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ABSTRACT

While single-modal visible light images or infrared images provide limited information, infrared light captures
significant thermal radiation data, whereas visible light excels in presenting detailed texture information. Com-
bining images obtained from both modalities allows for leveraging their respective strengths and mitigating
individual limitations, resulting in high-quality images with enhanced contrast and rich texture details. Such
capabilities hold promising applications in advanced visual tasks including target detection, instance segmentation,
military surveillance, pedestrian detection, among others. This paper introduces a novel approach, a dual-branch
decomposition fusion network based on AutoEncoder (AE), which decomposes multi-modal features into intensity
and texture information for enhanced fusion. Local contrast enhancement module (CEM) and texture detail
enhancement module (DEM) are devised to process the decomposed images, followed by image fusion through
the decoder. The proposed loss function ensures effective retention of key information from the source images of
both modalities. Extensive comparisons and generalization experiments demonstrate the superior performance of
our network in preserving pixel intensity distribution and retaining texture details. From the qualitative results, we
can see the advantages of fusion details and local contrast. In the quantitative experiments, entropy (EN), mutual
information (MI), structural similarity (SSIM) and other results have improved and exceeded the SOTA (State of
the Art) model as a whole.
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1 Introduction

Image fusion is an important image processing task, aiming to merge images from different sensors
or bands into a single composite image, which has important applications and demands in multiple
fields [1–3]. For instance, it plays an important role in spacecraft relative navigation, among other
diverse application areas [4]. In addition, in the field of remote sensing, image fusion is instrumental
for tasks such as detection with small infrared targets [5], ship detection in remote sensing image [6–8].

Firstly, the demand for image fusion stems from the purpose of improving image quality and
information content [9–11]. In many cases, a single image cannot provide enough information to meet
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the needs of specific applications. Visible light images can retain delicate gradient information and high
spatial resolution, but they are easily affected by lighting and obstacles. However, infrared images
complement the advantages and disadvantages of visible light images, obtaining a large amount of
thermal radiation information, with lower texture and spatial resolution. The fusion of the two can
improve the contrast, clarity, and details of the image, thereby improving the performance of target
detection [12], tracking [13], pedestrian re-identification [14] and semantic segmentation [15], Earth
observations and Spacecraft relative navigation [16].

Secondly, image fusion has important applications in night vision, thermal imaging, military,
security monitoring, and other fields. IVIF (infrared and visible image fusion) tasks can help military
and security departments achieve target detection [17] and navigation [18,19] under invisible light
conditions, enhancing safety. In addition, fields such as agriculture [20], environmental monitoring,
and resource management also need to fuse multi-modal images to obtain comprehensive information.
With the continuous development of sensor technology, multi-modal data [21] from multiple sensors
have become easier to obtain. Therefore, image fusion [22–24] has become a way to better integrate
and use these data to achieve broader applications. It involves complex data processing and algorithm
development, aiming to improve image quality and information richness.

The fusion of visible and infrared images can generally be divided into two categories: The first
is traditional methods, while the second is depth based fusion. The traditional fusion method can
be roughly divided into the following three steps. Initially, an exclusive transformation is applied to
extract features from the original image, forming the feature extraction stage. Following this, diverse
fusion strategies are utilized in the feature fusion stage to amalgamate these features. Then, the
inverse transform is applied to the feature reconstruction stage, and the fused image is merged from
the reconstructed features. These traditional methods use different mathematical methods, and we
can classify them into five types based on different methods: Multi-scale transformation-based [25],
sparse representation-based [26], saliency-based [27], subspace-based fusion methods [28], and hybrid
methods.

With the development of technology, the field of deep learning has also made rapid progress, and
there are better solutions and effects for infrared and visible light image fusion based on deep learning.
In processing image fusion tasks, deep learning methods can be roughly divided into three categories:
Methods based on traditional Convolutional Neural Network (CNN) convolution, methods based
on Generative Adversarial Networks (GANs), and methods based on autoencoders. The traditional
convolutional method handles such tasks by constructing a specific loss function and limiting a
very complex network, ultimately achieving feature extraction of the image, followed by feature
fusion, and finally feature reconstruction, achieving good fusion results. The use of GAN method
involves applying the generator and discriminator to infrared and visible light image fusion tasks.
Using generator and discriminator adversarial learning, the fusion image generated in unsupervised
conditions is made to contain two types of modal image information. For IVIF tasks, current popular
deep learning methods are primarily focused on improving the fusion process, but these methods
overlook an important decomposition process and are only improving the follow-up tasks, which will
reduce the efficiency. Paying attention to two features in the decomposition stage can better enhance
the features. We believe that to better obtain the fused image, we should focus on the decomposition
of features. As the two modalities in IVIF tasks each have important information that needs to be
retained, if we can effectively decompose the prominent information from each modality, we can
easily obtain a fused image containing a large amount of information. SDNet integrates the concepts
of extrusion and decomposition into image fusion. It not only compresses the information from the
source image to the fusion result but also considers the decomposition process from the fusion result to
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the source image. This method enhances the inclusion of scene details in the fused image, and produces
more informative and visually attractive results. Inspired by SDNet, we also apply the decomposition
idea to the fusion task, and combine the AutoEncoder to propose a groundbreaking network called
BDPartNET to complete the multimodal image fusion task, allowing the generated images to retain
as much infrared and visible highlight information as possible. For the BDPartNET network based
on deep image decomposition, our main contributions are as follows:

• For the decomposition stage, we designed a decomposition loss function to be able to forcibly
decompose the intensity and texture features of the image. The general model uses the pixel
loss and structural loss of the source image and the fused image as the main loss. However,
we consider that the key information of the source images of infrared and visible light images
are intensity information and texture information, respectively. We just decomposed these two
features, so our loss function mainly consists of two parts, which calculate the pixel loss of
the infrared image with intensity information and texture feature image. When we reconstruct
an image, our loss function restricts the reconstructed image to the intensity and gradient
features of the source image. In the testing phase, we perform channel fusion and dimensionality
reduction on the two feature maps decomposed from the network and finally generate a fused
image through a decoder.

• For the decomposed intensity feature map, we designed a contrast enhancement module (CEM).
We designed a multi-scale convolution that enhances contrast using standard deviation to
process the intensity information branch. We calculate the standard deviation of each convo-
lution area and perform standard deviation normalization on the input before the convolution
operation. This enhances the contrast of the feature map and helps subsequent fusion.

• Inspired by the residual network, we designed a gradient enhancement module (DEM). We
directly perform convolution operations on the texture feature map, calculate the Laplacian
gradient map of the texture feature map, and then use residual connections in parallel, and
finally use depth separable convolution to output the gradient-enhanced texture feature map,
which greatly improves the effect in the fusion stage.

2 Related Work

This section will introduce the typical methods based on deep learning currently used for
multimodal image fusion, and briefly describe the U-Net skip link used in BDPartNet. Furthermore,
we will discuss the datasets involved in the training of the proposed algorithms to offer additional
insights for the readers.

2.1 Image Fusion Based on Deep Learning

2.1.1 Fusion Methods Based on CNN

The difficulty of using convolutional neural networks to achieve infrared and visible light image
fusion tasks is to design a sufficiently excellent loss function and a very complex network structure
to achieve feature extraction, feature fusion, and reconstruction of the source image. In convolutional
neural network-based methods, PMGI can serve as a representative work. The PMGI network designs
a complex network and a loss function with fixed gradient and intensity ratios, enabling the network to
extract features from multimodal source images and generate the final fused image. However, manually
designing the proportion of information can lead to some serious issues, such as poor performance on
other scene datasets.
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This problem has been improved in subsequent research, such as SDNet [29]. This network can
simultaneously focus on both fusion and decomposition stages so that the fusion result contains more
scene details. STDFusionNet [30] uses salient target masks to assist in the early stages of the network,
making it easier to integrate intensity information into the generated images. Taking advantage of the
multi-scale feature integration in the fusion process, RXDNSort [31] adopts the structural advantages
of ResNet [32] and DenseNet [33]. By comprehensively extracting features from each layer, effective
fusion has been achieved. Li et al. [34] utilized the advantages of meta-learning to complete the fusion
task of infrared and visible light images at different resolutions. They only used one CNN model,
significantly expanding the applicability of the fusion model. The purpose of image fusion is to serve
advanced visual tasks. Inspired by this, Tang and others added semantic loss to the IVIF task, which
is more in line with advanced visual tasks such as object segmentation and detection. The recently
introduced Transformer structure [35,36] similar to CNN performs well in natural language processing
and also performs very well in various visual tasks. So, Ma et al. [37] designed a universal fusion
method based on the Transformer architecture, where attention guided cross domain modules can
integrate global complementary information. However, lighting conditions also play a decisive role in
the quality of fusion images in IVIF tasks. PIAFusion [38] improved the model based on the influence
of lighting conditions during fusion, but the compatibility of the model is insufficient, and the effect
is still not ideal in relatively complex environments.

2.1.2 Image Fusion Based on GAN

Generative Adversarial network (GAN) [39] is a very excellent generative network, which was
proposed by Ian goodflow and others in 2014. The core idea of Gan is to learn the generative model of
data distribution through confrontation. The purpose of the generator is to generate as realistic data as
possible, while the discriminator can distinguish false data as much as possible, forcing the generator to
achieve better results. Through the training process of this game, the generator will generate more and
more realistic data, to improve the performance of the generated model. Ma et al. proposed Fusiongan
[40] network for IVIF tasks based on GAN network for the first time. This method defined the fusion
algorithm as a confrontation game between maintaining infrared thermal radiation information and
maintaining visible appearance texture information. The generator attempts to generate an image that
combines the main infrared intensity and additional visible gradients, and the goal of the discriminator
is to force the fused image to have more texture details. This enables the fused image to maintain the
thermal radiation of the infrared image and the texture details of the visible image at the same time.

2.1.3 Image Fusion Based on Auto-Encoder

As research progresses, scholars have proposed numerous image fusion methods based on autoen-
coders. These methods mainly use autoencoders to extract features from source images and complete
image reconstruction. During the feature fusion stage, manually designed fusion rules are usually
applied. One typical fusion method based on AutoEncoder (AE) is DenseFuse [41], which consists
of convolutional layers, fusion layers, and dense blocks. However, considering the limited capability
of the autoencoder structure in feature extraction, Li and others proposed NestFuse [42] and RFN-
Nest [43]. NestFuse introduces nested connections in the network to extract multi-scale features from
source images, while RFN-Nest designs a detail preservation loss function and feature enhancement
loss function to encourage the network to achieve a higher degree of detail feature integration.

As multi-scale features have not completely eliminated redundant information in source images,
Jian et al. [44] adopted an attention mechanism, focusing on the salient targets and texture details of
source images. To further explore the interpretability of the fusion field, DRF [45] decomposes the
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source image into scene components and attribute components and fuses them separately. Although
DRF considers the interpretability of feature extraction, it ignores the interpretability of fusion rules,
that is, manually formulated fusion rules may not be suitable for merging deep features. Therefore,
Xu et al. [46] proposed a learnable fusion rule, which improves the interpretability of the network by
evaluating the importance of each pixel to the classification result.

2.2 U-Net and Skip Connection

U-Net [47,48] is a structure of Convolutional Neural Networks (CNN), initially proposed by
Ronneberger and others in 2015, specifically designed for image segmentation tasks. What makes it
unique is that the network presents a U-shaped structure. Although it was initially used for medical
image segmentation, it was later widely applied in the field of computer vision, covering various image
segmentation problems.

U-Net introduced the concept of skip connections, connecting the feature maps of the encoder
with those of the corresponding decoder layer. This connection mechanism helps to fuse global and
local information at different scales, thereby enhancing the model’s perception of details such as target
boundaries. The design of this structure aims to optimize image segmentation tasks, enabling the
network to more effectively capture and understand complex structures in images.

It is worth noting that in addition to image segmentation tasks, U-Net is also used as a feature
extractor in various applications. Samkari et al. [49] also used U-Net in the field of human pose
estimation.

2.3 Datasets Introduction

The experiments in this paper utilize three main datasets: FLIR, TNO [50], MSRS [38], and
Roadscene [51]. The FLIR dataset (available at www.flir.com/oem/adas/adas-dataset-form/) was
released in July 2018, 7,498 total video frames recorded at 24 Hz and are 1:1 match between thermal
and visible frames. This dataset assists developers in training convolutional neural networks, enabling
the automotive industry to utilize FLIR’s cost-effective thermal imagers and develop safer and more
efficient autonomous driving systems. The TNO dataset comprises near-infrared, long-wave infrared,
or thermal infrared nighttime images along with visible light images captured in military and various
other scenes. These images are suitable for research on image fusion algorithms in complex scenarios.
The MSRS dataset consists of high-quality aligned infrared and visible light image pairs. These image
pairs include diverse scenes such as roads, vehicles, and pedestrians. The Roadscene dataset contains
221 aligned pairs of visible light and infrared images, showcasing a variety of scenes including roads,
vehicles, and pedestrians.

These datasets were selected to provide diverse scenes and ample data support for our image fusion
algorithm research.

3 Method

In this section, we will introduce the BDPartNET algorithm and the proposed network structure.
In Section 3.2, we will provide a detailed description of our intensity enhancement module and texture
enhancement module. In addition, we will also explain the details of the training and testing phases.

www.flir.com/oem/adas/adas-dataset-form/
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3.1 Problem Formulation

When visible light images suffer from illumination degradation during nighttime, the prob-
lem of fusing nighttime infrared and visible light images can be divided into two sub-problems:
Feature enhancement for visible light and infrared images, and fusion strategy. However, existing
approaches that simply combine enhancement and fusion algorithms suffer from significant texture
loss and insufficient contrast. Therefore, bridging the gap between enhancement and fusion tasks and
jointly modeling them becomes crucial for infrared and visible light image fusion. Addressing these
challenges, we propose BDPartNet, which extracts prominent features from both modalities before
performing the fusion task.

Thus, through feature enhancement and our designed encoder, the intensity information of the
infrared image and the texture information of the visible image can be better preserved. During
training, only individual images are used as input and output, without involving multi-modal fusion.
Visible light and infrared images are inputted into the shared encoder and decoder during training to
better train the model’s ability to decompose images. Through our carefully designed loss function,
it is straightforward to decompose the intensity and texture features of an image, which conveniently
aligns with the emphasis on these two features in infrared and visible light, respectively.

In the fusion stage, as depicted in Fig. 1, registered infrared and visible light images are separately
fed into the encoder for decomposition. At this point, utilizing the trained network, we obtain the
intensity feature map of the infrared image and the texture detail feature map of the visible light image.
Knowing that infrared images excel in intensity information while visible light images excel in texture
information, we perform a channel-wise fusion of these advantageously modal-specific feature maps,
followed by dimensionality reduction and input to the decoder for image reconstruction, thus yielding
a fused image with rich information.

During the training phase, our objective is to train a model with a well-designed loss function
capable of effectively decomposing the features of a source image into two parts. Subsequently, these
decomposed features are fused, aiming to maintain as much similarity as possible to the original
image before decomposition. By training on datasets of both modalities, we aim to develop a robust
shared encoder and decoder for subsequent fusion tasks. The training process for decomposition can
be represented as follows.

3.2 BDPartNet Architecture

Our neural network comprises an encoder, a decoder, and feature enhancement modules. As
illustrated in Fig. 1, the encoder takes input from either infrared or visible light images. To facilitate
subsequent feature enhancement, we employ a dual-branch convolutional approach to generate two
distinct feature maps, which we term as intensity feature map and the detail feature map. To better
process these two types of features, we design two specific feature enhancement modules, namely the
contrast enhancement module and texture enhancement module, which are applied to each feature
map, respectively. Subsequently, the enhanced detail feature map and intensity feature map are simply
concatenated for fusion. Given that our model follows an end-to-end architecture, a decoder is
designed to decode the fused feature map, ultimately restoring the original image. To prevent loss
of detail and expedite network convergence, the results of the first and second convolutional layers in
the encoder are respectively added to the inputs of the penultimate and antepenultimate layers in the
decoder.
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Figure 1: The overall framework of the proposed BDPartNet

Thus, through feature enhancement and our designed encoder, the intensity information of the
infrared image and the texture information of the visible image can be better preserved. During
training, only individual images are used as input and output, without involving multi-modal fusion.
Visible light and infrared images are inputted into the shared encoder and decoder during training to
better train the model’s ability to decompose images. Through our carefully designed loss function,
it is straightforward to decompose the intensity and texture features of an image, which conveniently
aligns with the emphasis on these two features in infrared and visible light, respectively.

In the fusion stage, as depicted in Fig. 1, registered infrared and visible light images are separately
fed into the encoder for decomposition. At this point, utilizing the trained network, we obtain the
intensity feature map of the infrared image and the texture detail feature map of the visible light image.
Knowing that infrared images excel in intensity information while visible light images excel in texture
information, we perform a channel-wise fusion of these advantageously modal-specific feature maps,
followed by dimensionality reduction and input to the decoder for image reconstruction, thus yielding
a fused image with rich information.

During the training phase, our objective is to train a model with a well-designed loss function
capable of effectively decomposing the features of a source image into two parts. Subsequently, these
decomposed features are fused, aiming to maintain as much similarity as possible to the original
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image before decomposition. By training on datasets of both modalities, we aim to develop a robust
shared encoder and decoder for subsequent fusion tasks. The training process for decomposition can
be represented as follows:

φ = E(φD, φC) (1)

In the equations below, φ represents the feature map of the input image. If the image is a color
image, we only utilize the Y channel from the Ycrcb color space. E denotes the dual-branch feature
enhancement block, while φD and φC represent the separated and enhanced features, respectively, used
for subsequent fusion. The fusion process can be represented as follows:

φF = F(φ ir
C, φvis

D ) (2)

where φF represents the fused image, F denotes the process of channel concatenation followed by
input to the decoder for fusion. φ ir

C represents the intensity feature map of the infrared image after
decomposition and enhancement, while φvis

D represents the texture feature map of the visible light image
after decomposition and enhancement.

3.3 Detail Enhancement Module (DEM)

After encoding in the encoder, two features were forcibly decomposed, with one part defined as
the texture module, as we designed a detail enhancement module (DEM) as shown in Fig. 2. Inspired
by ResBlock [52–54], DEM consists of a main convolutional stream and two parallel residual streams.
To preserve the most fundamental features, the mainstream passes through two 3 × 3 convolutions
and one 1 × 1 convolution, where the 3 × 3 convolutions are with the LReLU activation function. The
two residual streams are positioned before and after, respectively. The first residual stream directly
calculates feature maps using the Laplacian operator, then concatenates them directly before the
mainstream convolutions, enhancing the input gradient of the mainstream. The second residual stream
preserves texture features through the Sobel operator, connecting a 1 × 1 convolution to match channel
differences, and finally performs Element-wise addition after the main stream’s convolution operation.

Figure 2: The detailed structure of detail enhancement module

3.4 Contrast Enhancement Module (CEM)

As shown in Fig. 3, the decomposed intensity features are input into the Contrast Enhancement
Module (CEM), allowing feature maps of different scales to be input into the network. This enhances
the details of objects of different sizes. Typically, convolution kernels of the same size struggle to
capture information at different scales. Therefore, four convolution kernels of different sizes are used
to capture multi-scale depth features. To minimize the loss of detail information during the process, no
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pooling layers are added in the multi-scale convolution operation. The kernel sizes of the multi-scale
convolution layer are 1 × 1, 3 × 3, 5 × 5, and 7 × 7, respectively. The convolution layer chooses the
LReLU activation function. Then, the obtained features are concatenated along the channel dimension
and sent to the standard deviation calculation layer. We designed a convolution layer to calculate the
standard deviation of each small area of the feature map. Unlike ordinary convolution, the parameters
in the standard deviation convolution kernel are determined by the standard deviation of the feature
maps of different sizes and do not undergo backpropagation during the network training process. The
calculation formula is computed as

σij = 1
2r + 1

√∑
−r≤p,q≤r

(φb(i + p, j + q) − μij)2 (3)

where r is the radius of the window. μij is the mean value of the window with radius r centered on (i, j),
and σij is the standard deviation. φb represents the eigenvalue on the corresponding coordinate. Then
we normalize the obtained standard deviation parameters and convolve the feature map again. We
incorporate the obtained feature maps into the attention mechanism so that feature maps of different
channels have corresponding weights. Finally, the contrast-enhanced feature map and the texture-
enhanced feature map are concatenated and sent into the decoder. We designed a contrast block in the
CEM to enhance the local contrast information at the feature level.

Figure 3: The detailed structure of contrast enhancement module

3.5 Encoder and Decoder

For feature extraction and image restoration, we have designed an encoder and decoder.

The encoder is responsible for feature extraction, where the Cov1 convolutional block extracts the
raw features from the source image. We first perform reflection padding on the input image, followed
by a 3 × 3 convolution for feature extraction. A BatchNorm layer is added for accelerated convergence
and prevention of overfitting. The Cov1 convolutional block utilizes the PReLU activation function.
The features are then passed through Cov2 for convolution and subsequently undergo dual-branch
convolution to forcibly decompose them into intensity and texture features for enhancement.

The decoder concatenates the enhanced intensity and texture features and performs three decon-
volutions for image restoration. Cov2, Cov5, and Cov6 share the same structure. The first two convo-
lutional blocks in the decoder are intended to increase the depth of the network, thereby enhancing
its robustness. Finally, the features are passed through Cov7 for deconvolution and dimensionality
reduction to restore the source image.

Inspired by U-Net skip connections, we have integrated short-circuit connections into our network
design. As depicted in Fig. 1, it can be observed that there are two skip connections between the
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encoder and decoder. The skip connection between the sixth and seventh convolutional blocks is
aimed at minimizing the loss of texture detail between the source image and the restored image
during training. Similarly, the skip connection between the fifth and sixth convolutional blocks aims
to minimize the loss of intensity information.

3.6 Loss Function

Image decomposition The Encoder forcibly decomposes the feature maps extracted from the source
images into two types of features: One is the intensity feature used to extract pixel intensity information
of the two images, and the other is detail feature map used to extract gradient information of the two
images. The L1 − Loss which is the loss function for image decomposition is as follows:

L1 = �
(‖GV − GI‖2

2

) + β1

(‖TV − TI)‖2
2

)
(4)

GV and TV represent the intensity and detail feature map of visible light image V , while GI and TI

represent the background and detail feature map of infrared image I . � is the tanh function, which is
used to restrict the gap to the interval (−1, 1). β1 is the tuning parameter.

Image reconstruction During the image fusion stage, also known as the reconstruction stage, to
better preserve the intensity and texture information of the source images, we designed a well-crafted
reconstruction loss function L2 − Loss given by

L2 = β2(f (I , Î) + β3(f (V , V̂) + β4||∇V − ∇V̂ ||1 + β5||∇I − ∇ Î||1 (5)

The input infrared image and visible light image are denoted by I and V , respectively, and the
reconstructed images are denoted by Î and V̂ . ∇ denotes the gradient operator, and

f
(

P, P̂
)

= ‖P − P̂‖2
2 + λLSSIM

(
P, P̂

)
(6)

where P represent the input image and P̂ represent the reconstructed image, and λ is the hyperparam-
eter. SSIM [55] is used in the formula to measure the structural similarity of two images. LSSIM can be
described as

LSSIM

(
P, P̂

)
=

1 − SSIM
(

P, P̂
)

2
(7)

It is important to note that the L2 − norm measures the consistency of pixel intensity between
the original and reconstructed images, while LSSIM calculates differences in brightness, contrast, and
structure of the images. Particularly, visible images are rich in texture. In order to ensure texture
consistency, we use gradient sparse penalty to regularize and reconstruct the visible image.

Combining L1 and L2 , the total loss LTotal can be expressed as

LTotal = L1 + L2

= �(‖GV − GI‖2
2) + β1(‖TV − TI)‖2

2) + β2(f (I , Î)

+ β3(f (V , V̂) + β4||∇V − ∇VV̂ ||1 + β5||∇I − ∇IÎ||1

where β1, β2, β3, β4, β5 are the tuning parameters.
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4 Experimental Results

In this section, we demonstrate the generalization and feasibility of our method through exper-
imental processes and results. Firstly, we describe the experimental setup. Then, we compare the
qualitative and quantitative results of our method with the experimental results of other networks to
demonstrate the superiority of our approach. Finally, we validate the effectiveness of certain modules
in our network through a series of ablation experiments.

4.1 Experimental Configurations

We trained our network using the FLIR dataset and tested it on three different datasets: TNO,
MSRS, and RoadScene. The TNO dataset comprises multispectral nighttime images of various
military-related scenarios. Since our network performs fusion on single-channel grayscale images, for
RGB images in the dataset, we experimented by decomposing the Y channel from the Ycrcb color
space to obtain grayscale images.

For quality assessment of image fusion, six commonly adopted metrics in academia are typically
used, including entropy (EN), standard deviation (SD), mutual information (MI), visual information
fidelity (VIF), spatial frequency (SF), Qabf, and structural similarity index measure (SSIM). EN
measures the amount of information contained in the fused image, and MI evaluates the amount of
information transmitted from the source image to the fused image. Both EN and MI evaluate fusion
performance from the perspective of information theory. VIF evaluates the information fidelity of
the fused image from the perspective of the human visual system. SF measures the spatial frequency
information contained in the fused image. SD reflects the distribution and contrast of the fused image
from a statistical perspective. Qabf evaluates the amount of edge information transmitted from the
source image to the fused image. EN, SF, and SD are no-reference indicators. In addition, the larger
the EN, MI, VIF, SF, SD, Qabf, and SSIM of the fusion algorithm, the better the fusion performance.

4.2 Implementation Details

We randomly select 180 images from the FLIR dataset as training samples. Before training, all
images are converted to grayscale. Meanwhile, all input images are cropped to a size of 128 × 128
pixels before being fed into the encoder for training.

4.3 Hyperparameters Setting

Through experience summary, the adjustment parameters used in BDPartNet are set as follows:
β1 = 0.5, β2 = 2, β3 = 3, β4 = 7, β5 = 3 and λ = 5. During the training phase, Adam optimized the
network for 180 batches with a size of 24. We set the initial learning rate to 10−2, and reduce it by a
factor of 10 every 40 epochs. Fig. 4 shows the relationship between the loss curve and the epoch index.
The results show that after 180 epochs, no matter the total loss or other characteristic loss, the decline
curve is very flat in the learning process, so the network matches our parameter settings very well.
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Figure 4: Loss curves over 180 epochs

4.4 Experimental Results

In this section, we test BDPartNET on three test sets and compare our method with nine state-of-
the-art methods, including DIDFuse [56], U2Fusion [1], SDNet, RFNet [57], TarDAL [58], DeFusion
[59], and ReCoNet [60]. All these seven methods are publicly implemented, and we set parameters
according to the reports in the original papers.

Qualitative results. We show the qualitative comparison in Fig. 5 Apparently, our method better
integrates the thermal radiation information in the infrared image and the detailed texture in the
visible image. Objects in dark areas are clearly highlighted, making it easy to distinguish foreground
targets from the background. In addition, background details that are difficult to recognize due to
low illumination have clear edges and rich contour information, which helps us better understand the
scene.

Quantitative results. Then, we use eight metrics to quantitatively compare the aforementioned
results, as shown in Tables 1–3. Our method exhibits excellent performance on nearly all metrics,
demonstrating that our approach is applicable to a variety of lighting conditions and target categories.
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Figure 5: Comparison of qualitative results with SOTA fusion methods. Areas marked by red and
green boxes are amplified for ease of inspection

Table 1: Quantitative experimental results based on the TNO dataset. Bold indicates the best value [61]

Dataset: TNO infrared-visible fusion dataset

Method EN SD SF MI SCD VIF Qbaf SSIM

DID 6.97 45.12 12.59 1.70 1.71 0.60 0.40 0.81
U2F 6.83 34.55 11.52 1.37 1.71 0.58 0.44 0.99
SDN 6.64 32.66 12.05 1.52 1.49 0.56 0.44 1.00
RFN 6.83 34.50 15.71 1.20 1.67 0.51 0.39 0.92
TarD 6.84 45.63 8.68 1.86 1.52 0.53 0.32 0.88
DeF 6.95 38.41 8.21 1.78 1.64 0.60 0.41 0.96
ReC 7.10 44.85 8.73 1.78 1.70 0.57 0.39 0.88
BDPartNet 7.24 46.69 13.19 2.17 1.84 0.63 0.55 1.02
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Table 2: Quantitative experimental results based on the MSRS dataset. Bold indicates the best value

Dataset: MSRS infrared-visible fusion dataset

Method EN SD SF MI SCD VIF Qbaf SSIM

DID 4.27 31.49 10.15 1.61 1.11 0.31 0.20 0.24
U2F 5.37 25.52 9.07 1.40 1.24 0.54 0.42 0.77
SDN 5.25 17.35 8.67 1.19 0.99 0.50 0.38 0.72
RFN 5.56 24.09 11.98 1.30 1.13 0.51 0.43 0.83
TarD 5.28 25.22 5.98 1.49 0.71 0.42 0.18 0.47
DeF 6.46 37.63 8.60 2.16 1.35 0.77 0.54 0.94
ReC 6.61 43.24 9.77 2.16 1.44 0.71 0.50 0.85
BDPartNet 6.80 43.87 10.67 3.10 1.65 0.94 0.52 0.98

Table 3: Quantitative experimental results based on the RoadScene dataset. Bold indicates the best
value

Dataset: RoadScene infrared-visible fusion dataset

Method EN SD SF MI SCD VIF Qbaf SSIM

DID 7.43 51.58 14.66 2.11 1.70 0.58 0.48 0.86
U2F 7.09 38.12 13.25 1.87 1.70 0.60 0.51 0.97
SDN 7.14 40.20 13.70 2.21 1.49 0.60 0.51 0.99
RFN 7.21 41.25 16.19 1.68 1.73 0.54 0.45 0.90
TarD 7.17 47.44 10.83 2.14 1.55 0.54 0.40 0.88
DeF 7.23 44.44 10.22 2.25 1.69 0.63 0.48 0.89
ReC 7.36 52.54 10.78 2.18 1.74 0.59 0.43 0.88
BDPartNet 7.54 54.47 16.27 2.41 1.90 0.69 0.54 0.97

4.5 Ablation Study

Ablation studies involve assessing the effectiveness of specific modules within a network by
systematically removing these modules and evaluating the overall performance. Through such exper-
iments, the contribution of individual modules to the network’s functionality can be discerned.
Separately removing the L2 Loss, CEM module, and DEM module, the impact on performance
was observed to conduct ablation experiments on our architecture. The qualitative findings of the
experimental groups are depicted in Fig. 6, while the quantitative results are summarized in Table 4.

4.5.1 Reconstruction Loss study

During the process of image reconstruction, we imposed pixel-level constraints on both the
decomposed feature maps of the two modalities and the source image. This ensures that the resulting
fused image effectively retains the salient features of each modality. To further validate our approach,
we conducted an ablation study aimed at eliminating the reconstruction loss. From Fig. 6, it can be
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observed that without the addition of L2-Loss, the fused image essentially only preserves the general
outline of objects. For instance, as shown in Fig. 6, without L2-Loss, it is difficult to discern details
such as bushes and bricks on the ground, highlighting a significant disparity in fusion effectiveness
compared to our model.

Figure 6: Ablation experiments on the L2-Loss, CEM, and DEM modules separately and compared
the results

Table 4: Ablation experiment results in the testset of TNO. Bold indicates the best value

W/O L2 − Loss W/O CEM W/O DEM Ours

EN 6.23 3.87 3.21 7.24
SD 37.81 30.26 26.5 46.69
VIF 0.48 0.21 0.26 0.63
SSIM 0.92 0.83 0.71 1.02

4.5.2 CEM and DEM Study

Our Contrast Enhancement Module (CEM) primarily focuses on enhancing edge contrast of
objects and shapes of different sizes from a multi-scale perspective, thereby enriching the information
in the fused image and maximizing the utilization of thermal radiation information. The Detail
Enhancement Module (DEM) enhances textures through Laplacian operation and Sobel operator,
making full use of the textures in the visible light images. The integration of these two modules yields
an efficient fused image. As shown in Fig. 6 of the ablation experiment results, it is evident that
the thermal radiation information of indoor scenes and human subjects becomes blurry, with less
defined boundaries of thermal radiation targets and decreased local contrast. Since we concatenate
two decomposed feature maps during the fusion stage and then perform dimensionality reduction, the
ablation experiments only showcase half of the features. Hence, there is noticeable noise throughout
the entire image. However, enhanced textures can still be observed in features such as trees, poles, and
floor tiles. The Quantitative results of these experiments are presented in Table 4.

5 Conclusion

In response to the IVIF challenge, we introduced a novel Autoencoder (AE) network aimed
at addressing the complexity of dual-scale image decomposition and reconstruction. Our approach
leverages an encoder-decoder architecture, with the encoder responsible for dual-scale image decom-
position and the decoder tasked with image reconstruction. Through extensive experimentation and
analysis, we have demonstrated the effectiveness of our proposed method.



4636 CMC, 2024, vol.79, no.3

During the training phase, our model’s encoder is trained to effectively output background and
feature maps, which are then faithfully reconstructed by the decoder to reconstruct the original image.
This process ensures that our model learns to capture both global contextual information and subtle
details present in the input images, thereby enhancing its ability to accurately reconstruct complex
scenes.

In the testing phase, we introduced a fusion layer between the encoder and decoder, promoting
the fusion of background and detail feature maps through a specific fusion strategy. This fusion
mechanism enables our model to effectively combine information from multiple scales and generate
fused images that highlight targets and complex details. We conducted extensive experiments on the
TNO, MSRS, and RoadScene datasets, yielding qualitative and quantitative evidence supporting the
superiority of our proposed method.

Our qualitative analysis indicates that our model adeptly generates fused images, preserving
important target features and effectively capturing subtle details present in the input scenes. Fur-
thermore, our quantitative evaluation demonstrates significant improvements in various performance
metrics (including SD, SF, etc.), further confirming the effectiveness of our method.

By addressing the key challenges posed by the IVIF problem and achieving superior performance
on benchmark datasets, our proposed method represents a significant advancement in the field of
image fusion. We believe that our work lays a solid foundation for future research in this area and
holds tremendous potential for practical applications in domains such as surveillance, remote sensing,
medical imaging, Earth observations, and beyond.
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