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ABSTRACT

Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help
doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical
multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines
global features and local features. The network framework consists of three parallel layers: The global feature
extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention
mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local
feature extraction layer, a bilateral local attention mechanism is introduced to improve the extraction of relevant
information between adjacent slices. In the multi-scale feature fusion layer, a channel fusion block combining
convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient
disappearance and network degradation and improve feature representation capability. The double-branch iterative
multi-scale classification block is used to improve the classification performance. On the brain glioma risk grading
dataset, the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has
the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators. On
the dataset of skin cancer classification, the generalization experiment results show that the proposed HMAC-Net
has a good generalization effect.
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1 Introduction

Brain tumors are one of the most common diseases in the world. During 2019–2020, China’s
national brain tumor registry research platform registered an average of 12,768 brain tumor patients
annually, about ten times the number of cases reported in the previous decade [1]. Tumors are caused by
mutations in cell function, which result in a loss of the cell’s ability to accept programmed cell death.
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Although brain tumors rarely spread to other parts of the body, they can still be dangerous. Brain
tumors can proliferate and damage brain tissue as they spread to nearby areas. Brain tumor growth
compresses brain tissue and can cause complications even if the cancer is benign. Brain tumors account
for about 2.17% of all cancer deaths, and 5-year survival rates are low.

Magnetic resonance imaging (MRI) contains multiple sequences and is the most used and accurate
test for diagnosing brain tumors. Commonly used MRI sequences include T1-weighted imaging
(T1WI), T1-weighted gadolinium enhanced imaging (T1Gd), T2-weighted imaging (T2WI), and fluid-
attenuated inversion recovery (FLAIR). The sequence anatomy and bleeding of T1WI were precise,
with few artifacts, but the lesions were not displayed [2]. The contrast between blood vessels and brain
tissue in the T1Gd sequence is more prominent, and cerebral vessels and lesions can be more clearly
displayed [3]. T2WI sequences can provide a more precise diagnosis of lesions and edema, especially
for brain tumors [4]. FLAIR sequences can be used to determine the boundaries of edema around
tumors [5]. Different MRI sequences are used to examine different anatomical structures. Although
the imaging time is longer, it has been widely used in clinical practice because of its non-invasive and
high accuracy.

Medical image classification is a process that uses machine learning algorithms to analyze medical
images to extract the diagnostic features of diseases and make diagnoses. Medical image classification
algorithms are divided into two categories: Traditional medical image classification algorithms and
deep learning-based medical image classification algorithms. Traditional medical image classification
algorithms combine manual feature extraction and classification algorithms to realize medical image
classification. Since 2006, deep learning has emerged as a branch of machine learning. In recent
years, deep learning has made breakthroughs in computer vision, natural language processing,
bioinformatics, and other fields. Deep learning methods are modeled on human brain neural networks.
Combining multiple non-linear processing layers, the original data is abstracted layer by layer to
obtain features in the data for target detection, classification, or segmentation. The advantage of deep
learning is that it replaces manual feature acquisition with efficient algorithms for unsupervised or
semi-supervised feature learning and hierarchical feature extraction [6].

In clinical diagnosis, the doctor should consider the global and local characteristics of the lesion.
Take brain tumors, for example. Local features help judge tumor edema information, and global
features help judge tumor location information. The medical image classification algorithm based
on convolutional neural network (CNN) focuses on extracting global features for image classification
[7], while the medical image classification algorithm based on transformer focuses on extracting local
features for image classification [8]. The effective combination of CNN and transformer is conducive
to the comprehensive classification of medical images from the perspective of global features and local
features. However, the biggest problem with select global features is that for every predicted value
generated by the model, a concerning mechanism must be calculated using all previous historical
states, which is very expensive to calculate the inverse gradient propagation of the model. Effectively
combining CNN and transformer to reduce computing costs is particularly important.

Aiming at the above problems in the medical image classification algorithm, this paper proposes
a hierarchical multi-scale attention feature fusion medical image classification network: HMAC-
Net. The proposed network consists of four blocks: Global feature extraction block, local feature
extraction block, feature fusion block, and iterative multi-scale classification block. This paper makes
the following contributions:

1) The network has three parallel layers: Global feature extraction, local feature extraction, and
feature fusion. At each level, with the forward propagation of the network, the advantages of the
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transformer and CNN can be combined in multiple scales to improve the performance of medical
image classification.

2) It aims to address the problem of information redundancy caused by the global attention
mechanism, and a global feature extraction block has been designed. The block consists of a linear
encoder and a sparse backtracking attention mechanisms (SAB) block, which retains essential features
and reduces the computational cost of gradient backward propagation. Construct a local feature
extraction block. The block includes layer normalization and a bilateral local attention mechanism
(BLA) block, feature extraction of local neighborhoods in the same slice, and feature extraction of local
spatial domains between adjacent slices that can be realized simultaneously. The Channel attention
feature fusion (CAFF) block is proposed. The block consists of a convolutional attention mechanism
and residual-reverse multilayer sensing unit, which can realize the effective fusion of multi-scale global
features and local features.

3) The network constructs a two-branch iterative multi-scale classification fusion (MCFC)
block composed of two-branch up-sampling, global average pooling layer, and layer normalization.
The features at different scales are analyzed through multiple iterations of forward and backward
propagation to improve the final medical image classification effect.

4) Different modal brain glioma datasets verified the validity of the algorithm, and skin cancer
datasets verified the algorithm’s generalization. Compared with the most advanced algorithms, the
performance of HMAC-Net has been effectively improved in both qualitative and quantitative
analysis.

2 Related Work

The research and application of deep learning methods in image processing, such as image
segmentation, image recognition, image classification, image annotation, and image generation, are
developing rapidly. In image classification, Hinton et al. designed the AlexNet [9] network structure
in 2012; the accuracy rate reached 83.6%, and they won the championship in ImageNet image
classification, so deep learning has been widely used. DeepMind’s VGGNet [10] achieved 92.7%
accuracy in ImageNet image classification. Given the shortcomings of CNN in the requirement of
fixed input size, He et al. proposed the spatial pyramid pooling (SPP) model to enhance the robustness
of input data [11]. Given the possible model degradation problem, He proposed the residual network
ResNet and continuously promoted the deep learning technology [12].

With the continuous development of deep learning, medical image classification algorithms based
on attention mechanisms also keep appearing. Medical image classification algorithms based on
attention mechanisms can combine the information in the image and add attention mechanisms such
as space or location into the network framework, which is conducive to improving image classification
accuracy. Nagarani et al. [13] proposed a progressive generative adversarial network based on a self-
attention mechanism and momentum search optimization for brain tumor classification on MRI
images. By combining texture features with generative adversarial network, the accuracy of MRI
image classification for benign and malignant brain tumors was 88.23%. Waghere et al. [14] proposed a
dense convolutional autoencoder based on dual attention to identifying brain tumors in MRI images.
The algorithm uses Kapur’s threshold for segmentation, directional gradient pyramid histogram,
and grayscale run matrix to extract the shape and texture features of the segmented MRI. Gliomas,
pituitary tumors, and meningiomas were classified by shape and texture features. The classification
accuracy of this algorithm is 97.28%. Tabatabaei et al. [15] introduced a branch-parallel model,
which integrated a transformer block, self-attention mechanism unit, and CNN to classify brain
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tumors in MRI images. The classification accuracy of brain tumor MRI was 98.59%, which realized
rapid and accurate diagnosis. The medical image classification algorithm based on the transformer
can capture the global dependence. However, in combination with clinical, local information is also
needed. The medical image classification algorithm based on CNN can improve the existing problems
in transformer.

There are currently medical image classification algorithms based on CNN and transformer.
Liu et al. [16] proposed a hybrid and efficient medical image classification network based on CNN
and transformer, which uses a few parameters to classify images of pneumonia, colon cancer, and
skin diseases quickly and accurately. However, since this method is based on the analysis of white
light images combined with image visualization discovery, white light medical photos make it easier to
find lesions than MRI medical images, and the algorithm’s accuracy is relatively high. Wu et al. [17]
proposed a new hybrid deep learning model. The algorithm uses the multi-label multi-attention
enhancement feature block to explore the implicit correlation between the labels, the multi-branch
residual block to optimize the model, and the information interaction block to strengthen the
information transmission between the multi-branches. This framework is more competitive than the
previous research. Its strong generalization ability makes it suitable for multi-label image classification
tasks. In the multi-branch structure of this network, the influence of the shallow features of a single
branch on the final classification task is not considered. Combining shallow features and deep features
is conducive to improving the classification effect. Yan et al. [18] combined transformer and CNN to
extract long-term and short-term dependencies by using transformer and CNN and mining richer
and heterogeneous image attributes from these two branches. In the two-branch structure of the
network, the association between the two branches was not considered. This leads to the fact that
although global and local features are extracted, the correlation between features is not considered.
Huo et al. [19] proposed a three-branch hierarchical multi-scale feature fusion network structure
(HiFuse). The network framework uses a parallel hierarchical structure to extract global and local
features without destroying the framework of CNN and transformer. At the same time, the correlation
between features is considered, and the feature fusion block is used for information synthesis. In the
global feature select branch of HiFuse, the network uses a global attention mechanism for feature
extraction. However, from the view of feature extraction, more features do not mean better results.
Extracting features with high importance is more conducive to improving the network effect, and
at the same time, it can reduce the computation time of the network. Given the problems in related
work, this paper combines CNN with transformer to complete the extraction and fusion of global and
local features under the three-branch parallel network structure. The shallow and deep features were
integrated to achieve iterative multi-scale classification.

3 HMAC-Net

To improve the accuracy of the medical image classification model, it is necessary to combine local
and global features at different levels. For hierarchical feature fusion, a parallel network structure
HMAC-Net is designed in this paper, and its network structure is shown in Fig. 1. The network
structure is composed of three hierarchies: The local feature extraction level is used to extract the
local features of the image, the global feature extraction layer is used to extract the global features of
the image, and the feature fusion level is used to fuse the multi-scale local features and global features.

In the global feature extraction layer, the patch is taken as the primary computing unit, and each
patch comprises 4 × 4 pixels. The advantage of this approach is that it speeds up the calculation and
makes it easy to extract global features. The data processed by the patch is input into the global feature
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extraction block, which consists of a linear encoder and SAB block. The linear encoder achieves
feature dimension reduction while maintaining the global linear feature. The SAB block performs
feature extraction in forward propagation and screening critical features in backward propagation. In
the feature extraction process, texture information is extracted from a shallow network, and semantic
information is extracted from a deep network. The input and output of each global feature extraction
block were fused in series to preserve the texture information as much as possible and improve the
classification effect of brain tumors.

Figure 1: HMAC-Net network framework

In the local feature extraction layer, the image is preprocessed by two-dimensional convolution.
The obtained data is input into the local feature extraction block consisting of layer normalization
and the BLA block. The purpose of layer normalization is to find a “semantic center” and then
set the features related to the classification results of the semantic center so that the correlation
between the features will not be destroyed. The BLA block extracts and clusters local features to
ensure the correlation between the output features. At the same time, the BLA block can realize local
neighborhood feature extraction of the same slice and local spatial feature extraction between adjacent
slices. As with the global branch, the input and output of the local feature extraction block are fused
to preserve texture information as much as possible.

Considering the correlation between local and global features at the same level, the CAFF block
is used for feature fusion. The features obtained from the global feature extraction level, local feature
extraction level, and feature fusion level are processed by the MCFC block to achieve the purpose of
medical image classification.

3.1 SAB Block

Medical images contain rich anatomical structure information, among which the acquisition of
global context information is significant because it can focus on semantic-level features. The attention
mechanism mimics the human visual perception system, is a complex cognitive ability that helps
classification models focus on crucial information and remove redundant information. Often, when
we want to focus on a particular object in some scene, we will focus on the area of interest and ignore
other objects outside the area of interest. Similarly, in deep learning, information extracted at different
levels flows backward. If some prior information about brain tumors and edema is known, this
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information can be used to suppress the flow of ineffective details to preserve important information.
In this way, attention mechanisms can help deep learning models better process complex information,
quickly screen out high-value content from large amounts of information and improve classification
performance and information processing efficiency. Unlike the global attention mechanisms of
sequential processing, organisms or humans generally do not recall all information sequentially but
specific discrete pieces of information and related fragments [20]. Therefore, this structure considers
introducing SAB block into the global feature extraction hierarchy [21].

SAB block includes forward propagation process (Fig. 2) and backward propagation process
(Fig. 3). During forward propagation, a recurrent neural network (RNN) structure is first defined
as a memory unit. A memory unit can be represented as:

h(t) = LReLU(Whhh(t−1) + Wxhx(t) + bh) (1)

where, x(t) represents the input, h(t) represents the tth memory cell, h(t−1) represents the (t−1)th memory
cell, Whh indicates the weight matrix from the hidden state to the hidden state, Wxh indicates the
weight matrix from the input to the hidden state, and bh indicates the bias of the hidden state. LReLU
represents the Leaky ReLu activation function.

Figure 2: SAB block forward propagation framework

Figure 3: SAB block backward propagation framework
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katt represents the extraction interval of memory units and defines katt memory units as a storage
unit. The extracted storage units are concat to form tensor L1, the last storage unit is extended to form
tensor L2 with the same dimension as the L1 tensor, and then L1 and L2 are concat again to form tensor
L. L is entered into the multilayer perceptron (MLP) to calculate the initial weight of the storage unit.
ktop represents the number of initial weights of storage units that are ultimately retained. The calculated
storage units are sorted according to their initial weights. The initial weights of the storage units in the
top ktop are retained, and the other weights are defined as 0 for sparse representation. The top ktop units
are defined as sparse subsets. The initial weights of sparse subsets are summed and input to the last
storage unit to complete the forward propagation process. In forward propagation, human memory
of things is simulated as a storage unit for feature extraction.

The backward propagation process is shown in Fig. 3. Backward propagation of SAB block is
a direct form of information distribution, which avoids the competition of limited information for
sequential path computing power and finds a balance between the high computing power required to
retain valuable information and the low computing power required to obtain limited information.
In the backward propagation process, the parameter ktrunc represents the truncation value of the
backpropagation. When backward propagation occurs between two storage units, ktrunc = 2. The
weights of the network’s last layer are passed separately to each sparse subset in the forward
propagation. When the backward propagation reaches the ktrunc − 1 storage unit, it is truncated, and
the backward propagation process is finally realized. In backward propagation, recalling things is
simulated, and the high-weight memory units are read to realize the screening of critical features.

3.2 BLA Block

As shown in Fig. 4, BLA block [22] is composed of image-space local attention, feature-space
local attention, MLP and layer normalization. Let the input set be Tin = {ti}N

i=1, where ti ∈ RC , C is
the number of channels and N is the number of tokens. The input set passes through the normalized
block and the image-space local-attention (ISLA) block, and the connection between the normalized
block and the ISLA block can be expressed as:

Figure 4: BLA block framework

TISLA = Tin + ISLA(LN (Tin)) (2)

where, LN represents the layer normalization operation, fed into the ISLA block, and added with
the input Tin to get TISLA. The ISLA block only calculates self-attention mechanisms between tokens
within the same sliding window. There are specific relationships between the features retained in the
same sliding window, and there may also be specific relationships between the features of different
sliding windows. To solve this problem, the ISLA block uses a linear shifted windows transformer
(Linear Swin Transformer) [23]. The basic idea of the Linear Swin Transformer is to divide the image
into multiple patch partitions, each patch corresponds to a token. Use a linear encoder to project
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the features of the patch to any size. Feature size and the number of channels remain the same after
transformer. The Linear Swin Transformer structure is shown in Fig. 5a.

(a) Linear Swin Transformer (b) Linear Swin Transformer block

Figure 5: Linear swin transformer and linear swin transformer block

The Swin Transformer Block is shown in Fig. 5b. The sliding window-based windows multi-head
self-attention (W-MSA) mechanism is designed to limit the computation of attention to a single sliding
window so that the computational complexity increases linearly as the image size increases. Shifted
windows multi-head self-attention (SW-MSA) overcomes the drawback of W-MSA focusing only on
features within a single sliding window. SW-MSA makes cross-connection between different Windows,
enhances the extraction of global features, and improves the model’s performance.

The feature-space local attention (FSLA) block computes a self-attention mechanism between
tokens close in the feature space, which complements the ISLA block. The FSLA block formula can
be expressed as:

TFSLA = TISLA + FSLA(LN (TISLA)) (3)

where, LN represents the layer normalization operation, which is fed into the FSLA block and added
with the input TISLA to get TFSLA, locally enhanced location coding has also been added to each FSLA
block to highlight region of interest location information.

Tout = TFSLA + MLP(LN (TFSLA)) (4)

where, LN represents the layer normalization operation, which is fed into the MLP and added with
the input TFSLA to get Tout, unlike ISLA block, which are grouped according to the spatial location of
region of interest, FSLA block is grouped according to the content of region of interest.

3.3 CAFF Block

The CAFF block can adaptively fuse local features of different levels, global representations,
and semantic information of the previous level after fusion according to input features, as shown in
Fig. 6. Gi is the feature matrix of the output of the global feature block, Li is the feature matrix of the
production of the local feature block, Fi−1 is the feature matrix of the output of the CAFF block in the
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previous stage, and Fi is the feature matrix generated by the fusion of the CAFF block in this stage.
Since the self-attention in a global feature block can capture global spatial information, to some extent,
the CAFF block provides the incoming global features to the convolutional block attention (CBAM)
block. This mechanism takes advantage of the interdependence between channel maps to improve the
feature representation of specific semantics. Local features are input into the CBAM to enhance local
details and suppress irrelevant areas. Finally, the results produced by each attention and fusion path
are features-fused, and an inverted residual MLP (IRMLP) is connected. To a certain extent, problems
such as gradient disappearance, explosion, and network degradation are prevented, and each level’s
global and local feature information is effectively captured. The formula is as follows:

Figure 6: CAFF block

CA (x) = σ(MLP (AvgPool (x)) + MLP (MaxPool (x))) (5)

where, MaxPool indicates the maximum pooling operation, and AvgPool indicates the average pooling
operation, which are respectively sent to the MLP and added together. σ is the sigmoid function. The
sigmoid function obtains CA (x).

SA (x) = σ(f 7 × 7(concat [AvgPool (x), MaxPool (x)])) (6)

where, f 7 × 7 represents a convolution operation with a convolution kernel size of 7 × 7, the features
that have been maximized and average pooled are concat processed and entered the f 7 × 7 operation.
The sigmoid function obtains SA (x).

CBAM (x) = SA(CA(x) ⊗ x) ⊗ (CA(x) ⊗ x) (7)

where, ⊗ represents element-by-element multiplication, CA(x) and x are multiplied element-by-
element, and then the output is multiplied element-by-element, and CBAM (x) is obtained through
the SA (x).

IRMLP (x) = f 1 × 1
(
f 1 × 1

(
f 3 × 3 (LN (x) + LN (x))

))
(8)
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where, LN represents the layer normalization operation. x is added after two level normalization
operations, and IRMLP (x) is obtained after the convolution kernel size is 3 × 3, 1 × 1, and
1 × 1, respectively. The feature fusion operation adopts the following formula:

Ĝi = CBAM(Gi)
⊗

Gi (9)

L̂i = CBAM(Li)
⊗

Li (10)

F̃i = AvgPool(f 1 × 1(Fi−1)) (11)

F̂i = f 3 × 3
(
concat

[
Gi, Li, F̃i

])
(12)

Fi = IRMLP
(
concat

[
Ĝi, L̂i, F̂i

]) + F̃i (13)

where,
⊗

represents element-by-element multiplication, Ĝi is generated by the channel attention
combination, L̂i is generated by the spatial attention combination, and F̃i is generated by the CAFF
block subsampling in the previous stage. F̂i is the result of the global-local feature fusion in the previous
stage. Finally, the feature Fi is generated by concatenating the feature, L̂i and F̂i through IRMLP.

3.4 MCFC Block

To effectively utilize the feature information of each layer of CAFF and prevent the loss of task-
related information, a two-branch iterative multi-scale fusion classification block is introduced before
the classifier. MCFC to fuse multi-layer feature information. The feature fusion process is as follows,
and the model is shown in Fig. 7.

f
′

i+1 = Conv(concat(UP(fi), fi+1)) i = 1, 2, · · · , n (14)

where, fi, fi+1 are the output feature graphs of the i and i + 1 CAFF block, f ′
i+1 are the fused feature

graphs, concat is the concatenation operation, Conv is the convolution layer of 1 × 1, and n is the
total number of input feature graphs. Specifically, fi+1 is obtained by upsampling fi to the same size
as f ′

i+1, then concatenating the two feature graphs, and then reducing the number of channels of the
concatenated feature graphs to the original size through a 1 × 1 convolution layer. f ′

i+1 input is pooled
and normalized globally to get the output of the MCFC block.

Figure 7: MCFC block



CMC, 2024, vol.79, no.3 5323

4 Results and Analysis

This section will provide a comparative analysis of HMAC-Net and several state-of-the-art
methods for medical image classification based on MRI images. These experiments include qualitative
and quantitative comparisons using publicly available datasets. In addition, ablation studies were
conducted to investigate the performance and components of the method in depth.

4.1 Dataset

Brain Tumor Segmentation Challenge 2021 (BraTS2021) [24] is a large-scale public glioma
dataset provided by the International Society for Medical Image Computing and Computer-Aided
Intervention (MICCAI). A total of 2040 patients’ MRI images were collected in this dataset, divided
into two categories: High-risk and low-risk. For better processing, we transformed the image into
256 × 256 png format data by slice processing and normalization. The MRI data of 1251 non-
participants were used for image classification, which was split into training sets (876 cases), validation
sets (250 cases), and test sets (125 cases) according to the ratio of 7:2:1.

Atlas navigator neoplastic clinical whole brain (AANLIB) [25] is a publicly available dataset
provided by Harvard University, which covers data from neuroanatomy-related studies. The glioma
images of 216 patients were collected using this data and divided into high-risk and low-risk categories.
We preprocessed the dataset by rotation and inversion while transforming the images to 256 × 256.
The available data from 432 preprocessed cases were used for image classification, which was split into
training sets (302 cases), validation sets (86 cases), and test sets (44 cases) according to the ratio of
7:2:1.

International Students Innovation Competition 2018 (ISIC2018) [26] is a large-scale public skin
pathology dataset provided by the International Society for MICCAI. The dataset contains a total of
12,500 chapters of images divided into seven categories. We selected two categories: Melanoma and
benign keratosis. Convert the image to 256 × 256 png format data. In this study, 2112 image data were
used to verify the generalization.

4.2 Experimental Details and Evaluation Indexes

All experiments were conducted using PyTorch on a Windows workstation installed with an
Intel®Core™i9-10900X CPU and an NVIDIA Geforce GTX Titan A100 GPU. The network model
is implemented based on the PyTorch framework, Torch version 1.10.2, cuda version 11.3. AdamW
optimizer was used for training, Adam parameters β1 = 0.99, β2 = 0.999 were set according to
experience, the learning rate was 0.0001, the number of training rounds was 100, and the cosine
annealing learning rate strategy was adopted. To ensure the fairness of the experiments, we use an
image size of 256 × 256, share the same operating environment and hyperparameters, and use the same
training, validation, and test sets according to previous literature. We were conducting experiments
under the mmcv framework. Using softmax as the output layer, the loss value is calculated using the
classification cross entropy loss function:

Loss = −[ylog (p) + (1 − y) log(1 − p) (15)

where, y represents the true label and p represents the probability of predicting a positive sample.
For quantitative evaluation, Accuracy, F1-score, Precision and Recall were selected as classification
indicators. These indicators are calculated based on the confusion matrix.
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4.3 Ablation Experiment

To study the effects of the SAB, BLA, CAFF, and MCFC blocks on the performance of the
HMAC-Net model designed in this paper, ablation experiments were conducted on BraTs2021 and
ANNLIB datasets, respectively.

As shown in Table 1, the impact of each block on the model was evaluated on the BraTs2021
dataset. SAB, BLA, CAFF, and MCFC blocks are added to form the HMAC-Net model. After adding
the SAB block, the accuracy, precision, recall, and F1-score improved by 4.4%, 4.1%, 2.0%, and 2.9%,
respectively, indicating that the SAB block improved the overall performance of the network while
reducing information redundancy. After adding the BLA block, the above four indicators increased
by 1.9%, 2.7%, 0.0%, and 1.3%, respectively, and the accuracy of the BLA block was higher than
that of the baseline model for high-risk and low-risk patients with brain glioma. After adding the
CAFF block, the four indexes increased by 3.0%, 3.9%, 0.4%, and 2.1% successively, which indicates
that the CAFF block can effectively integrate global features and local features of different scales to
achieve accurate improvement of network classification effect. After adding the MCFC block, the
accuracy and recall are significantly improved. However, the accuracy and F1-score are decreased,
mainly because the effect of the iteration of the MCFC block depends on the feature extraction of
other blocks, and the addition of the MCFC block alone will lead to the decline of indicators. The
final HMAC-Net model combined with four blocks improved the accuracy, precision, recall, and
F1-score by 6.8%, 4.2%, 5.8%, and 5.1%, respectively. The results show that HMAC-Net can effectively
improve the classification of high-risk and low-risk glioma patients and prevent the missed detection
and misdiagnosis of lesions.

Table 1: Results of BraTs2021 dataset ablation experiment

Method Accuracy↑ Precision↑ Recall↑ F1-score↑
Baseline (Hifuse) 0.853 0.918 0.868 0.892
Base+SAB block 0.897 0.959 0.888 0.921
Base+BLA block 0.872 0.945 0.868 0.905
Base+CAFF block 0.883 0.957 0.872 0.913
Base+MCFC block 0.894 0.878 0.888 0.883
HMAC-Net 0.921 0.960 0.926 0.943
Note: For a given task, ↑ the larger the value, the better; the red body represents the model with the best performance, and the
blue body represents the next best model.

To further illustrate that the HMAC-Net model can effectively capture the feature information of
the region of interest in medical images, the last layer, other than the linear layer, is visualized and will
be rendered as a heat map in the model. Fig. 8 shows the glioma heat map of the BraTs2021 dataset.
The area closer to red is the area of more significant concern obtained by the experiment, and it can
be verified whether it is the region of interest.

As can be seen from Fig. 8, the color region of the heat map of the SAB block is more concentrated
near the tumor, and it presents a better effect than the baseline model, which further verifies that it can
effectively reduce information redundancy and improve the network effect. The heat map of the BLA
block has less color in the non-tumor area. It is more excellent in tone, which is more concentrated
near the tumor, and the visualized results are more concentrated compared to the baseline model. The
CAFF block further pinpoints the location of the tumor. Although the quantitative analysis results
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of the MCFC block are relatively reduced, the visual results show that the block can focus well on
the target area near the tumor. The HMAC-Net model integrated with four blocks reflected a higher
heat value of the lesion area and covered the lesion area more accurately. The qualitative results of
these visualizations show that HMAC-Net can better integrate global-local features at different levels,
helping the model to identify more key features and thus focus more on diseased areas of the brain
tumor.

Figure 8: Visualization results of ablation experiments

According to the results of qualitative and quantitative analysis of ablation experiments, the
SAB block, BLA block, CAFF block, and MCFC block can improve the network performance
compared with the baseline model, but there are still some differences. For example, the SAB block can
concentrate the information related to the target task near the tumor. However, it still contains some
redundant information. The combination of the four blocks can realize the extraction and fusion of
global features and local features and, in the iterative process, constrain the expansion of redundant
information, improve the overall performance of the network, and effectively prevent the occurrence
of misclassification and missing detection.

To further verify the effectiveness of block settings, as shown in Table 2. The HMAC-Net model
is still formed by adding the SAB, BLA, CAFF, and MCFC blocks on the Hifuse baseline network.
After the SAB block is added, the accuracy, precision, recall, and F1-score increase by 2.1%, 0.4%,
1.9%, and 1.2%, respectively, and the accuracy rate reaches 83.4% as the second best, which indicates
that SAB block can effectively improve the accuracy of classification. After adding the BLA block, the
above four indicators increased by 1.8%, 1.0%, 1.9% and 1.5%, respectively. After adding the CAFF
block, the four indicators were increased by 2.1%, 1.0%, 2.3%, and 1.7%, respectively, among which
the accuracy, precision, and recall all reached sub-optimal. The F1-score was also very close to sub-
optimal, which indicates that the CAFF block can effectively improve the classification effect. After
adding the MCFC block, the four indicators increased by 0.2%, 0.5%, 3.1%, and 1.8%, respectively.
Compared with the other three blocks, the improvement of the MCFC block is relatively low. The main
reason for this phenomenon is that the block needs to combine the other three blocks to improve
the overall effect. The four indicators of the HMAC-Net model formed by combining four blocks
reached 84.0%, 91.0%, 86.8%, and 88.8%, respectively, which increased by 2.7%, 1.5%, 3.8%, and 2.7%
compared with the baseline model. Unlike the results obtained in BraTs2021, the effect of the CAFF
block on this dataset is better than that of the SAB block. The reason is that the storage format of the
two datasets is different, and there is a specific deviation between the data distribution. However, the
HMAC-Net model combined with four blocks has a better image classification effect.
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Table 2: Results of ANNLIB dataset ablation experiment

Method Accuracy↑ Precision↑ Recall↑ F1-score↑
Baseline (Hifuse) 0.813 0.895 0.830 0.861
Base+SAB block 0.834 0.899 0.849 0.873
Base+BLA block 0.831 0.905 0.849 0.876
Base+CAFF block 0.834 0.905 0.853 0.878
Base+MCFC block 0.815 0.900 0.861 0.879
HMAC-Net 0.840 0.910 0.868 0.888
Note: For a given task, ↑ the larger the value, the better; the red body represents the model with the best performance, and the
blue body represents the next best model.

4.4 Contrast Experiment

To verify the performance of the proposed network, a comparison experiment was conducted
with the recent advanced medical image classification methods: High-resolution network (HRNet)
[27], residual multi-layer perceptron (ResMLP) [28], medical vision transformer (MedViT) [29], robust
vision transformer (RVT) [30], and HiFuse.

The results on the BraTs2021 dataset after multimodal fusion are shown in Table 3, indicating
that the proposed HMAC-Net model has advantages in medical image classification. Compared to
HiFuse, HMAC-Net improved its accuracy, precision, recall, and F1-score by 6.8%, 4.2%, 5.8%, and
5.1%, respectively. Like HiFuse, HMAC-Net constructs a hierarchical structure to improve the feature
representation ability of neural networks at different scales. The difference is that HMAC-Net adopts a
sparse backtracking attention mechanism in the global feature hierarchy to retain critical information.
This shows that reducing information redundancy is beneficial to improving image classification
performance. Compared with the sub-optimal MedViT, HMAC-Net’s four indicators improved by
4.1%, 2.2%, 3.8% and 3.1%, respectively. Like MedViT, HMAC-Net also builds a combination of
CNN and transformer. However, HMAC-Net additionally designs a multi-scale fusion of global and
local features to improve the effect of image classification further.

Table 3: Comparative experimental results of BraTs2021 dataset

Method Accuracy↑ Precision↑ Recall↑ F1-score↑
HRNet (2021) 0.799 0.887 0.818 0.851
ResMLP (2021) 0.818 0.884 0.853 0.868
RVT-S (2022) 0.840 0.909 0.857 0.882
HiFuse (2022) 0.853 0.918 0.868 0.892
MedViT (2023) 0.880 0.938 0.888 0.912
HMAC-Net (ours) 0.921 0.960 0.926 0.943
Note: For a given task, ↑ the larger the value, the better; the red body represents the model with the best performance, and the
blue body represents the next best model.
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To further illustrate, the HMAC-Net model performs better than some classification algorithms.
Fig. 9 shows the regions of interest for gliomas on the BraTs2021 dataset under comparison experi-
ments. Like HRNet, HMAC-Net also sets the residual connection mode. However, the difference is
that HMAC-Net is a residual connection mode used for fusion at different scales, which can improve
the fusion effect of global features and local features. HRNet can also find regions of interest through
heat maps but also introduces too many redundant areas. Compared with MedViT, the HMAC-Net
model considers both global features and local features. The heat map shows that MedViT is closest to
HMAC-Net’s region of interest. However, when considering local features, HMAC-Net considers not
only local neighborhood features within the same slice but also local spatial features between adjacent
slices, which improves local feature extraction capability and final classification effect to a certain
extent. Unlike all comparison methods, HMAC-Net also covers iterative constraints, eliminating
redundant information. Through visualization results, it is found that although there is still a tiny
amount of information unrelated to tumors in the heat map, the information redundancy has reached
the lowest level compared with other methods.

Figure 9: Visualization results of comparative experiments

Combined with the qualitative and quantitative analysis of the comparative experiment on the
BraTs2021 dataset, it is found that the four blocks of HMAC-Net can realize information redundancy
and effectively combine the advantages of CNN and transformer. Feature fusion at different scales
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also ensures the extraction and retention of information directly related to the target task, and the
performance of the model is significantly improved through iterative classification and maximum
constraint on redundant information.

To further verify the effectiveness of the HMAC-Net algorithm, the model and some classification
algorithms in the HMAC-Net were also evaluated on the ANNLIB dataset, and the quantitative results
are shown in Table 4. As can be seen from the table, HMAC-Net has significant advantages in medical
image classification. Like HiFuse, we build hierarchies to improve the feature representation capability
of neural networks at different scales. However, compared to HiFuse, the proposed network showed
higher accuracy, precision, recall, and F1-score. The network combined with HiFuse will find that the
fusion of shallow and deep features is more conducive to improving the model effect. At the same time,
reducing information redundancy can enhance the impact of classification and extract global features.
Compared with MedViT, the four indexes are improved by 1.4%, 1.3%, 1.9%, and 1.5%, respectively,
further verifying the overall performance advantage of HMAC-Net algorithm classification.

Table 4: Comparative experimental results of ANNLIB dataset

Method Accuracy↑ Precision↑ Recall↑ F1-score↑
HRNet (2021) 0.745 0.851 0.772 0.809
ResMLP (2021) 0.761 0.873 0.772 0.819
RVT-S (2022) 0.804 0.901 0.810 0.853
HiFuse (2022) 0.813 0.895 0.830 0.861
MedViT (2023) 0.826 0.897 0.849 0.873
HMAC-Net (ours) 0.840 0.910 0.868 0.888
Note: For a given task, ↑ the larger the value, the better; the red body represents the model with the best performance, and the
blue body represents the next best model.

4.5 Generalization Experiment

To verify the generalization ability of the proposed algorithm, an image category dataset that
is significantly different from brain tumor MRI is selected in this section, namely, the ISIC2018
skin tumor dataset, which is a white light skin image with different image types and formats from
BraTs2021. Table 5 shows the generalization results of the proposed HMAC-Net model and the new
classification algorithm on the ISIC2018 skin tumor dataset. As can be seen from the table, HMAC-
Net has significant advantages in medical image classification. Compared with the comparison
algorithm, the accuracy, precision, recall and F1-score of HMAC-Net are significantly improved. The
classification accuracy of HMAC-Net for skin tumors reached 92.6%, and the overall classification
performance was the best. The recall reached 95.5%, and the tumor detection rate was the highest,
effectively preventing the occurrence of a missing detection rate. The classification results further verify
that the proposed model has good generalization ability.

4.6 Hyperparameter Analysis

The pre-experiment accuracy curve was drawn, as shown in Fig. 10. It is found that the accuracy of
HMAC-Net improves significantly when the Epoch is about 15. The accuracy curve tends to flatten out
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when the Epoch is close to 50. In the curve where the accuracy changes with the Epoch, the accuracy
of HMAC-Net is always higher than that of the comparison algorithm.

We also draw the training loss curve of the pre-experiment and find that the training loss of
HMAC-Net decreases rapidly when the Epoch is about 10, and the loss function curve tends to flatten
when the Epoch is close to 50. In the curve where the loss function changes with the Epoch, HMAC-
Net converges the fastest. Combined with the results of Figs. 10 and 11, Epoch 50 is selected for the
formal experiment.

Table 5: Generalization experimental results of ISIC2018 dataset

Method Accuracy↑ Precision↑ Recall↑ F1-score↑
HRNet (2021) 0.800 0.803 0.791 0.797
ResMLP (2021) 0.843 0.849 0.832 0.840
RVT-S (2022) 0.836 0.846 0.818 0.832
HiFuse (2022) 0.863 0.854 0.873 0.864
MedViT (2023) 0.890 0.881 0.900 0.891
HMAC-Net (ours) 0.926 0.902 0.955 0.928
Note: For a given task, ↑ the larger the value, the better; the red body represents the model with the best performance, and the
blue body represents the next best model.

Figure 10: Accuracy curve. The abscissa is the number of epochs, and the ordinate is the accuracy rate

5 Discussion

Compared with CNN, transformer has the feature of global feature extraction, which can excavate
the long dependency relationship between pixels and has more critical generalization ability. Many
experiments show that local spatial features are equally important in medical image processing. Based
on the above problems, this paper combines CNN and transformer to design a multi-level and multi-
scale attention feature fusion medical image classification network. The multi-scale feature fusion is
realized through the global feature extraction level, local feature extraction level, and feature fusion
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level, and the classification of medical images is further realized. In the classification task based on
the BraTs2021 dataset, the accuracy, precision, recall, and F1-score four indexes improved by 6.8%,
4.2%, 5.8%, and 5.1%, respectively, and all indexes reached the optimal level. In the classification
task of the ANNLIB dataset, this method improves by 2.7%, 1.5%, 3.8%, and 2.7%, respectively,
in the above four indicators, and all indicators reach the optimal level. In the generalization task
based on the ISIC2018 dataset, the method improved by 3.6%, 2.1%, 5.5%, and 3.8% on the four
indicators, respectively, and all indicators improved significantly. The ablation experiment, comparison
experiment, and generalization experiment further verified the effectiveness of the SAB block, BLA
block, CAFF block, and MCFC block and the whole model’s learning ability and generalization
ability.

Figure 11: Loss curve. The abscissa is the number of epochs, and the ordinate is the loss function value

At the same time, through thermal map visualization analysis, it is found that the SAB block
proposed in this paper balances information redundancy and classification results in global feature
extraction, the BLA block strengthens inter-sequence feature extraction in local feature extraction,
the CAFF block effectively fuses information at different scales, and MCFC block has constrained
information redundancy. Centralize information relevant to the target task and improve the effective-
ness of classification.

Although the models proposed in this chapter focus on medical image classification tasks, the
ideas adopted can provide researchers with new ideas for the fusion of global and local features.
The proposed model can be further refined in future research: According to the specific situation
of the task, combined with information entropy, the shallow and deep features of different stages are
fused to make the network lighter. Construct sparse attention mechanisms of different scales to find
a balance between preserving essential information and enhancing network effects.

6 Conclusion

This paper proposes a multi-level and multi-scale fusion classification model HMAC-Net. The
modular design has rich scalability and linear computational complexity. In HMAC-Net, the global
feature layer realizes the extraction of global features, the local feature layer realizes the extraction of
local features, and the fusion feature layer fuses global features and local features at different scales
and further optimizes the classification results through iterative classification blocks. The algorithm
can mine shallow, deep, international, and local information well. Experiments show that the proposed
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method achieves robustness and validates the model’s effectiveness on two medical image datasets. The
generalization of the model is verified on another dataset.
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