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.2298/CSIS221124004L
https://doi.org/10.1007/s12083-023-01510-z
https://doi.org/10.1109/NetSoft54395.2022.9844044
https://doi.org/10.1109/DSA56465.2022.00038

	Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments and Analyses
	5 Conclusion
	References


