
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.051598

ARTICLE

Detecting Malicious Uniform Resource Locators Using an Applied
Intelligence Framework

Simona-Vasilica Oprea* and Adela Bâra

Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Bucharest, 010572, Romania

*Corresponding Author: Simona-Vasilica Oprea. Email: simona.oprea@csie.ase.ro

Received: 10 March 2024 Accepted: 17 May 2024 Published: 20 June 2024

ABSTRACT

The potential of text analytics is revealed by Machine Learning (ML) and Natural Language Processing (NLP)
techniques. In this paper, we propose an NLP framework that is applied to multiple datasets to detect malicious
Uniform Resource Locators (URLs). Three categories of features, both ML and Deep Learning (DL) algorithms and
a ranking schema are included in the proposed framework. We apply frequency and prediction-based embeddings,
such as hash vectorizer, Term Frequency-Inverse Dense Frequency (TF-IDF) and predictors, word to vector-
word2vec (continuous bag of words, skip-gram) from Google, to extract features from text. Further, we apply
more state-of-the-art methods to create vectorized features, such as GloVe. Additionally, feature engineering
that is specific to URL structure is deployed to detect scams and other threats. For framework assessment, four
ranking indicators are weighted: computational time and performance as accuracy, F1 score and type error II.
For the computational time, we propose a new metric-Feature Building Time (FBT) as the cutting-edge feature
builders (like doc2vec or GloVe) require more time. By applying the proposed assessment step, the skip-gram
algorithm of word2vec surpasses other feature builders in performance. Additionally, eXtreme Gradient Boost
(XGB) outperforms other classifiers. With this setup, we attain an accuracy of 99.5% and an F1 score of 0.99.

KEYWORDS
Detecting malicious URL; classifiers; text to feature; deep learning; ranking algorithms; feature building time

1 Introduction

In this section, we focus on the role of Natural Language Processing (NLP) and various techniques
applied for detecting malicious URL, existing practice in the field, motivation and contribution of
current research.

1.1 The Role of NLP and Various Techniques for Detecting Malicious URL

Over recent decades, the majority of data has been unstructured, predominantly appearing in
formats such as text, images, and videos [1]. This data can be categorized as big data due to its
considerable volume, rapid update frequency, and clear diversity. Sensors and humans generate large
amounts of data as they tweet, research, consume, visit websites, do online shopping, socialize, etc.
Text data is analysed together with images and emoticons to understand whether the context is

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051598
https://www.techscience.com/doi/10.32604/cmc.2024.051598
mailto:simona.oprea@csie.ase.ro

3828 CMC, 2024, vol.79, no.3

straightforward, or sarcasm is also present because such combination might reveal interesting findings.
Usually, the text generated by humans includes considerable noise. Therefore, pre-processing text
implies cleaning and transforming the initial text into a meaningful text that can be further processed
with Machine Learning (ML) algorithms [2,3].

In this context, the NLP techniques become useful. It may uniform the text from the case point
of view as text processing is sensitive to lower/upper text, considering “text”, “tExt” and “TEXT”
different although they have the same meaning. Eliminating of stopwords, punctuation signs, spelling,
standardization of acronyms, normalization of text by stemming and lemmatization considering
different forms of the same word root are just a few techniques to pre-process the text. The presence
of stopwords across the corpus may negatively influence the output. Several libraries in Python, for
instance, perform lemmatization, but they have to be tested as their performance significantly differs.
Processing text has many applications as now as typing the writer may receive word suggestions. Text
classification is one common application to detect email spam, provide recommendations, prioritize
tasks, etc. Text-to-feature (t2f) transformation implies encoding text into numerical features that are
further processed by the ML algorithms [4,5]. One-hot encoder, count vectorizer, Term Frequency–
Inverse Document Frequency (TF-IDF), and word embedding to retain the context in which the word
occurs are just a few techniques that allow the t2f transformation [6,7]. Another interesting application
of text processing is text summarization that reveals the meaning of a long text in a brief report.
Text generation is frequently applied to assist customers who visit websites and use the chat provided
by the website to learn more about certain products. Text generation is also used to interact with
users online and collect data, documents, etc. interactively. Text regression can provide a prediction
of the time necessary to solve the damage in case of a car accident, for instance, by analysing the
text inserted for a certain car event. Furthermore, it can predict illegal transactions, and churn rates,
or it may analyse political speeches, transform sound into text and estimate their impact on the
stock markets. Text similarity is used to identify plagiarism, provide content-based recommendations,
suggest complementary products or alternatives [8], etc. A relevant text analysis may select the CVs that
match a job description or provide a selection of journals that match the manuscript topic. Moreover,
Latent Dirichlet Allocation (LDA) is a useful NLP technique applied to multiple texts in order to
identify the main topics that are preponderant [9–11]. For instance, abstracts or the entire articles’ text
that implies NLP, ML and Artificial Intelligence (AI) can be pre-processed and then LDA applied
to examine the topics approached by researchers over decades aiming to identify potential gaps in
the literature. Furthermore, the impact of news media on cryptocurrencies volatility using LDA is
analysed [12].

The process of malicious URL detection involves the identification and prevention of access to
URLs leading to web pages linked with harmful activities like phishing, the dissemination of malware
or various cyber threats. According to the most recent data from the Federal Trade Commission
(FTC), in 2022, American consumers’ losses due to fraud reached $8.8 billion, marking a 30 percent
increase compared to 2021. The largest portion of these losses, amounting to over $3.8 billion, was
attributed to investment scams, including cryptocurrency schemes, which was twice the figure reported
in 2021. The FTC discovered that individuals in the 20–29 age group reported more frequent monetary
losses compared to those in the 70–79 age group. However, when older adults did experience financial
losses, the amounts involved were typically higher. This is attributed to the fact that many retirees
possess valuable assets such as savings, pensions, life insurance policies or property, which make
them attractive targets for scammers. According to the FTC, scam texts alone led to consumer losses
exceeding $326 million in 2022. There is a large variety of frauds that may affect us when clicking on
a URL link [13,14]. The organizations that are behind the malicious links make them look almost

CMC, 2024, vol.79, no.3 3829

similar to genuine ones. They often use the identity of benign sites and scam people. Usually, the URL
contains a small change that is not easily detected by users (obfuscation) [15,16]. Therefore, more
efforts have to be put into identifying such issues that ultimately deceive people and take advantage of
their vulnerabilities [17,18].

The most common techniques and methods for detecting malicious URLs are signature-based
detection, heuristic analysis, reputation-based detection, behaviour-based detection, ML and AI,
sandboxing, real-time URL scanning, URL blacklists, user education, etc. [19], emphasizing a feature-
building approach [20] and feature selection [21]. Signature-based detection entails the upkeep of
a database containing recognized malicious URLs and utilizing pattern matching to detect URLs
that exhibit these established patterns. Signature-based detection is a common method employed
by antivirus and security software to restrict access to harmful websites [22,23]. Heuristic analysis
implies the examination of a URL for different suspicious attributes, such as unusual or concealed
characters, lengthy sequences of random characters or recognized patterns commonly linked with
phishing attempts [24]. Reputation-based detection relies on the credibility of a URL or its hosting
domain. It evaluates whether a website or domain has a track record of being linked to malicious
activities. Reputation databases are consistently refreshed with data concerning websites [25,26].
Behaviour-based detection examines the actions and conduct of a website or URL. This involves
scrutinizing the website’s content, the interactions it initiates with the user’s system or the identification
of established malicious scripts [27,28]. The detection of malicious URLs is progressively making use
of ML and AI algorithms and methods [29,30]. These systems analyse extensive datasets to pinpoint
patterns and irregularities in URLs and their activities. Sandboxing entails running a URL or website
within a controlled and isolated environment to monitor its behaviour [31]. If the website displays
malicious behaviour, it can be prevented from running. Usually, web security solutions offer real-
time URL scanning and filtering, which means they assess and classify URLs in real time as users
attempt to access them, thereby preventing access to harmful websites [32]. Maintaining a blacklist
of recognized malicious URLs is also a common practice. When a user tries to access a URL on
the blacklist, their access is denied [33,34]. Nevertheless, educating users about the risks associated
with clicking on suspicious links and how to identify malicious URLs is an important component of
any security strategy [35]. It is known that malicious actors are constantly adapting their strategies,
making URL detection an ongoing challenge. Consequently, a combination of the techniques and
regular updates to security systems are often required to effectively identify and block malicious URLs,
thereby safeguarding against cyber threats.

1.2 Motivation and Contribution of Current Research

In this paper, we propose a framework using multiple datasets and testing three main categories
of features: frequency, prediction and structure-based embeddings. Both ML and DL algorithms
are applied to predict the nature of the URL, evaluating and ranking the results based on several
performance criteria. In the pursuit of this research, our motivation stems from the significance of
the task, driven by the fact that detecting malicious URLs holds great importance for a multitude of
reasons. The main objective is to safeguard users from the perils of cyber threats. Malicious URLs
expose individuals to a range of online risks, encompassing malware infiltrations, phishing assaults,
identity theft, and monetary harm [36]. The identification of these URLs plays a pivotal role in averting
users from succumbing to these dangers. Moreover, malicious URLs have the potential to be exploited
for the theft of sensitive information. Detecting these URLs is instrumental in protecting personal
and confidential data from being compromised. Additionally, malicious URLs take advantage of

3830 CMC, 2024, vol.79, no.3

weaknesses in a user’s device or network. Identifying them is crucial to forestall security breaches
and ensuring the protection of the integrity of computer systems and networks [37].

Furthermore, organizations have a pressing need to shield their networks and systems from
malicious URLs to avert data breaches, financial losses and reputational damage. Malicious URLs are
frequently utilized for the dissemination of malware, which may result in catastrophic consequences.
Identifying these URLs is paramount in preventing the infiltration of malware into devices and
networks. Usually, malicious URLs are linked to phishing attacks, designed to deceive individuals into
divulging personal information. Additionally, malicious URLs, including QR codes, lead to financial
fraud, such as online scams, thus, identifying them is imperative to protect users from fraudulent
activities [38].

Given that users rely extensively on the Internet for various tasks (shopping, banking, booking,
payments, trading, etc.), maintaining trust is a cornerstone of the online experience. The detection
and blocking of malicious URLs are pivotal in upholding trust in online services and platforms [39].
However, the malicious actors are continually adjusting their strategies and generating new malicious
URLs. Detecting these evolving threats necessitates perpetual vigilance and ongoing technological
enhancements. Thus, the identification of malicious URLs is significant for safeguarding individuals,
institutions, and society from a wide spectrum of online threats [40,41].

In the modern digital era, Android has risen to become the most widely used mobile operating
system globally, powering billions of smartphones and various connected devices. The open and
adaptable nature of the Android ecosystem has not only fostered innovation and user empowerment
but has also, unintentionally, made it susceptible to a continuous influx of cyber threats. Among these
threats, Android malware stands out as a pervasive and ever-evolving menace. In 2022, according to
the SECURELIST by Kaspersky, there was a significant upsurge in mobile malware, with over 5.7
million blocks1. This statistic highlights the exponential growth in mobile malware incidents in recent
times. Android malware encompasses a wide range of malicious software specifically crafted to exploit
vulnerabilities, pilfer sensitive information, disrupt normal operations and, in some cases, extort users.
Often concealed within seemingly harmless applications, these malicious programs pose a substantial
risk to personal privacy, data security and the overall integrity of the Android ecosystem. Given this
looming threat, the necessity to detect and categorize malware has never been more crucial.

Our contribution consists of proposing a framework for detecting malicious URL that includes
four stages, such as generalization by using multiple datasets, feature options, algorithms options and
assessment. In the proposed malicious URL detection framework, we envision an exploratory data
analysis stage, 3 feature builders that rely on NLP techniques that run in parallel, multiple classifiers
implemented on various datasets to ensure generalization of the results and an evaluation stage. The
proposed framework uniquely combines the data pre-processing stage using NLP techniques and
processing stages using ML algorithms as well as a more complex evaluation that takes into account
performance metrics of various classifiers as well as the time required to build features that are also
significant in the case of real-time detection tools. The results are optimized by choosing the best
solution that maximizes the F1 score and minimizes the computational time and other metrics of the
confusion matrix such as false positive rate or type error II.

As a novelty, we propose a pipeline to investigate URLs and additionally propose an evaluation
step in which the results are weighted using the computational time, confusion matrix and other metrics
obtained from the classification of the URLs. Furthermore, we suggest incorporating a new metric,

1 https://securelist.com/it-threat-evolution-q2-2023-mobile-statistics/110427/

https://securelist.com/it-threat-evolution-q2-2023-mobile-statistics/110427/

CMC, 2024, vol.79, no.3 3831

called Feature Building Time (FBT), to evaluate the performance of a malicious URL detection
tool. This metric takes into account not only the computational time required for running the ML
algorithm, but also the computational time needed for building or extracting the features, which can
vary significantly depending on the technique.

The remainderof the paper is structured in several sections. The most recent and relevant related
works are briefly presented in Section 2, whereas in Section 3, the URL detection framework is
proposed offering a flowchart that describes the pipeline. The results of implementing various feature
builders and ML algorithms are showcased in Section 4, the conclusion and interesting insights in
Section 5.

2 Literature Review

In this section, we review several research papers and approaches related to the detection of
malicious URLs. This section consists of two subsections: (1) URL structured-based approach in
which the structure of the URL is used to create features and (2) Advanced NLP techniques and ML
algorithms-based approach in which various techniques of vectorization are implemented to convert
text to numeric vectors that can be handled by ML and DL algorithms.

2.1 URL Structured-Based Approach

Malicious URL detection based on ML concerns numerous researchers and entrepreneurs. Both
companies and freelancers provide online tools to detect malicious websites2. They scan the URL that
is inserted by the user and may identify potential issues. For instance, URLhaus project shares malware
URLs3 to users to block them. Fake Sites List is a project that offers more than 160,000 of URL4

of active problematic websites. Moreover, numerous benign URLs are provided by Alexa, Umbrella,
Majestic and Farsight5. The websites’ security-related communities maintain blacklists of malicious
URLs based on denouncements and detection tools. However, they are sometimes overpassed because
new and numerous scams appear constantly. Even if blacklists do exist, they are seldom checked when
shopping, getting a prize or doing Internet searches. Human nature is enthusiastic when gaining a
prize even if a lottery ticket has not been bought. Getting a rapid benefit out of a marvelous efficient
investment scheme is always appealing. Usually, people that refrain from clicking on such a link did
not click it using their intuition and rarely after checking the blacklists.

Furthermore, the detection algorithms must constantly improve as the scammers always improve
their methods to deceive people as those who commit fraud are many times one step ahead of those
who fight fraud. The interaction in social networks is largely based on texts that indicate NLP
techniques to handle and pre-process large volumes of data as text. For instance, a Markov model
was proposed in [42] to estimate the level of trust in social networks and how text can influence users
by the level of trust. Several research studies proposed methods to identify malicious URLs using
ML and DL algorithms. In [43], the authors combined big data and ML to enhance the ability to
detect malicious URLs and abnormal behavior. They extracted features and behaviors, using ML and
big data technologies and created a tool for detecting the problematic URLs. The proposed URL
attributes and behavior improved the ability to detect malicious URL significantly. The researchers
considered that even the Alexa’s ranked websites as benign, there might be fraudulent URLs (or

2 https://zeltser.com/lookup-malicious-websites/
3 https://urlhaus.abuse.ch/api/
4 https://db.aa419.org/fakebankslist.php?start=1
5 https://tranco-list.eu/list/7PG6X/1000000

https://zeltser.com/lookup-malicious-websites/
https://urlhaus.abuse.ch/api/
https://db.aa419.org/fakebankslist.php?start=1
https://tranco-list.eu/list/7PG6X/1000000

3832 CMC, 2024, vol.79, no.3

defacement) [44]. They provided a lexical analysis for the detection of bad-labeled URLs. Around
110,000 URLs were investigated, and the obfuscation techniques were analyzed.

A lexical analysis and an investigation of the network activity were also proposed [45]. The authors
used K-Nearest Neighbors (KNN), Random Forest (RF) and a type of Decision Tree (DT) algorithm
(C4.5) to predict four categories out of the 700,000 URLs: benign, defacement, malware and phishing.
They built 78 lexical features, selected 15 and used one of the obfuscation methods to detect malicious
URLs. Additionally, in [46], the authors proposed the extraction of lexical features. They also argued
that blacklists are not often consulted, or they are a step behind the fraudsters. Using the lexical
features and classification algorithms, their model named FireEye Advanced URL Detection Engine
(FAUDE) provided good results in detecting malicious URLs. The lexical, content and network-based
features were created to detect malicious URLs (spam, spyware, phishing and malware) combined with
ML and DL models [47], using autoencoders to create features [48]. The dataset consisted of 66,506
URLs. Feature selection was applied to extract the most relevant features. A simple algorithm such
as Naïve Bayes (NB) proved to find the best results, predicting the URLs with a precision of 96%. A
malicious and benign dataset of URLs was built. Moreover, a dataset of around 1.5 million URLs was
collected using a web crawler. It contained attributes and webpage source elements like JavaScript code
as unstructured data. Both supervised and unsupervised tools were employed to classify the URLs. The
labels were added using a Google service that allows safe browsing6. Furthermore, Google provides a
database of hashed URLs within an API, and the user can check the nature of the URL by using the
hash (SHA-256) of a particular URL. DL algorithms were applied to classify URLs [49].

Phishing URL detection, using ML methods, was proposed in [50]. Phishing involves stealing
private data like passwords, identifiers, etc. when the users access the malicious website and take
advantage of them. Usually, it has a considerable financial impact that may lead to losing the
intellectual or copyright property and spoiling reputation. To identify whether a URL is malicious
or not, several ML algorithms such as RF, DT, Light Gradient Boosting Machine (LGBM), Logistic
Regression (LR) and Support Vector Machine (SVM) were applied. LGBM proved to be the best
solution, but the researchers did not provide a clear methodology for phishing URL detection. They
rather tested the ability to classify several ML algorithms using a small dataset (3,000 samples) with
perfectly balanced target values. The importance of input features to detect problematic URLs was
depicted in [51]. During the COVID-19 pandemic, when the people were in lockdowns, the threats
intensified, and the classifiers were challenged due to the volume of data and the changing pattern of
malicious URLs. The traditional features were not efficient and the correlation between them and
the target showed a lower efficiency of their contribution to detecting problems. Linear and non-
linear space transformation methods were proposed in [51]. Singular value decomposition and linear
programming were proposed to find the optimal distance. The Nyström method was also used to
include the non-linear space transformation method. The authors investigated a dataset with 331,622
URLs, extracting 62 features to validate the proposed methods for building features. Several ML
algorithms such as KNN, SVM and Multi-Layer Perceptron (MLP) were trained, and they improved
the detecting performance using the proposed feature engineering method. The results showed that the
proposed methods considerably improved the efficiency and performance of certain classifiers, such
as KNN, SVM and neural networks.

6 https://safebrowsing.google.com/

https://safebrowsing.google.com/

CMC, 2024, vol.79, no.3 3833

2.2 Advanced NLP Techniques and ML Algorithms-Based Approach

URL2vec is an interesting method to create features out of URLs. Both structural and lexical
features were extracted from URLs and classified using a temporal convolutional network reaching
a precision of 95.97% [52]. Moreover, the URLs were converted into documents or words similar to
doc2vec or word2vec embeddings [53]. The authors mixed the character embeddings with the URLs
components that were vectorized. The method was applied to one million-record dataset containing
phishing indications. The accuracy achieved by this method was 99.69%.

To address the limitations of existing phishing blacklists, a more effective approach for identifying
malicious URLs was introduced, which leverages DL through a variational autoencoder (VAE) as
detailed in [54]. This framework involved the automatic extraction of intrinsic features from raw
URLs using the VAE model, achieved by reconstructing the original input URLs, thus enhancing
the detection of phishing URLs. For experimentation, approximately 100,000 URLs were gathered
from two publicly accessible datasets: the ISCX-URL-2016 dataset and the Kaggle dataset. The
experimental findings demonstrated that the proposed model achieved a remarkable peak accuracy of
97.45% and exhibited a faster response time of 1.9 s. These results outperformed other models tested
in the study. Furthermore, an innovative approach called adaptive ensemble clustering with Boosting
Broad Learning System (BLS)-based autoencoder (BoostAEC) was introduced [55]. Thorough experi-
ments conducted on diverse real-world datasets showcased the exceptional performance of BoostAEC
compared to contemporary ensemble clustering methods, establishing its superiority.

Moreover, a novel approach was presented in [56] for intrusion detection in the context of Industry
4.0, where the prevalence of big data and the Internet of Things (IoT) presented ongoing challenges. In
this environment, cyber-physical systems play a vital role, and the task of anomaly detection remains
both crucial and demanding. The researchers developed the one-class BLS (OCBLS) and extended
it to the stacked OCBLS algorithms. Leveraging the efficiency of BLS, these approaches offered the
advantage of streamlined training processes. Furthermore, the stacked OCBLS method allowed for
the acquisition of high-level hidden features from network traffic data through a progressive encoding
and decoding mechanism. To validate the efficacy of their proposed methods, extensive comparative
experiments were conducted on various real-world intrusion detection tasks.

Similar frameworks were provided [57–61]. In [57], an analysis focused on evaluating adversarial
attacks in a framework designed for detecting malicious advertisement URLs. Commonly used
techniques involved extracting linguistic features from URL strings, such as bag-of-words, followed by
the application of ML models. Traditional methods for detecting malicious URLs typically required
effective manual feature engineering that handled previously unseen features and generalized well to
test data. In this research, a set of lexical and web-scrapped features was extracted, and ML techniques
were employed to detect fraudulent advertisement URLs. The mix of six distinct types of features
effectively addressed the challenges posed by obfuscation in the classification of fraudulent URLs. The
research utilized twelve datasets for various tasks, including detection, prediction and classification,
and expanded the analysis to include mismatched and unlabeled datasets. The performance of four
ML techniques-RF, GB, XGB and AdaBoost-was analyzed within the detection component of the
framework. With their proposed approach, the researchers achieved an impressively low false negative
rate of 0.0037, while maintaining a high detection accuracy of 99.63%. Additionally, they applied an
unsupervised learning technique for data clustering, using the K-Means algorithm to facilitate visual
analysis.

3834 CMC, 2024, vol.79, no.3

Another approach for the detection of malicious webpages, known as the heterogeneous ML
ensemble framework was proposed [60]. The effectiveness of malicious URL detection was signifi-
cantly influenced by the features present in the learning dataset. The overall performance of various
ML models varied depending on the data features, making it less desirable to rely on a single model
in any given environment. To overcome these limitations, the proposed approach utilized an ensemble
strategy that combines different ML algorithms. This method surpassed the performance of single
models by 6%, enabling the detection of an additional 141 malicious URLs. Furthermore, reference
[60] automated repetitive tasks, which enhanced the performance of various ML models. Additionally,
the framework included an advanced feature set derived from URL and web content, incorporating
an optimized detection model structure. In reference [61], a 3-step framework for detecting malicious
URLs was presented. Many studies have introduced methods and achieved accuracy, but there has
been a lack of comprehensive research summarizing the field of malicious URL detection. Therefore,
the researchers proposed a 3-step framework for detecting malicious URLs and provided an overview
of 14 previous works that aligned with their framework. They found that nearly all research in the
domain of malicious URL detection using ML could be categorized within the 3-step framework. The
study involved the evaluation of various ML models and methods that involved context, assessing their
suitability based on the 3-step framework. The results underscored the significance of the context in
the detection process and highlighted that context-based embedding methods were particularly crucial.
The accuracy of malicious URL detection was shown to improve with the incorporation of context-
based methods.

The overall drawback of the previous methods consists in the fact that they mainly use only one
dataset to train the ML algorithm and test their performance, because this approach is not able to
generalize on other datasets and give confidence that the detection is accurate. Another downside is
that they only assess the methods using several metrics (one or two metrics) without ranking the results.
Out of the 15 briefly summarised researchers, only 5 were written as complex and reliable frameworks.
Equally important is the Feature Building Time (FBT) as the newest methods (like GloVe or doc2vec)
are time-consuming. Only a few works provided and compared methods to build features as most of
them rely only on the URL structure-based extraction method. Therefore, in comparison with the
previous studies, our contribution consists of extensive testing of each method and creating a ranking
tool to assess various methods in which we include both the accuracy and the computational time. In
the next section, the proposed NLP-based framework is described.

3 Detection Framework

In this section, we propose a URL detection framework, offering a flowchart that describes the
pipeline designed for URL processing. We depict the URL structure and extraction of the features.
Then, we propose to vectorize data, underlining on skip-gram algorithm and GloVe model, and
providing several metrics to assess the results. In this framework, we train supervised classifiers to
detect malicious URLs. Both ML and DL algorithms are trained.

3.1 Methodology

A robust application framework for investigating URLs is proposed in this paper. It consists of
several steps that include multiple datasets to provide a detection solution that can generalize on
other datasets. Initially, the data is explored searching for missing values or null. Then, the categories
are graphically represented to check whether the categories are balanced or not. Three categories
of features are deployed to classify URLs. For the first category, the frequency-based embeddings

CMC, 2024, vol.79, no.3 3835

(features) approach consists of 5 main methods, out of which hash vectorizer and TF-IDF are applied
as they are the most advanced and require less computational effort. In the second category, which
focuses on prediction-based embeddings, models such as Google’s word2vec, skip-gram, and CBOW
are utilized [62,52]. Additionally, GloVe, which provides a global vector representation, is also applied
[63,64].

The overall methodology and its flows are showcased in Fig. 1. To build numeric vectors out of
text using word2vec and GloVe, the tokenization of the URLs is applied. Feature selection can be
applied and tested to improve the results of the classification [65]. The third category is related to the
specificity of the URL structure, extracting features from the components of the URL itself. In this
case, tokenization is not necessary as the features are created and named by applying procedures and
functions to extract different insights from the URLs structure. For instance, counting the digits or
specific symbols such as “&” or “#”, counting the total number of symbols or checking whether the
http and https exist.

Figure 1: Methodology flowchart

3836 CMC, 2024, vol.79, no.3

Two types of supervised classifiers are trained to detect malicious URLs: ML and DL. The ML
algorithms: Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), and eXtreme Gradient Boost (XGB) are trained, as well as DL algorithms: Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM), bidirectional LSTM.

3.2 URL Structure Building the Structural Features

URLs for http (without ssl) or https (with ssl) have usually several components, such as: a) schema
that indicates the protocol used to access the webpage as in Fig. 2. The schema is followed by a colon
and two forward slashes; b) host name or the host for the webpage. Services are provided by a server
as a hostname. Sometimes, the hostname is followed by a port number, but usually, it is omitted; c)
path to the webpage or the resource on the Internet. Usually, it displays directories and starts with a
single slash and contains dots, slashes and other symbols; d) parameters that are part of a query. They
get a value and are concatenated using ampersands. The port number is optional, and it is placed after
the hostname. When the query is specified, it starts with a question mark. Additionally, URL can be
followed by a hash that can be an identifier of a subsection of a page.

Protocol (http://)
Host name (IP

address)
Port (:80) Path (.../.../...)

Query string

(?condition)

Figure 2: Graphical representation of the URL structure

The specific structure of a URL allows us to compute special features, such as total length of the
URL, length of the hostname, length of the path, first directory length, top-level domain (tld) length,
count special characters (including punctuation), count http, https, www, count digits, letters, number
of directories, sum of the number of special characters, use of IP or not, use of shortening URL or
not, etc.

3.3 Vectorized Features

There are numerous techniques to convert words into numbers and build features that allow
the ML algorithms to classify texts. Converting text to features or feature engineering is one of the
foundations of the NLP. There are two types of methods or techniques: 1) Methods based on frequency
and hence called frequency-based embeddings or features (One Hot Encoding, Count vectorizer,
N-grams, Co-occurrence matrix, Hash vectorizer, Term Frequency-Inverse Document Frequency
(TF-IDF)); 2) Methods based on prediction-based embeddings, typically called word embeddings
(word2vec–skip-gram and cbow from Google, fastText from Facebook).

One Hot Encoding (OHE) is the simplest text transformation into numeric values and converts
characters or words into numbers (1, 0). However, the OHE does not take the frequency of the words
into account. OHE can be replaced by a count vectorizer to avoid this drawback. The count vectorizer
considers only the word itself counting its frequency and eluding the previous and the next words and
missing a complete meaning to the words. Therefore, the count vectorizer can be combined with the
n-grams technique to create numeric features and overcome this disadvantage. Additionally, the co-
occurrence matrix is similar to the count vectorizer counting the occurrence of the words together, not
individual words. However, the count vectorizer and co-occurrence matrix have a limitation: when the
vocabulary becomes huge, it leads to memory and computational congestion.

Hash vectorizer solves the problem of memory being a memory-efficient technique. Hashing is
used in cybersecurity to encrypt signatures, messages, etc. Instead of storing the tokens as strings, it

CMC, 2024, vol.79, no.3 3837

hashes the tokens (with SHA256, for instance) encoding them as numerical indexes. Once vectorized,
the features cannot be decoded that can be a significant downside. To obtain the hash value of a word
i, a hash function f is applied, and the result or the hashed value is hi.

wi → f (wi) → hi. (1)

Term Frequency-Inverse Document Frequency (TF-IDF) is a technique that shows the meaning of
a number of words and avoid the drawbacks of the bag of words approach. TF is the ratio of the count
of a word in a sentence to the length of the sentence, while IDF of each word is the log of the ratio
of the total number of rows to the number of rows in a document that contains the word. In other
words, the IDF is the logarithm of the ratio between the total number of documents and the number
of documents containing term or word i. Therefore, IDF assesses the rareness of a term. TF-IDF is
the product between TF and IDF, which makes predictions and information retrieval more relevant.
The value of TF-IDF for a term i in a document j is:

TF − IDF
(
wi,j

) = tfi,j × log
N
dfi

, (2)

where: tfi,j–number of occurrences of i in j;

dfi–number of documents containing i;

N–total number of documents, where at least 1 document has to be processed.

Word2vec is a DL Google framework to train word embeddings. It provides the semantic links
among words, the context and meaning of the words, or how frequently the words appear together.
Word2vec was created for capturing the semantic relationship of the words, whereas the above-
mentioned techniques fail to provide. It creates vectors that encapsulate the meaning of the words
using several dimensions (such as negative/positive, concrete/abstract, etc.). Consequently, word2vec
distinguishes between “glove” as a cloth and “GloVe” as a vectorizing technique. There are two
algorithms provided by word2vec: skip-gram (sg) and a continuous bag of words (cbow). Cbow
predicts the probability of a word based on the context or the surrounding words, while sg starts from
a word that is also known as the target word and attempts to predict the context of that word. For a
large vocabulary, it is better to use sg, but it is slower to train, while cbow is better for small vocabulary
and is faster to train. The mathematical model underlying word2vec is based on neural networks and
optimization techniques. Particularly, word2vec uses a shallow neural network architecture and the
Maximum Likelihood Estimation (MLE) to compute word embeddings. Word2vec uses a distributed
representation of a word in a text. Each word is a distribution of weights across the text. Therefore, one
word contributes or is responsible for the representation of other words. By analyzing a large corpus,
it learns relationships between words and generates numerical vectors.

By training the word2vec model on a large corpus of text, it learns to assign similar vector
representations to words that have similar context or meaning. These embeddings can then be used
to measure similarity between words, perform vector arithmetic operations or as input features for
downstream NLP tasks. To summarize, the mathematical model of word2vec involves a neural network
with softmax outputs and utilizes MLE as the training objective. The model parameters are optimized
using optimization algorithms to learn word embeddings that capture semantic relationships between
words. fastText is another DL framework developed by Facebook to capture context and meaning. It
provides character-level embeddings.

3838 CMC, 2024, vol.79, no.3

3.3.1 Skip-Gram Algorithm

The vector for each word in the analyzed corpus is initialized randomly. In a document, each word
that has a position t will be considered as the center (as in Fig. 3). At that point, the position t becomes
c. Let’s denote its context with o. To find out the context of the word, a sliding window size m will be
defined, meaning that the model will search for context from position t − m to t + m. P

(
wt+j|wt

)
is the

probability of a word wt to be in the context wt+j, where j ∈ 1, m.

Figure 3: Sequence of words and the context of the central position

Setting the target at position t, sg will maximize the likelihood of the context words for a certain
word. In other words, it computes the probability of the model for the prediction of the context words
for a center word and it maximizes the probability. The maximum likelihood function L (θ), where θ

represents the parameters of the model, is a product of probabilities over the words in the corpus T as
defined in Eq. (3):

L (θ) =
T∏

t=1

∏
−m≤j≤mj �=0

P
(
wt+j|wt; θ

)
. (3)

The logarithm operator is required to transform multiplication into summation and apply
derivatives for the minimization problem. Therefore, Eq. (3) becomes:

J (θ) = − 1
T

logL (θ) = − 1
T

T∑
t=1

∑
−m≤j≤mj �=0

logP
(
wt+j|wt; θ

)
. (4)

To compute the probability of the context, each word is represented by a set of two vectors: Uw

when word w is a context word o and Vw when word w is a target word c. Therefore, using the two
vectors, the probability for the target word c to be in the context o is given in Eq. (5):

P (o|c) = exp
(
UT

o Vc

)
∑

w∈T exp
(
UT

w Vc

) . (5)

The numerator captures the similarity between these two vectors depicting context and target
(higher the similarity, higher the probability), whereas the denominator normalizes the probability
over the vocabulary. The weights vector θ consists of the elements of the two vectors Uw and Vw.

CMC, 2024, vol.79, no.3 3839

θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vw1

Vw2

. . .

Vwn

Uw1

Uw2

. . .

Uwn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Using the SGD algorithm, the weights are updated to maximize the likelihood. Thus, the
derivative of the loss function with respect to U and V is calculated. First, let’s calculate the derivative
of J(θ) from Eq. (4) with respect to Vc:

∂J(θ)

∂Vc

= ∂

∂Vc

(
log

(
exp

(
UT

o Vc

))) − ∂

∂Vc

(
log

V∑
w=1

exp
(
UT

w Vc

))
. (7)

As log(exp(x)) is equal to x, the first part of Eq. (7) becomes:

∂

∂Vc

(
log

(
exp

(
UT

o Vc

))) = ∂

∂Vc

(
UT

o Vc

) = Uo. (8)

Considering the derivative of log(x), the second part of Eq. (7) becomes:

∂

∂Vc

(
log

V∑
w=1

exp
(
UT

w Vc

)) = 1∑V

w=1 exp
(
UT

w Vc

) V∑
x=1

∂

∂Vc

exp
(
UT

x Vc

)
. (9)

Considering the derivative of exp(x), Eq. (9) is equivalent with:

1∑V

w=1 exp
(
UT

w Vc

) V∑
x=1

∂

∂Vc

exp
(
UT

x Vc

) =
V∑

x=1

exp
(
UT

x Vc

)
∑V

w=1 exp
(
UT

w Vc

) × Ux. (10)

The result is the probability. Thus, Eq. (10) becomes:
V∑

x=1

exp
(
UT

x Vc

)
∑V

w=1 exp
(
UT

w Vc

) × Ux =
V∑

x=1

P (x|c) × Ux. (11)

Combining the two terms, we obtain:

∂J(θ)

∂Vc

= −Uo +
V∑

x=1

P (x|c) × Ux. (12)

Considering that Uo is the vector representing the context word and
∑V

x=1 P (x|c) × Ux is the
probability of the context, the two components are necessary to compute the vector Vc so that to
maximize the likelihood. Similarly, we calculate the derivative of J(θ) with respect to Uw.⎧⎪⎪⎨
⎪⎪⎩

∂J(θ)

∂Uw

=
V∑

x=1

P (x|c) × Vc, w �= o

∂J(θ)

∂Uw

= −Vc +
V∑

x=1

P (x|c) × Vc, w = o
. (13)

3840 CMC, 2024, vol.79, no.3

Using the two partial derivatives, the weights can be updated:

θ (Vc, Uw) = θ − α
∂J (θ)

∂θ
; (14)

∂J(θ)

∂θ
=

⎡
⎢⎢⎣

∂J(θ)

∂Vc

∂J(θ)

∂Uw

⎤
⎥⎥⎦ , (15)

where α–learning rate.

To handle the exponential function that is time consuming, the negative sampling method is
used which maximizes the probability of real context occurring around the target. The loss function
becomes:

Jns (o, c, U) = − log
(
σ

(
UT

o Vc

)) −
K∑

k=1

log
(
σ

(
UT

k Vc

))
, (16)

where K-number of negative samples (ns).

Calculating the derivative of Eq. (16) with respect to the weights Uw, Uk, and Vc, we obtain:

∂Jns (θ)

∂Vc

= −σ
(−UT

o Vc

)
Uo +

K∑
k=1

σ
(
UT

k Vc

)
Uk;

∂Jns(θ)

∂Uo

= −σ
(−UT

o Vc

)
Vc; (17)

∂Jns(θ)

∂Uk

=
K∑

k=1

σ
(
UT

k Vc

)
Vc.

3.3.2 GloVe Model

GloVe is a technique proposed by Stanford University for obtaining vector representations for
words using an unsupervised learning algorithm. GloVe converts each word in a corpus of text into a
value in a high-dimensional space, placing similar words nearby. The authors of the GloVe concluded
that GloVe considerably outperformed word2vec [66]. GloVe is based on building a co-occurrence
matrix with rows representing words and columns representing the context. This matrix computes the
frequency of words in a context. It may have a high dimensionality. To reduce it, the reconstruction of
the co-occurrence matrix is required that is also known as reconstruction loss.

A Global Log-Bilinear Regression (GBLR) model that mixes the global matrix factorization
(Latent Semantic Analysis (LSA)) and local context window (embedding the advantages of the above-
mentioned sg algorithm) is employed by GloVe. LSA provides statistical information, but its vector
representations are outperformed in word analogies. On the other hand, sg creates enhanced vector
representations and provides good results in word analogies, but the statistical information captured
from the entire corpus is not used at its maximum as sg trains only on local windows not on the
global co-occurrence matrix, losing the global view. GloVe provides a vector space with meaningful
substructures by training only on non-zero elements in a global co-occurrence matrix, rather than on
entire sparse matrix or context windows in the larger corpus. The two techniques of the word2vec
approach, namely sg and cbow, take into account only the local context, not the global context. More
advanced feature techniques do exist, such as ELMo, sentence encoders (doc2vec, Sentence-BERT,

CMC, 2024, vol.79, no.3 3841

Universal Encoder, InferSent), and Open-AI GPT. Thus, GloVe uses a GBLR model with a simple
weighted least squares method. GloVe embeddings are based on the ratio of probabilities that indicates
the meanings of words. Let’s consider function F which models the ratio of probabilities relationship
that is the target of the neural network model.

F
(
wi, wj, wk

) = Pik

Pjk

, (18)

where wi, wj–words in context; wk–out of context; Pik–probability that word i to appear in the context
of word k; Pjk–probability that word j to appear in the context of word k.

To balance the two sides of the Eq. (18) that consist of both vectors and scalars, aiming to train
function F to encode the information regarding the ratio of the two probabilities available in the global
corpus, we will consider the transpose linear difference between the two vectors or the distance between
wi, wj multiplied by the wk. Therefore, Eq. (18) becomes:

F
((

wi − wj

)T
wk

)
= Pik

Pjk

. (19)

As a word can be either in the context or outside the context, the left side of Eq. (19) becomes:

F
((

wi − wj

)T
wk

)
= F

(
wT

i wk + (−wT
j wk

))
;

F
(
wT

i wk + (−wT
j wk

)) = F
(
wT

i wk

) × F
(−wT

j wk

)
; (20)

F
(
wT

i wk

) × F
(−wT

j wk

) = F
(
wT

i wk

) × F
(
wT

j wk

)−1
;

F
((

wi − wj

)T
wk

)
= F

(
wT

i wk

)
F

(
wT

j wk

) .

Thus, combining Eqs. (19) and (20), we can write the numerator as:

F
(
wT

i wk

) = Pik = Xik

Xi

, (21)

where Xi–number of times any word appears in the context of word i; Xik–number of times word k
appears in the context of word i.

Replacing F with the exponential function, we obtain:

e(wT
i wk) = Pik = Xik

Xi

. (22)

Applying logarithm function on Eq. (22), we obtain:

wT
i wk = log (Pik) = log (Xik) − log (Xi) . (23)

As log (Xi) has no influence on k, it can be added as a bias bi along with a bias for wk. Thus,
Eq. (23) can be simplified as follows:

wT
i wk + bi + bk = log (Pik) = log (Xik) . (24)

In Eq. (24), equal weight is given to all elements in the co-occurrence matrix, which is a major
drawback causing noise due to the equal importance allocation. To handle this issue, a weighting
function f

(
Xij

)
is inserted that weighs the words based on the content. Therefore, a weighted least

3842 CMC, 2024, vol.79, no.3

squares regression model is used, and the loss function J of the GloVe model is obtained.

J =
T∑

i,j=1

f
(
Xij

) (
wT

i wj + bi + bj − log
(
Xij

))2

, (25)

where T–the vocabulary dimension.

The weighting function can be as in Eq. (26):

f (x) =
⎧⎨
⎩

(
x

xmax

)α

, x < xmax

1, otherwise
. (26)

If the two biases are eliminated to simplify the Eq. (25), the loss function of the model becomes:

Ĵ =
T∑

i,j=1

f
(
Xij

) (
wT

i wj − log
(
Xij

))2
. (27)

3.4 Assessment

The results obtained with several feature builders and supervised ML algorithms (classifiers)
are weighted considering the following criteria: Accuracy (A); F1 score (F1); Type error II (FPR);
Computational time (Feature Building Time (FBT) plus Training Time (TT)), where ω–weight.

Rank = ω1 × A + ω2 × F1 + ω3 ×
(

1 − FPR
max(FPR)

)
+ ω4 ×

(
1 − FBT + TT

max (FBT) + max(TT)

)
. (28)

In the next section, we will apply several techniques to obtain features and classify the URLs as
benign or malicious. To check the generalization capacity of the classifiers, we train and test the results
using four datasets.

4 Results

In this section, we present the input datasets and the results of the simulations performed using
different approaches: splitting the URL based on its structure and building features as well as various
vectorization techniques. We evaluate classification algorithms using specific metrics. The results are
compared, and the best solution is chosen based on the performance of the algorithms.

Four input datasets are included in simulations as in Table 1. Table 1 displays the total number of
records, differentiating between those classified as benign or malicious, and lists the open data sources
from which these records were obtained.

Taking the first dataset url0, 76.8% of the records are benign. Using the frequencies of the words,
we notice that the most frequent word (higher the font, higher the frequency) after each URL was
tokenized is “https”, then “index”, “Wikipedia”, “Youtube”, “Facebook” and so on. The benign
records vary between 65% and 82% of the entire dataset. The pre-processing of the URLs (except
for URL structure-based feature engineering) consists of several tasks: the special characters from
each URL are removed; and the tokens are created to be inserted into the feature-building methods.

CMC, 2024, vol.79, no.3 3843

Table 1: Characteristics of the input data sources

Source Total records Benign Malicious Open source

url0 450,176 345,738 (76.8%) 104,438 https://www.kaggle.
com/code/
siddharthkumar25/
detect-malicious-url-
using-ml/input

url1 651,191 428,103 (65.7%) Defacement 96,457
phishing 94,111
malware 32,520

https://www.kaggle.
com/datasets/sid321
axn/malicious-urls-
dataset

url2 42,249 31,823 (75.3%) 10,426 Received from another
researcher1

url3 420,464 344,821 (82%) 75,643 https://www.section.io/
engineering-education/
detecting-malicious-url-
using-machine-
learning/

Note: 1https://github.com/simonavoprea/URL

4.1 Hash Vectorized Features

The results for the analyzed first case study (url0) are presented below. Table 2 shows the
performance metrics when generating features with a hash vectorizer. The confusion matrices using
the hash vectorized features are presented in Fig. 4. The evaluation or the assessment of the algorithm’s
performance is achieved by interpreting several metrics, such as accuracy, F1 score, confusion matrix
investigating the first diagonal as well as type error I and type error II. Ranking the algorithms consists
of calculating a weighted average among the computational time that has to be small, the performance
in terms of F1 score, and the false negative or the type error II that is also known as the miss or the
underestimation of the algorithm. The first and third-ranking indicators are minimized, whereas the
second one is maximized.

Table 2: Performance metrics for Hash Vectorizer

Model Accuracy F1 score FPR TPR FBT (min) TT

LR 0.996 0.992 265 204 5.76 0:00:12.17
SVC 0.996 0.992 253 189 0:00:02.25
RF 0.997 0.995 217 90 0:07:05.08
XGB 0.997 0.994 207 70 0:01:36.85

https://www.kaggle.com/code/siddharthkumar25/detect-malicious-url-using-ml/input
https://www.kaggle.com/code/siddharthkumar25/detect-malicious-url-using-ml/input
https://www.kaggle.com/code/siddharthkumar25/detect-malicious-url-using-ml/input
https://www.kaggle.com/code/siddharthkumar25/detect-malicious-url-using-ml/input
https://www.kaggle.com/code/siddharthkumar25/detect-malicious-url-using-ml/input
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.section.io/engineering-education/detecting-malicious-url-using-machine-learning/
https://www.section.io/engineering-education/detecting-malicious-url-using-machine-learning/
https://www.section.io/engineering-education/detecting-malicious-url-using-machine-learning/
https://www.section.io/engineering-education/detecting-malicious-url-using-machine-learning/
https://www.section.io/engineering-education/detecting-malicious-url-using-machine-learning/
https://github.com/simonavoprea/URL

3844 CMC, 2024, vol.79, no.3

Figure 4: Confusion matrix for hash vectorizer

In this scenario, we obtain the best results using RF and XGB. XGB is faster than RF, but the F1
score is slightly smaller.

4.2 TF-IDF Vectorized Features

Table 3 shows the performance metrics when generating features with TD-IDF. The confusion
matrices using the TF-IDF vectorized features are presented in Fig. 5.

Table 3: Performance metrics for TD-IDF Vectorizer

Model Accuracy F1 score FPR TPR FBT (min) TT

NB 0.989 0.976 880 1585 6.96 0:00:01.25
LR 0.994 0.988 1174 10 0:00:21.08
SVC 0.996 0.991 813 34 0:00:02.83
RF 0.998 0.996 211 200 0:50:26.54
XGB 0.997 0.994 273 252 0:33:54.46

Figure 5: (Continued)

CMC, 2024, vol.79, no.3 3845

Figure 5: Confusion matrix for TD-IDF

When features are vectorized using TF-IDF, we obtain the best results with RF and XGB, but
they are time consuming compared with LR and SVC that provide good results in terms of F1 score.

Comparing the two vectorization techniques, we estimate that hash vectorization technique
is less time consuming. Therefore, when fast results are required, hash vectorization technique is
recommended.

4.3 URL Structure-Based Features

A heatmap showing the correlations among variables can be obtained as in Fig. 6.

For a certain dataset (url0), the highest correlations with the target (result) are recorded for
suspicious words (0.25), number of digits (0.18), existence of www (−0.89), existence of https (−0.95)
and so on. The features are built based on the URL structure. Table 4 shows the performance metrics
using feature engineering. The confusion matrices using feature engineering are presented in Fig. 7.

In this approach, we obtain the best results using RF, XGB and LGB algorithms. It can be used
when fast results are expected as this approach is less time-consuming than the previous one.

4.4 Word2vec Features

Table 5 shows the performance metrics when generating features with word2vec. The confusion
matrices using the word2vec vectorized features are presented in Fig. 8.

In this scenario, XGB is the best algorithm for classification, but it is also one of the slowest. Due
to its higher FTB and TT, this approach is not recommended when fast results are expected. SVC
algorithm also provides good results in terms of F1 score and it is much faster.

4.5 GloVe Features

As GloVe is time-consuming, a sample of 50,000 records is extracted and shuffled. Table 6 shows
the performance metrics when generating features with GloVe. The confusion matrices using the GloVe
vectorized features are presented in Fig. 9.

This approach implies a high FBT (187 min), therefore the time to build the features is much
higher compared with other approaches. In this context, SVC, LR and XGB provide the best results.

3846 CMC, 2024, vol.79, no.3

Figure 6: Heatmap of the input variables

Table 4: Performance metrics for Feature Engineering method using the URL structure

Model Accuracy F1 score FPR TPR FBT (min) TT

DT 0.996 0.992 197 129 8.92 0:00:18.17
LR 0.992 0.988 462 171 0:00:12.07
SVC 0.996 0.993 175 149 0:00:02.25
RF 0.997 0.995 165 55 0:07:05.08
XGB 0.997 0.994 167 50 0:01:36.85
LGB 0.997 0.993 167 62 0:11:34.60

CMC, 2024, vol.79, no.3 3847

Figure 7: Confusion matrix for FE method

Table 5: Performance metrics for word2vec

Model Accuracy F1 score FPR TPR FBT (min) TT

LR 0.997 0.993 244 143 20.02 0:00:48.16
SVC 0.997 0.993 228 163 0:01:45.11
RF 0.997 0.988 629 56 0:38:18.95
XGB 0.995 0.990 487 76 0:26:47.10

3848 CMC, 2024, vol.79, no.3

Figure 8: Confusion matrix for word2vec

Table 6: Performance metrics GloVe (50,000 records)

Model Accuracy F1 score FPR TPR FBT (min) TT

LR 0.991 0.981 125 42 187 0:00:01.78
SVC 0.992 0.982 111 45 0:00:02.87
RF 0.985 0.967 254 40 0:01:57.52
XGB 0.991 0.981 132 33 0:01:42.80

CMC, 2024, vol.79, no.3 3849

Figure 9: Confusion matrix using GloVe

5 Conclusion

In this paper, we proposed a framework for detecting malicious URLs. It consists of four stages:
1) Using multiple datasets to which exploratory data analysis and pre-processing were applied; 2)
Building features with three options a) frequency-based features; b) URL structure-based features
and c) prediction-based features; 3) Using several classifiers to predict whether the URL is malicious
or benign; and 4) Assessment. The reason for using four datasets is related to the capacity of the
framework to generalize.

Five types of features were built using hash vectorizer, TD-IDF, feature engineering based on the
URL structure and more advanced: word2vec (skip-gram) and GloVe. The mathematics behind the
more advanced models was described in detail. Four ML-supervised models for classification were
applied for all case studies, such as LR, SVC, RF and XGB. DT, NB and LGBM were also applied for
certain methods.

The assessment of the methods in the proposed framework was performed using a ranking
equation that weighs the four performance criteria: accuracy, F1 score, type error II and computational
time that also includes the feature building time. Moreover, by applying DL in classifying URLs
(CNN, Simple RNN, LSTM, bi-LSTM), good results were obtained. Although the performance of
these models is good, the computational time is much higher. However, the performance of the above-
mentioned ML algorithms is also good, thus the usage of the DL algorithms for URLs detection was
not necessary.

3850 CMC, 2024, vol.79, no.3

Using the ranking equation with equal weights proposed in this paper and the results obtained
for the four datasets, the word2vec, namely the skip-gram algorithm outperformed the other feature
builders. Moreover, XGB outperformed the other classifiers. Hence, our suggestion is to merge
word2vec and XGB to identify malicious URLs. In our future endeavors, we plan to explore the
potential of generative pre-trained transformer models, advanced NLP techniques and large databases
to enhance the speed of detection. The computational time remains a limitation for advanced feature
builders, and to mitigate this, we will consider implementing parallel processing.

Acknowledgement: This work was supported by a grant of the Ministry of Research, Innovation and
Digitization, CNCS-UEFISCDI, Project Number PN-III-P4-PCE-2021-0334, within PNCDI III.

Funding Statement: This work was supported by a grant of the Ministry of Research, Innovation and
Digitization, CNCS- UEFISCDI, Project Number PN-III-P4-PCE-2021-0334, within PNCDI III.

Author Contributions: Adela Bâra: Conceptualization, Methodology, Validation, Formal analysis,
Investigation, Resources, Data Curation, Writing–Original Draft, Writing–Review and Editing, Visu-
alization, Supervision. Simona-Vasilica Oprea: Conceptualization, Validation, Formal analysis, Inves-
tigation, Writing–Original Draft, Writing–Review and Editing, Visualization, Project administration.
All authors reviewed the results and approved the final version of the manuscript.

Data Availability Statement: The data will be made available upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Zhao and J. Chen, “A survey on differential privacy for unstructured data content,” ACM Comput. Surv.,

vol. 54, no. 10s, pp. 1–28, 2022. doi: 10.1145/3490237.
[2] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text preprocessing for text mining in

organizational research: Review and recommendations,” Organ. Res. Methods., vol. 25, no. 1, pp. 114–146,
2022. doi: 10.1177/1094428120971683.

[3] A. Kurniasih and L. P. Manik, “On the role of text preprocessing in BERT embedding-based DNNs for
classifying informal texts,” Int. J. Adv. Comput. Sci. Appl., 2022. doi: 10.14569/issn.2156-5570.

[4] L. Che, X. Yang, and L. Wang, “Text feature extraction based on stacked variational autoencoder,”
Microprocess. Microsyst., vol. 76, no. 1, pp. 103063, 2020. doi: 10.1016/j.micpro.2020.103063.

[5] C. Toraman, F. Şahinuç, E. H. Yilmaz, and I. B. Akkaya, “Understanding social engagements: A
comparative analysis of user and text features in Twitter,” Soc. Netw. Anal. Min., vol. 12, no. 1, pp. 1,
2022. doi: 10.1007/s13278-022-00872-1.

[6] Z. Zhu, J. Liang, D. Li, H. Yu, and G. Liu, “Hot topic detection based on a refined TF-IDF algorithm,”
IEEE Access, vol. 7, pp. 26996–27007, 2019. doi: 10.1109/ACCESS.2019.2893980.

[7] O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis sentimen review film menggunakan
TF-IDF dan support vector machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022. doi: 10.46229/ji-
fotech.v2i1.330.

[8] D. Malandrino, R. De Prisco, M. Ianulardo, and R. Zaccagnino, “An adaptive meta-heuristic for music
plagiarism detection based on text similarity and clustering,” Data Min. Knowl. Discov., vol. 36, no. 4, pp.
1301–1334, 2022. doi: 10.1007/s10618-022-00835-2.

[9] H. Jelodar et al., “Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey,”
Multimed. Tools Appl., vol. 78, no. 11, pp. 15169–15211, 2019. doi: 10.1007/s11042-018-6894-4.

https://doi.org/10.1145/3490237
https://doi.org/10.1177/1094428120971683
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1016/j.micpro.2020.103063
https://doi.org/10.1007/s13278-022-00872-1
https://doi.org/10.1109/ACCESS.2019.2893980
https://doi.org/10.46229/jifotech.v2i1.330
https://doi.org/10.1007/s10618-022-00835-2
https://doi.org/10.1007/s11042-018-6894-4

CMC, 2024, vol.79, no.3 3851

[10] C. Sharma, S. Sharma, and Sakshi, “Latent DIRICHLET allocation (LDA) based information modelling
on BLOCKCHAIN technology: A review of trends and research patterns used in integration,” Multimed.
Tools Appl., vol. 81, no. 25, pp. 36805–36831, 2022. doi: 10.1007/s11042-022-13500-z.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J. Mach. Learn. Res, vol. 3, pp.
993–1022, 2003. doi: 10.1017/9781009218245.012.

[12] K. A. Coulter, “The impact of news media on Bitcoin prices: Modelling data driven discourses in the
crypto-economy with natural language processing,” R Soc. Open Sci., vol. 9, no. 4, pp. 1, 2022. doi:
10.1098/rsos.220276.

[13] A. Mishra and Fancy, “Efficient detection of phising hyperlinks using machine learning,” Int. J. Cybern.
Informatics., vol. 10, no. 2, pp. 23–33, 2021. doi: 10.5121/ijci.2021.100204.

[14] F. Yahva et al., “Detection of Phising websites using machine learning approaches,” in 2021 Int. Conf. Data
Sci. Its Appl. ICoDSA 2021, Bandung, Indonesia, 2021. doi: 10.1109/ICoDSA53588.2021.9617482.

[15] H. Xu, Y. Zhou, J. Ming, and M. Lyu, “Layered obfuscation: A taxonomy of software obfuscation tech-
niques for layered security,”Cybersecurity, vol. 3, no. 1, pp. 190,901, 2020. doi: 10.1186/s42400-020-00049-3.

[16] H. D. Menéndez and G. Suárez-Tangil, “ObfSec: Measuring the security of obfuscations from a testing
perspective,” Expert. Syst. Appl., vol. 210, no. 5, pp. 118298, 2022. doi: 10.1016/j.eswa.2022.118298.

[17] F. A. Ghaleb, M. Alsaedi, F. Saeed, J. Ahmad, and M. Alasli, “Cyber threat intelligence-based mali-
cious URL detection model using ensemble learning,” Sensors, vol. 22, no. 9, pp. 3373, 2022. doi:
10.3390/s22093373.

[18] Y. Liang, Q. Wang, K. Xiong, X. Zheng, Z. Yu, and D. Zeng, “Robust detection of malicious URLs with
self-paced wide & deep learning,” IEEE Trans. Dependable Secur. Comput., vol. 19, no. 2, pp. 717–730,
2022. doi: 10.1109/TDSC.2021.3121388.

[19] N. T. Lam, “Developing a framework for detecting phishing URLs using machine learning,” Int. J. Emerg.
Technol. Adv. Eng., vol. 11, no. 11, pp. 61–67, 2021. doi: 10.46338/ijetae1121_08.

[20] S. Das Guptta, K. T. Shahriar, H. Alqahtani, D. Alsalman, and I. H. Sarker, “Modeling hybrid feature-
based phishing websites detection using machine learning techniques,” Ann. Data Sci., vol. 2, no. 3, pp.
217–242, 2022. doi: 10.1007/s40745-022-00379-8.

[21] M. A. El-Rashidy, “A Smart model for web phishing detection based on new proposed fea-
ture selection technique,” Menoufia J. Electron. Eng. Res., vol. 30, no. 1, pp. 97–104, 2021. doi:
10.21608/mjeer.2021.146286.

[22] M. SatheeshKumar, K. G. Srinivasagan, and G. UnniKrishnan, “A lightweight and proactive rule-based
incremental construction approach to detect phishing scam,” Inf. Technol. Manag., vol. 23, no. 4, pp. 271–
298, 2022. doi: 10.1007/s10799-021-00351-7.

[23] M. Aljabri et al., “Detecting Malicious URLs using machine learning techniques: Review and research
directions,” IEEE Access, vol. 10, pp. 121395–121417, 2022. doi: 10.1109/ACCESS.2022.3222307.

[24] C. M. R. da Silva, E. L. Feitosa, and V. C. Garcia, “Heuristic-based strategy for phishing pre-
diction: A survey of URL-based approach,” Comput. Secur., vol. 88, no. 7, pp. 101613, 2020. doi:
10.1016/j.cose.2019.101613.

[25] H. Zhao, Z. Chang, W. Wang, and X. Zeng, “Malicious domain names detection algorithm based on
lexical analysis and feature quantification,”IEEE Access, vol. 7, pp. 128990–128999, 2019. doi: 10.1109/AC-
CESS.2019.2940554.

[26] C. M. Chen, J. J. Huang, and Y. H. Ou, “Efficient suspicious URL filtering based on reputation,” J. Inf.
Secur. Appl., vol. 20, no. 2, pp. 26–36, 2015. doi: 10.1016/j.jisa.2014.10.005.

[27] A. A. Orunsolu, A. S. Sodiya, and A. T. Akinwale, “A predictive model for phishing detection,” J. King
Saud Univ.—Comput. Inf. Sci., vol. 34, no. 2, pp. 232–247, 2022. doi: 10.1016/j.jksuci.2019.12.005.

[28] S. Kim, J. Kim, and B. B. H. Kang, “Malicious URL protection based on attackers’ habitual behavioral
analysis,” Comput. Secur., vol. 77, no. 2, pp. 790–806, 2018. doi: 10.1016/j.cose.2018.01.013.

[29] D. T. Mosa, M. Y. Shams, A. A. Abohany, E. S. M. El-Kenawy, and M. Thabet, “Machine learning
techniques for detecting phishing URL attacks,” Comput. Mater. Contin., vol. 75, no. 1, pp. 1271–1290,
2023. doi: 10.32604/cmc.2023.036422.

https://doi.org/10.1007/s11042-022-13500-z
https://doi.org/10.1017/9781009218245.012
https://doi.org/10.1098/rsos.220276
https://doi.org/10.5121/ijci.2021.100204
https://doi.org/10.1109/ICoDSA53588.2021.9617482
https://doi.org/10.1186/s42400-020-00049-3
https://doi.org/10.1016/j.eswa.2022.118298
https://doi.org/10.3390/s22093373
https://doi.org/10.1109/TDSC.2021.3121388
https://doi.org/10.46338/ijetae1121_08
https://doi.org/10.1007/s40745-022-00379-8
https://doi.org/10.21608/mjeer.2021.146286
https://doi.org/10.1007/s10799-021-00351-7
https://doi.org/10.1109/ACCESS.2022.3222307
https://doi.org/10.1016/j.cose.2019.101613
https://doi.org/10.1109/ACCESS.2019.2940554
https://doi.org/10.1016/j.jisa.2014.10.005
https://doi.org/10.1016/j.jksuci.2019.12.005
https://doi.org/10.1016/j.cose.2018.01.013
https://doi.org/10.32604/cmc.2023.036422

3852 CMC, 2024, vol.79, no.3

[30] O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,”
Indones J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 1210, 2020. doi: 10.11591/ijeecs.v17.i3.pp1210-1214.

[31] H. C. Kim, Y. H. Choi, and D. H. Lee, “JsSandbox: A framework for analyzing the behavior of
malicious JavaScript code using internal function hooking,” KSII Trans. Internet Inf. Syst., 2012. doi:
10.3837/tiis.2012.02.019.

[32] Y. G. Zeng, “Identifying email threats using predictive analysis,” in 2017 Int. Conf. Cyber Secur. Prot. Digit.
Serv. Cyber Secur. 2017, London, UK, 2017. doi: 10.1109/CyberSecPODS.2017.8074848.

[33] N. F. Ghalati, N. F. Ghalaty, and J. Barata, “Towards the detection of malicious URL and domain names
using machine learning,” in IFIP Adv. Inf. Commun. Technol., Costa de Caparica, Portugal, 2020. doi:
10.1007/978-3-030-45124-0_10.

[34] B. Sun, M. Akiyama, T. Yagi, M. Hatada, and T. Mori, “Automating URL blacklist generation
with similarity search approach,” IEICE Trans. Inf. Syst., vol. E99.D, no. 4, pp. 873–882, 2016. doi:
10.1587/transinf.2015ICP0027.

[35] C. Opara, Y. Chen, and B. Wei, “Look before you leap: Detecting phishing web pages by exploiting
raw URL and HTML characteristics,” Expert. Syst. Appl., vol. 236, no. 12, pp. 121183, 2024. doi:
10.1016/j.eswa.2023.121183.

[36] M. Atrees, A. Ahmad, and F. Alghanim, “Enhancing detection of malicious urls using boosting and lexical
features,” Intell Autom. Soft Comput., vol. 31, no. 3, pp. 1405–1422, 2022. doi: 10.32604/iasc.2022.020229.

[37] S. M. Nair, “Detecting malicious URL using machine learning: A survey,” Int. J. Res. Appl. Sci. Eng.
Technol., vol. 8, no. 5, pp. 2670–2677, 2020. doi: 10.22214/ijraset.2020.5447.

[38] A. S. Rafsanjani, N. B. Kamaruddin, H. M. Rusli, and M. Dabbagh, “QsecR: Secure QR code scanner
according to a novel malicious URL detection framework,” IEEE Access, vol. 11, pp. 92523–92539, 2023.
doi: 10.1109/ACCESS.2023.3291811.

[39] N. A. Alfouzan and C. Narmatha, “A systematic approach for malware URL recognition,” in Proc.
2022 2nd Int. Conf. Comput. Inf. Technol. ICCIT 2022, Tabuk, Saudi Arabia, 2022. doi: 10.1109/IC-
CIT52419.2022.9711614.

[40] V. K. Nadar, B. Patel, V. Devmane, and U. Bhave, “Detection of phishing websites using machine
learning approach,” in 2021 2nd Glob. Conf. Adv. Technol. GCAT 2021, Bangalore, India, 2021. doi:
10.1109/GCAT52182.2021.9587682.

[41] R. Aswani, S. P. Ghrera, S. Chandra, and A. K. Kar, “Outlier detection among influencer blogs based on
off-site web analytics data,” in Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), Delhi, India, 2017. doi: 10.1007/978-3-319-68557-1_23.

[42] A. Mohammadi and S. A. H. Golpayegani, “SenseTrust: A sentiment based trust model in social network,”
J. Theor. Appl. Electron. Commer. Res., vol. 16, no. 6, pp. 2031–2050, 2021. doi: 10.3390/jtaer16060114.

[43] C. Do Xuan, H. D. Nguyen, and T. V. Nikolaevich, “Malicious URL detection based on machine learning,”
Int. J. Adv. Comput. Sci. Appl., 2020. doi: 10.14569/issn.2156-5570.

[44] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani, “Detecting
malicious URLs using lexical analysis,” in Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), Taipei, Taiwan, 2016. doi: 10.1007/978-3-319-46298-1_30.

[45] A. Kumar and S. Maity, “Detecting Malicious URLs using lexical analysis and network activities,”
in 4th Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2022—Proc., Coimbatore, India, 2022. doi:
10.1109/ICIRCA54612.2022.9985586.

[46] A. Joshi, L. Lloyd, P. Westin, and S. Seethapathy, “Using lexical features for malicious URL Detection—A
machine learning approach,” 2019. doi: 10.48550/arXiv.1910.06277.

[47] M. Aljabri et al., “An assessment of lexical, network, and content-based features for detecting malicious
URLs using machine learning and deep learning models,” Comput. Intell. Neurosci., vol. 2022, no. 1, pp.
1–14, 2022. doi: 10.1155/2022/3241216.

[48] C. Luo, S. Su, Y. Sun, Q. Tan, M. Han and Z. Tian, “A convolution-based system for malicious URLS
detection,” Comput. Mater. Contin., vol. 62, no. 1, pp. 399–411, 2020. doi: 10.32604/cmc.2020.06507.

https://doi.org/10.11591/ijeecs.v17.i3.pp1210-1214
https://doi.org/10.3837/tiis.2012.02.019
https://doi.org/10.1109/CyberSecPODS.2017.8074848
https://doi.org/10.1007/978-3-030-45124-0_10
https://doi.org/10.1587/transinf.2015ICP0027
https://doi.org/10.1016/j.eswa.2023.121183
https://doi.org/10.32604/iasc.2022.020229
https://doi.org/10.22214/ijraset.2020.5447
https://doi.org/10.1109/ACCESS.2023.3291811
https://doi.org/10.1109/ICCIT52419.2022.9711614
https://doi.org/10.1109/GCAT52182.2021.9587682
https://doi.org/10.1007/978-3-319-68557-1_23
https://doi.org/10.3390/jtaer16060114
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1007/978-3-319-46298-1_30
https://doi.org/10.1109/ICIRCA54612.2022.9985586
https://doi.org/10.48550/arXiv.1910.06277
https://doi.org/10.1155/2022/3241216
https://doi.org/10.32604/cmc.2020.06507

CMC, 2024, vol.79, no.3 3853

[49] A. K. Singh, “Malicious and Benign webpages dataset,” Data Brief , vol. 32, pp. 106304, 2020. doi:
10.1016/j.dib.2020.106304.

[50] S. H. Ahammad et al., “Phishing URL detection using machine learning methods,” Adv. Eng. Softw., vol.
173, pp. 103288, 2022. doi: 10.1016/j.advengsoft.2022.103288.

[51] T. Li, G. Kou, and Y. Peng, “Improving malicious URLs detection via feature engineering: Lin-
ear and nonlinear space transformation methods,” Inf. Syst., vol. 91, no. 3, pp. 101494, 2020. doi:
10.1016/j.is.2020.101494.

[52] Y. Liang, J. Kang, Z. Yu, B. Guo, X. Zheng and S. He, “Leverage temporal convolutional network for
the representation learning of URLs,” in 2019 IEEE Int. Conf. Intell. Secur. Inform., ISI 2019, Shenzhen,
China, 2019. doi: 10.1109/ISI.2019.8823362.

[53] H. Yuan, Z. Yang, X. Chen, Y. Li, and W. Liu, “URL2Vec: URL modeling with character embeddings for
fast and accurate phishing website detection,” in Proc.—16th IEEE Int. Symp. Parallel Distrib. Process. with
Appl. 17th IEEE Int. Conf. Ubiquitous Comput. Commun. 8th IEEE Int. Conf. Big Data Cloud Comput. 11t,
Melbourne, VIC, Australia, 2019. doi: 10.1109/BDCloud.2018.00050.

[54] M. K. Prabakaran, P. M. Sundaram, and A. D. Chandrasekar, “An enhanced deep learning-based phishing
detection mechanism to effectively identify malicious URLs using variational autoencoders,” IET Inf.
Secur., vol. 17, no. 3, pp. 423–440, 2023. doi: 10.1049/ise2.12106.

[55] Y. Shi, K. Yang, Z. Yu, C. L. P. Chen, and H. Zeng, “Adaptive ensemble clustering with boosting
BLS-based autoencoder,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 12, pp. 12369–12383, 2023. doi:
10.1109/TKDE.2023.3271120.

[56] K. Yang, Y. Shi, Z. Yu, Q. Yang, A. K. Sangaiah, and H. Zeng, “Stacked one-class broad learning system
for intrusion detection in industry 4.0,” IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 251–260, 2023. doi:
10.1109/TII.2022.3157727.

[57] E. Nowroozi, M. M. Abhishek, and M. Conti, “An adversarial attack analysis on malicious advertisement
URL detection framework,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 2, pp. 1332–1344, 2023. doi:
10.1109/TNSM.2022.3225217.

[58] F. Sadique, R. Kaul, S. Badsha, and S. Sengupta, “An automated framework for real-time phishing URL
detection,” in 2020 10th Annu. Comput. Commun. Work. Conf. CCWC 2020, Las Vegas, NV, USA, 2020.
doi: 10.1109/CCWC47524.2020.9031269.

[59] A. K. Dutta, “Detecting phishing websites using machine learning technique,” PLoS One, vol. 16, no. 10,
pp. e0258361, 2021. doi: 10.1371/journal.pone.0258361.

[60] S. S. Shin, S. G. Ji, and S. S. Hong, “A heterogeneous machine learning ensemble framework for malicious
webpage detection,” Appl. Sci., vol. 12, no. 23, pp. 12070, 2022. doi: 10.3390/app122312070.

[61] Q. Chen and K. Omote, “A three-step framework for detecting malicious URLs,” in 2022 Int. Symp. Net-
works, Comput. Commun. ISNCC 2022, Shenzhen, China, 2022. doi: 10.1109/ISNCC55209.2022.9851734.

[62] J. Yuan, Y. Liu, and L. Yu, “A novel approach for malicious URL detection based on the joint model,”
Secur. Commun. Netw., vol. 2021, no. 6, pp. 1–12, 2021. doi: 10.1155/2021/4917016.

[63] R. Bharadwaj, A. Bhatia, L. D. Chhibbar, K. Tiwari, and A. Agrawal, “Is this URL Safe: Detection of
malicious URLs using global vector for word representation,” in Int. Conf. Inf. Netw., Jeju-si, Korea,
Republic of, 2022, vol. 12, pp. 486–491. doi: 10.1109/ICOIN53446.2022.9687204.

[64] K. M. Manjunatha and M. Kempanna, “Count vectorizer model based web application vulnerability
detection using artificial intelligence approach,” J. Discret. Math. Sci. Cryptogr., vol. 25, no. 7, pp. 2039–
2048, 2022. doi: 10.1080/09720529.2022.2133243.

[65] R. Rajalakshmi and C. Aravindan, “A Naive Bayes approach for URL classification with supervised
feature selection and rejection framework,” Comput. Intell., vol. 34, no. 1, pp. 363–396, 2018. doi:
10.1111/coin.12158.

[66] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,” in
EMNLP 2014—2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., Doha, Qatar, 2014. doi:
10.3115/v1/d14-1162.

https://doi.org/10.1016/j.dib.2020.106304
https://doi.org/10.1016/j.advengsoft.2022.103288
https://doi.org/10.1016/j.is.2020.101494
https://doi.org/10.1109/ISI.2019.8823362
https://doi.org/10.1109/BDCloud.2018.00050
https://doi.org/10.1049/ise2.12106
https://doi.org/10.1109/TKDE.2023.3271120
https://doi.org/10.1109/TII.2022.3157727
https://doi.org/10.1109/TNSM.2022.3225217
https://doi.org/10.1109/CCWC47524.2020.9031269
https://doi.org/10.1371/journal.pone.0258361
https://doi.org/10.3390/app122312070
https://doi.org/10.1109/ISNCC55209.2022.9851734
https://doi.org/10.1155/2021/4917016
https://doi.org/10.1109/ICOIN53446.2022.9687204
https://doi.org/10.1080/09720529.2022.2133243
https://doi.org/10.1111/coin.12158
https://doi.org/10.3115/v1/d14-1162

	Detecting Malicious Uniform Resource Locators Using an Applied Intelligence Framework
	1 Introduction
	2 Literature Review
	3 Detection Framework
	4 Results
	5 Conclusion
	References

