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ABSTRACT

In this work, we aim to introduce some modifications to the Anam-Net deep neural network (DNN) model for
segmenting optic cup (OC) and optic disc (OD) in retinal fundus images to estimate the cup-to-disc ratio (CDR).
The CDR is a reliable measure for the early diagnosis of Glaucoma. In this study, we developed a lightweight
DNN model for OC and OD segmentation in retinal fundus images. Our DNN model is based on modifications
to Anam-Net, incorporating an anamorphic depth embedding block. To reduce computational complexity, we
employ a fixed filter size for all convolution layers in the encoder and decoder stages as the network deepens.
This modification significantly reduces the number of trainable parameters, making the model lightweight and
suitable for resource-constrained applications. We evaluate the performance of the developed model using two
publicly available retinal image databases, namely RIM-ONE and Drishti-GS. The results demonstrate promising
OC segmentation performance across most standard evaluation metrics while achieving analogous results for OD
segmentation. We used two retinal fundus image databases named RIM-ONE and Drishti-GS that contained 159
images and 101 retinal images, respectively. For OD segmentation using the RIM-ONE we obtain an f1-score (F1),
Jaccard coefficient (JC), and overlapping error (OE) of 0.950, 0.9219, and 0.0781, respectively. Similarly, for OC
segmentation using the same databases, we achieve scores of 0.8481 (F1), 0.7428 (JC), and 0.2572 (OE). Based
on these experimental results and the significantly lower number of trainable parameters, we conclude that the
developed model is highly suitable for the early diagnosis of glaucoma by accurately estimating the CDR.
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1 Introduction

One of the fundamental pre-processing steps in retinal vascular and optic cup and disk segmen-
tation is contrast enhancement. For the enhancement of contrast, researchers have previously used
Contrast limited adaptive histogram equalization (CLAHE) with default values [1,2]. Nevertheless,
some fundus images may become noisy if the default parameters are applied to all of them, which
would make it challenging to precisely segment the retinal vessels and optic cup and disk, which are
required for diabetic retinopathy and Glaucoma diagnosis.
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By determining the ideal settings for the clip limit and contextual regions of CLAHE, we were able
to boost the contrast of retinal fundus images in our previous work in [3]. We recommended employing
the modified particle swarm optimization (MPSO) technique to determine the ideal clip limit and
contextual region parameter values. We evaluated its effectiveness with a range of cutting-edge
assessment indicators. The contrast-enhanced retinal fundus images are then semantically segmented
using a DL model. The combination of MPSO and CLAHE for contrast enhancement of retinal
fundus images is shown in Fig. 1, which produces a substantial boost in the sensitivity of the deep
learning model for semantic segmentation, as evidenced by the results.

Figure 1: MPSO based parameter optimization for contrast enhancement of retinal images [3]

Glaucoma is a prevalent eye disease that damages the optic nerve. The optic nerve is responsible
for transmitting signals from the retina to the brain. It stands as a leading cause of permanent vision
loss after cataracts [4]. It is characterized by the weakening of nerve fibers and often accompanied by
increased intraocular pressure due to poor fluid drainage, leading to optic cup enlargement compared
to the optic disc, known as cupping [5]. Additionally, glaucoma can cause parapapillary atrophy,
resulting in thinning and distortion of the retinal pigment epithelium near the optic nerve. Early and
accurate detection of glaucoma is crucial to prevent irreversible vision loss [6]. Glaucoma poses a
significant challenge for early detection due to its initially asymptomatic nature. It has two main
types: Closed-angle and open-angle. Closed-angle glaucoma is characterized by symptoms such as
ocular pain, high intraocular pressure, eye redness, and sudden vision decline caused by obstructed
fluid drainage. On the other hand, open-angle glaucoma, in its early stages, generally lacks noticeable
symptoms as fluid flow remains unobstructed. Timely identification of glaucoma in its early stages is
critical for initiating effective treatment interventions.

Motivation for our work:

The vast majority of glaucoma screening techniques currently in use segment OC and OD sepa-
rately and typically rely on manually extracted visual clues from retinal images. The existence of vessel
crossing and centerline reflex are some of the problems that make the OD/OC identification process
more challenging. Furthermore, a number of other issues related to the retinal image acquisition
technique exist, making the work of OD/OC identification challenging. These issues include camera
calibration, picture brightness, and noise in the retinal images. These issues give rise to a number of
additional difficulties in developing automated machine/deep learning-based systems for the diagnosis
of eye diseases that are highly performant and efficient.
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Additionally, several key components of the retinal images, such as the lesions, hard/soft exudates,
optic cup, macula, and optic disc, elevate the level of difficulty for the automated vessel detection
algorithm. Multiple challenges emerge for the computer-based automated approach for diagnosing
eye illnesses. Machine learning has recently attained much higher efficiency in segmenting the vascular
structure, and optic cup/disc, indicating their potential usage as learning engines in automated systems
for diagnosing eye diseases. However, several important factors, such as computational complexity,
memory overhead, and hyper-parameter tuning, were overlooked in the earlier investigations.

To address these challenges, we have developed a DNN Model that is based on modifications
to Anam-Net, incorporating an anamorphic depth embedding block. To reduce computational
complexity, we use a fixed filter size for all convolution layers in the encoder and decoder stages,
which in turn considerably reduces the training time. With this tweak, the model becomes lightweight
and suitable for resource-constrained applications by drastically reducing the number of trainable
parameters.

Background information:

Traditional diagnostic procedures for glaucoma include tonometry, ophthalmoscopy, perimetry,
pachymetry, and gonioscopy [7]. However, these procedures often require specialized expertise, are
time-consuming, expensive, and susceptible to observer variability. In contrast, automated diagnostic
systems have gained prominence due to their efficiency, reliability, and accuracy in detecting glaucoma.

Fundoscopy, an essential method for capturing retinal images, plays a significant role in glaucoma.
By utilizing machine learning models, fundus images provide valuable structural information about
the retina, including the OC, OD, retinal vessels, and lesions, enabling automated analysis of these
retinal structures for objective disease classification. Evaluating the optic nerve head (ONH), which
includes the OC and OD regions, proves highly effective and reliable for early glaucoma diagnosis [8,9].

Automated computer-based methods rely on the cup-to-disc ratio (CDR) as a key parameter for
glaucoma detection. The CDR is defined as the ratio of the vertical diameter of the optic cup to the
optic disc [5]. In healthy eyes, the optic cup contains a substantial number of nerve fibers. However,
in glaucomatous eyes, elevated intraocular pressure leads to the expansion of these fibers, resulting in
an increased CDR value. Typically, a CDR value below 0.6 is observed in healthy individuals, while
values exceeding 0.6 indicate the presence of glaucoma. Nevertheless, it is crucial to acknowledge that
some individuals may have larger optic cups due to genetic factors or myopia, rendering the CDR
alone insufficient for reliable glaucoma detection [10].

Another important indicator in glaucoma assessment is the neuroretinal rim (NRR), which is a
circular structure located between the optic cup and disc and consists of nerve fibers. The inferior,
superior, nasal, and temporal (ISNT) rule is commonly employed in glaucoma screening. According
to this rule, the neuroretinal rim is thickest in the inferior region, followed by the superior, nasal, and
temporal regions in normal eyes. In glaucomatous eyes, this rule is often violated due to an enlarged
optic cup and a reduced NRR region [11].

The segmentation of OC and OD remains a crucial and challenging task in glaucoma detection
[12]. Fundoscopy often produces fundus images with issues such as varying illumination, low reso-
lution, and poor contrast, significantly impacting the segmentation process [13]. Furthermore, these
images may contain noise in the form of centerline reflexes and bright objects (exudates), which further
complicate the accurate detection of OC and OD boundaries. Additionally, the presence of retinal
vessels poses a challenge for precise OC boundary detection [12].
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To overcome these challenges, researchers have incorporated pre-processing and post-processing
steps in conjunction with the main segmentation algorithm. Some studies consider the localization of
OD and OC as a prerequisite step before segmentation [14–17]. Recent research has focused on joint
segmentation of OD and OC [18–21]. However, achieving high performance in these approaches often
necessitates the optimization of multiple hyperparameters in ensemble models [21] or the utilization
of generative adversarial networks [18,19]. Another study utilized the U-Net architecture, which has
fewer parameters compared to other state-of-the-art approaches but yielded an average segmentation
performance [22]. Despite being widely used in medical imaging segmentation, SegNet, a deep learning
model, exhibits inferior performance compared to encoder-decoder-based architectures. This is mainly
due to SegNet’s non-linear up-sampling technique, which relies on pooling indices from the encoder’s
max-pooling step and may result in a loss of crucial contextual information, affecting the segmentation
accuracy [23].

In this study, we propose a novel lightweight convolutional neural network (CNN) model for
precise segmentation of the optic cup and disc in retinal fundus images. Our approach aims to address
the limitations and computational costs commonly associated with existing state-of-the-art methods.
Drawing inspiration from the Anam-Net model, which was recently developed for COronaVIrus
Disease (COVID-19) detection in computed tomography (CT) images [24], we adapt and modify
the basic Anam-Net architecture, resulting in a substantial reduction in the number of trainable
parameters from 4.47 to 0.88 million.

The key novel features of our work are listed below:

• We incorporated some thought provoking modifications to the basic Anam-Net Model to
make it computationally efficient, lightweight and optimized segmentation model for optic cup
and disc.

• By applying the proposed modification to the basic Anam-Net architecture, which achieves high
accuracy in detecting the boundaries of the optic cup and disc.

• In order to validate the model’s generalizability and robustness, its performance was evaluated
on benchmark datasets, including DRISHTI-GS and RIMONE, showcasing consistent and
reliable segmentation results across diverse retinal imaging scenarios.

• Based on publicly available retinal databases including DRISHTI-GS and RIMONE, the
segmentation performance of the proposed modifications to the developed model are verified
and compared with rivals from the state of the art.

The manuscript is structured as follows: Section 2 provides an overview of the related work
on optic cup and disc segmentation, discussing existing state-of-the-art approaches. In Section 3,
we present the implementation details and databases utilized in our study. Section 4 introduces the
proposed method based on the modified Anam-Net architecture. A comprehensive quantitative
and qualitative comparison with state-of-the-art methods, along with a discussion, is presented in
Section 5. Finally, Section 6 concludes the paper with closing remarks.

2 Related Work

In OC and OD segmentation, various image processing and machine learning methods have been
extensively investigated. OC and OD segmentation is vital for calculating CDR, which is needed for
glaucoma diagnosis. Among the two broad categories, the image-processing category includes adaptive
thresholding approaches [25], Gaussian window-based methods [26], and thresholding combined
with geometrical-based features [12]. The authors of [27] proposed a median, mean, and Otsu
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thresholding-based approach for segmentation, but the main issue in such a method is the color
variation from patient to patient, which decreases the reliability and robustness of the diagnostics
systems. Nonetheless, the main issue with thresholding-based approaches is its lower efficiency for
images with low contrast [28].

Numerous authors have applied the region and edge-based approaches for OD and OC detection,
where the regional features provide robustness and reliability contrast and intensity variations in the
retinal images. For detecting the boundary of the cup, regional information along with the intensity
normalization approach has been used by the authors [29]. In [30], authors applied different operations
in order to eliminate parapapillary atrophy. Their method achieved better segmentation performance
due to the elimination of non-disc structures. Numerous researchers applied the deformable algorithms
along with the active contours-based methods for defining OC and OD boundaries, where they
minimized the energy function. The authors of [31] developed an improved segmentation approach
for OC and OD detection for calculating cup to disc area ratio (CAR) and CDR. In order to improve
the classification errors, the authors of [32] proposed an adaptive deformable method for capturing
irregularity and shape variation.

The authors presented an active contour-based technique for OD segmentation in [33]. However,
the problem with the active contour-based approach is that it can stuck in local minima because
of the various pathologies and the noise in the retinal. Additionally, the performance of these
methods is highly reliant on the initialization of the contour model [28]. Numerous researchers applied
super-pixel-based approaches for OD and OC extraction. For instance, the authors [34] developed
a super-pixel-based classification approach for cup and disc segmentation. However, their model
underestimated and overestimated the identification of the cup for large as well as small sizes.

Preprocessing is a good strategy, which some authors have adopted for enhancing the quality of the
retinal images. The authors in [11] applied the preprocessing on the retinal images, for eliminating the
illumination and noise problems. They selected a super-pixel-based approach along with simple linear
iterative clustering (SLIC) algorithm for OC and OD detection. In their approach, they detected the
super-pixels from the given retinal images. The detected super-pixels were classified into regions of
background, OC, and OD. The observation of retinal nerve fiber layer (RNFL) structure has also
been used as an indication of glaucoma [35]. The authors of [36] have proposed an approach for
glaucoma classification based on statistical features, where they used the K-nearest neighbor for image
classification.

Machine learning models have also been used in numerous studies for OD and OC segmentation.
The author of [37] has developed an approach to accurately and reliably extract OD in noisy images.
The authors [38] have proposed an automated regression model for obtaining the accurate boundary
of OD and OC. The machine learning-based approaches are reliant on the handcrafted features, which
are manually marked by experts for a specific database, which is time-consuming and quite tedious.

Recently, deep learning (DL) models have been studied and widely developed, which automatically
learn various complex features embedded in the images through training on specialized hardware. The
authors of [15] developed a CNN-based ensemble model for OC and OD segmentation. However, the
method performs well in segmenting OC and OD, their model is complex involving a large number
of free parameters. In [39], the authors proposed and developed a new version of the well-known
U-Net architecture for the segmentation of optic cup and optic disc in retinal images. In their developed
model, the retinal image is fed and propagated in the expansion and contracting layers, which resulted
in increased dimensions of the given images. Despite the fact that their architecture is substantially
lightweight, accurate optic cup segmentation remains a challenge with this method. In [40], the authors
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performed an analysis of applying off-the-shelf CNN-based models called visual geometry group
(VGG)-S and over feat for extracting different features. They have also used some preprocessing tasks
including vessel inpainting and contrast enhancement for enhancing the performance of the developed
approach.

The authors of [7] have developed a CNN model (fully automated) having eighteen layers for
the extraction of different features from the retinal images. In [13], the authors developed a fully
convolutional neural network (FCN) for segmentation of OC and OD, where the VGG-16 based
encoder-decoder architecture along with up sampling and skip connections were used. They applied
a weighted loss with mask and filtering module for prioritizing pixels and cleaning OD and OC
boundaries, respectively. The authors of [20] proposed and developed an M-Net-based DL model,
for which they transformed the retinal images to the polar coordinate system by applying the polar
transformation. The polar domain images were then fed into M-Net for producing the probability
maps for OD and OC regions. Although this method considerably improves segmentation results, it
did not take into account contextual semantic information, which is crucial for semantic segmentation.
Furthermore, the M-Net retrieves complex features from the retinal images using a single-scale
convolution module.

The modified FCN along with pre-processing was applied by the authors in [14] for joint
segmentation of OC and OD. The authors in [16] for OD and OC segmentation developed an encoder-
decoder-based model. They used the pre-trained ResNet-34 model as an encoder while for the decoder
they selected the U-Net model. They evaluated their developed model based on the RIGA dataset.
Fundus Images of bad quality have a detrimental effect on their proposed model performance. The
authors of [17] developed a DL model based on FC-DenseNet for pixel-wise classification of retinal
images. The computational complexity (training time) of this approach is quite high. Moreover,
accurate optic cup segmentation remains a challenge with this method. The authors of [41] proposed
and developed a CNN-based complex DL model having multiple layers for glaucoma diagnosis (both
advanced and early-stage). The authors of [42] assessed ImageNet based on five different NN models
for glaucoma detection. They achieved high sensitivity, accuracy, and specificity by evaluating the five
different trained models on the datasets (publicly available). A modified U-Net-based DL model was
developed by the authors in [43] for OC and OD segmentation. For OC segmentation, they cropped
(also downscaled) the retinal images, which were then passed through the developed model (modified
U-Net based). While for OD segmentation, they did not crop and scale down the retinal images. They
evaluated the trained model based on RIM-ONE and Drishti-GS datasets.

Numerous researchers have selected the domain adaptation methods, where a generalized and
trained DL model in one domain is applied in a different domain. The authors of [18] adopted such
an approach, where they applied the patch-based Output Space Adversarial Learning architecture
(pOSAL) model for OC and OD segmentation. In one other study of [19], the authors developed
a multi-label DCNN GL-net based model. They used the skip connections in the generator for
facilitating the mixture of high and low-level features. They evaluated their developed model based
on the Drishti-GS dataset. A RACE-net-based RNN model has been developed for biomedical image
segmentation in [44], where the authors modeled the boundaries (of the objects) as an evolving level
set curve.

The authors presented a transfer learning based attention U-Net model in [45]. An attention
gate was added between the encoder and decoder of the U-Net. The network was first trained on
the DRIONS dataset and then on the DRISHTI-GS dataset. The computational complexity of their
model is low. In [46], the authors developed a patch-based training strategy for their proposed model
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named GlaucoNet. Their approach differs from conventional CNN in two aspects: It uses a stack of
convolution layers along with residual block as a bottleneck, and the input to the network is patch-
level data rather than image-level data. They obtained good accuracy for optic cup segmentation of
RIMONE images. However, for the DRISHTI-GS dataset, the segmentation accuracy is not good
which limits the generalization ability of their model. In [47], the authors use the entropy sampling
approach to enhance the information within the fundus image and feed the output to the U-Net
model for OC and OD segmentation. They achieved good segmentation performance for OD on the
RIMONE dataset, however their F1-score for OC is very low.

Despite the significant improvements in the accuracy of supervised learning models, there are
still a number of challenges that need to be addressed by the research community. The widespread
use of deep learning algorithms for autonomous large-scale screening processes is restricted by the
earlier mentioned challenges. One such difficulty is the supervised machine/deep learning models’
costly preprocessing procedures, which raise not only development time but also model training and
testing time. These pre-and post-processing capabilities are based on heuristic algorithms that need
adjustments for noise, pathology, and other variables that affect retinal fundus images.

Furthermore, the previously investigated state-of-the-art methods ignored the memory overhead,
and training/testing duration. The increased computational complexity of the available deep learning
models along with lower sensitivity makes them unsuitable for large-scale autonomous screening
processes. The generalizability of previous studies is limited due to poor segmentation performance
for OC.

In this work, we aim to develop a deep learning model for segmenting OC and OD that should be
lightweight, memory efficient and should not compromise on the evaluation metrics for segmentation.
The focus has been on reducing the overall computational complexity of the developed model by
reducing the number of trainable parameters using fixed filter size. In addition to that, we aim to
achieve high segmentation accuracy for both OC and OD to prove the generalizability of the model.

3 Proposed Framework

Considering the challenges of high computational complexity and memory overhead of the deep
neural network model, in this work we proposed a lightweight CNN-based deep neural network
model. We selected an encoder-decoder architecture attributing AD-Block, where we introduced two
modifications to the original Anam-Net DNN model. The first modification is to have a stack of
two 3 × 3 layers (convolution) compared to a single convolution layer of 3 × 3 in the original for
increasing receptive field. The second modification is to use a filter size of 64 (fixed) throughout the
model compared to the increasing number of filters depth-wise in the original Anam-Net model.

These two novel modifications helped us in achieving enhanced segmentation performance in
comparison to the best models from the literature in addition to significantly reducing the computa-
tional complexity and memory overhead of the DNN model for OD/OC segmentation. Furthermore,
these modifications also helped decrease the number of trainable parameters significantly, which in
turn reduced the training and testing time of the developed DNN model.

Our proposed model attributes AD-block both in the encoder and decoder sides. The
1 × 1 convolution filters are used for depth squeezing in the AD-block, which is followed by
3 × 3 convolution necessary for feature extraction from the processed images. Additionally, the final
convolution is of size 1 × 1, which is required for depth-wise stretching. The AD-block is shown
in Fig. 2.



1388 CMC, 2024, vol.80, no.1

Figure 2: The basic AD-block

The main aim of the AD-block is to squeeze the dimension of the feature space in a depth-
wise manner. This step is followed by local feature extraction, which is performed by applying
3 × 3 convolution on the processed feature maps. The tasks accomplished using AD-block are
described using the equation below, where h(x) is the output of the AD-block and can be expressed
as,

h(x) = f (x; θ) + x (1)

where f (x; θ ) denotes the sequence of convolution task parametrized by θ . The factor x in Eq. (1)
denotes the feature maps, which is provided to the AD-block as input.

The details of AD-block based modification to the basic block are provided in Fig. 3. The input
retinal image is given as input into a stack of two adjacent convolution layers, where each convolution
layer has a filter size of 64. These two convolution layers perform a 3 × 3 convolution on the input
image. The output is provided as input to the contiguous layers of batch normalization followed by
the rectified linear unit (ReLU) activation layer. The maxpooling layer is used for performing down
sampling, needed for dimensionality reduction with a factor of two. The maxpooling operation help
in reducing the computational complexity of the DNN model. Then, the AD-block is included for
vigorous feature learning. Each encoder and decoder stage in our system comprises three AD-blocks.
The transpose convolution layer is used before the AD-block in the expansion path to upsample the
feature map to the desired resolution. At the decoder stage, the learned features from the encoder
are combined with the layers of the decoder path, allowing the model to learn at multiple scales. The
layer-wise details of the proposed encoder-decoder based DNN model are disclosed in Table 1.

The loss function usually has a significantly higher impact on the segmentation accuracy of the
deep learning model. Much of the literature on medical image segmentation based on CNN models
have used cross-entropy as a loss function. In the proposed model, we used a log dice loss as a loss
function, which is more inclined towards less accurate labels [39]. The log dice loss function is provided
in Eq. (2).

l (A, B) = − log d (A, B) (2)

d (A, B) = 2
∑

ij aijbij
∑

i,j a2
ij

∑
i,j b2

ij

(3)

where A = aij is a predicted output map and B = bij is a correct binary output map.
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Figure 3: The details of the proposed model

Table 1: The layer-wise details of the encoder-decoder based proposed DNN model

Layer Label Size Feature map
size for OC

Feature map
size for OD

Parameter
info

Encoder 1st Conv. block EConv1-1 3 × 3 × 64 256 × 256 × 64 128 × 128 × 64 1792
EConv1-2 3 × 3 × 64 256 × 256 × 64 128 × 128 × 64 36,928

1st pooling layer Pool-1 2 × 2 128 × 128 × 64 64 × 64 × 64
Encoder 1st AD-block EAD1Conv1 1 × 1 × 16 128 × 128 × 16 64 × 64 × 16 1040

EAD1Conv2 3 × 3 × 16 128 × 128 × 16 64 × 64 × 16 2320
EAD1Conv3 1 × 1 × 64 128 × 128 × 64 64 × 64 × 64 1088

Encoder 2nd Conv. block EConv2-1 3 × 3 × 64 128 × 128 × 64 64 × 64 × 64 36,928
EConv2-2 3 × 3 × 64 128 × 128 × 64 64 × 64 × 64 36,928

2d Pooling layer Pool-2 2 × 2 64 × 64 × 64 32 × 32 × 64
Encoder 2nd AD-block EAD2Conv1 1 × 1 × 16 64 × 64 × 16 32 × 32 × 16 1040

EAD2Conv2 3 × 3 × 16 64 × 64 × 16 32 × 32 × 16 2320
EAD2Conv3 1 × 1 × 64 64 × 64 × 64 32 × 32 × 64 1088

Encoder 3rd Conv. block EConv3-1 3 × 3 × 64 64 × 64 × 64 32 × 32 × 64 36,928
EConv3-2 3 × 3 × 64 64 × 64 × 64 32 × 32 × 64 36,928

3rd Pooling layer Pool-3 2 × 2 32 × 32 × 64 16 × 16 × 64
Encoder 3rd AD-block EAD3Conv1 1 × 1 × 16 32 × 32 × 16 16 × 16 × 16 1040

EAD3Conv2 3 × 3 × 16 32 × 32 × 16 16 × 16 × 16 2320
EAD3Conv3 1 × 1 × 64 32 × 32 × 64 16 × 16 × 64 1088

4th Pooling layer Pool-4 2 × 2 16 × 16 × 64 8 × 8 × 64
Decoder 1st Trans. Conv. DTConv1 3 × 3 × 64 32 × 32 × 64 16 × 16 × 64 36,928
Decoder 1st AD-block DAD1Conv1 1 × 1 × 16 32 × 32 × 16 16 × 16 × 16 1040

DAD1Conv2 3 × 3 × 16 32 × 32 × 16 16 × 16 × 16 2320
DAD1Conv3 1 × 1 × 64 32 × 32 × 64 16 × 16 × 64 1088

(Continued)
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Table 1 (continued)

Layer Label Size Feature map
size for OC

Feature map
size for OD

Parameter
info

1st Concatenate layer DConc1 32 × 32 × 128 16 × 16 × 128
Decoder 1st Conv. block DConv1-1 3 × 3 × 64 32 × 32 × 64 16 × 16 × 64 73,792

DConv1-2 3 × 3 × 64 32 × 32 × 64 16 × 16 × 64 36,928
Decoder 2nd Trans. Conv. DTConv2 3 × 3 × 64 64 × 64 × 64 32 × 32 × 64 36,928
Decoder 2nd AD-block DAD2Conv1 1 × 1 × 16 64 × 64 × 16 32 × 32 × 16 1040

DAD2Conv2 3 × 3 × 16 64 × 64 × 16 32 × 32 × 16 2320
DAD2Conv3 1 × 1 × 64 64 × 64 × 64 32 × 32 × 64 1088

2nd Concatenate layer DConc2 64 × 64 × 128 32 × 32 × 128
Decoder 2nd Conv. block DConv2-1 3 × 3 × 64 64 × 64 × 64 32 × 32 × 64 73,792

DConv2-2 3 × 3 × 64 64 × 64 × 64 32 × 32 × 64 36,928
Decoder 3rd Trans. Conv. DTConv3 3 × 3 × 64 128 × 128 × 64 64 × 64 × 64 36,928
Decoder 3rd AD-block DAD3Conv1 1 × 1 × 16 128 × 128 × 16 64 × 64 × 16 1040

DAD3Conv2 3 × 3 × 16 128 × 128 × 16 64 × 64 × 16 2320
DAD3Conv3 1 × 1 × 64 128 × 128 × 64 64 × 64 × 64 1088

3rd Concatenate layer DConc3 128 × 128 ×
128

64 × 64 × 128

Decoder 3rd Conv. block DConv3-1 3 × 3 × 64 128 × 128 × 64 64 × 64 × 64 73,792
DConv3-2 3 × 3 × 64 128 × 128 × 64 64 × 64 × 64 36,928

Decoder 4th Trans. Conv. DTConv4 3 × 3 × 64 256 × 256 × 64 128 × 128 × 64 36,928
4th Concatenate layer DConc4 256 × 256 ×

128
128 × 128 ×
128

Decoder 4th Conv. block DConv4-1 3 × 3 × 64 256 × 256 × 64 128 × 128 × 64 73,792
DConv4-2 3 × 3 × 64 256 × 256 × 64 128 × 128 × 64 36,928

Final Conv. with sigmoid Conv 1 × 1 × 1 256 × 256 × 1 128 × 128 × 1 65

The workflow of our method for optic cup segmentation is shown in Fig. 4, while the workflow
for optic disc segmentation is shown in Fig. 5. For both cases, the retinal fundus image and its
corresponding ground truth image are selected from the database. For OC detection, initially, we
crop the images using the bounding box of the optic disc. The remaining steps are similar for
both OC and OD detection in our proposed method. The contrast limited adaptive histogram
equalization (CLAHE) from our previous work in [3] is used for contrast enhancement, followed by
data augmentation to generate enough images to prevent the model from overfitting. The proposed
DNN model is then trained using these pools of augmented images.

Two images for each dataset are shown in Figs. 4 and 5 after data augmentation. Due to space
limitations and the enormous amount of augmented images, we are unable to show all augmented
images in the manuscript. We have provided the necessary reference to our previous work on data
augmentation for such studies and databases [48].
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Figure 4: Pipeline of the proposed method for segmenting OC

Figure 5: Pipeline of the proposed method for segmenting OD

4 Databases and Implementation Details

The databases, evaluation metrics used for the performance evaluation of the proposed DNN
model, and implementation details are disclosed in the current section.

4.1 Retinal Fundus Image Databases

Most of the previous studies use RIMONE and DRISHTI-GS datasets for OC and OD segmen-
tation. In order to compare our work with state-of-the-art methods, we used the same dataset.

4.1.1 Drishti-GS

The Drishti-GS retinal fundus database is composed of 101 retinal fundus images, which were
annotated by an expert at Aravind Eye Clinic, Madurai, India. These retinal images have one
resolution of 2896 × 1944, which was stored in PNG format without any compression.
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4.1.2 RIM-ONE

The RIM-ONE is a publicly available retinal image database that contains 159 images and is
usually used by researchers across the Globe for evaluating the performance of OD/OC segmentation
DNN models. Among the available 159 retinal fundus images, 74 belong to glaucoma-infected patients
whereas the other 85 images belong to healthy individuals. These 159 retinal images of RIM-ONE were
captured at three Spanish hospitals and were graded by two expert ophthalmologists.

We used two retinal fundus image databases named RIM-ONE and Drishti-GS that contained
159 images and 101 retinal images, respectively. These datasets are limited in the number of retinal
fundus images for training and testing of the developed DNN model. Achieving an acceptable level of
accuracy of the DNN model using such small datasets is rather highly challenging. This compelled us
to apply several data augmentation techniques mentioned below to increase the number of images for
training and testing of the proposed model. These data augmentation techniques included but were
not limited to: (1) Horizontal flipping (2) Vertical flipping (3) Cropping (4) Brightness change (5)
Magnification (6) Contrast enhancement (7) Vertical translation (8) Horizontal translations.

We were able to generate 80 images for every available image, i.e., a total of 12,720 images for RIM-
ONE and 8080 images for Drishti-GS database. Out of these, 10,176 and 6464 images for RIM-ONE
and Drishti-GS were used for training the DNN model. The remaining images from both databases
were used for validation purpose.

4.2 Evaluation Metrics

The standard evaluation metrics are used to evaluate the model performance for the task of OC
and OD segmentation in retinal fundus images. The used evaluation metrics include sensitivity (SEN),
specificity (SPE), accuracy (ACC), F1-score, JC, and OE. The OE is the ratio of the number of pixels
in the intersection set of the segmentation mask and the ground truth to the number of pixels in the
union set. The equations of the used evaluation metrics are provided below:

Sensitivity (SEN) = TP
(TP + FN)

(4)

Specificity (SPE) = TN
(TN + FP)

(5)

Accuracy (ACC) = (TP + TN)

(TP + FP + TN + FN)
(6)

Precision = (TP)

(TP + FP)
(7)

F1 − score = 2
Precision × Sensitivity
Precision + Sensitivity

(8)

Overlapping Error (OE) = 1 − Area(S ∩ G)

Area(S ∪ G)
(9)

Jaccard Coefficient (JC) = (TP)

(FN + FP + TP)
(10)
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4.3 Implementation Details

The Keras deep learning library is used for performing the end-to-end training and testing of the
developed DNN model for OC and OD detection. The Adam optimizer is utilized, with a learning
rate of 0.001. Our criterion is to see if validation loss improves after 10 consecutive epochs, and if it
does not, we reduce the learning rate by 0.1. With a batch size of four, the developed DNN model
is trained for 150 epochs. We used the early stopping criterion to prevent overfitting by assessing the
validation loss.

Both of the retinal image databases have a limited number of images, which are not sufficient
for the effective training of the DNN model. It is highly difficult to achieve better segmentation
performance if the number of graded images for training the model is fewer. Hence, selected data
augmentation procedures are used for increasing the number of images, which enhances the general-
ization capability of the DNN model. We applied the vertical flip, horizontal flip, random width and
height shift (0, 0.15), random rotations (0, 360) degrees, as well as random magnification (0.3, 0.12).

We have used the IBEX platform (High-Performance Computing (HPC) facility of King Abdullah
University of Sciences and Technology). We have used a single RTX 2080 Ti GPU of the IBEX for all
the different experiments and analyses.

5 Results and Discussion

The proposed DNN model is evaluated using two well-known retinal image databases, i.e., RIM-
ONE and Drishti-GS. In this section, we present our experimental results both quantitatively and
qualitatively.

We were able to generate 80 images for every available image, i.e., a total of 12,720 images for RIM-
ONE and 8080 images for Drishti-GS database. Out of these, 10,176 (80%) and 6464 images (80%) for
RIM-ONE and Drishti-GS were used for training the DNN model. The remaining 2544 and 1616
images from RIM-ONE and Drishti-GS respectively were used for validation purpose. The validation
of the developed DNN model is performed using the 20% images from the pool of images of both
databases of RIM-ONE and Drishti-GS after performing different data augmentation procedures.

5.1 Comparison with the State-of-the-Art Methods

We used standard evaluation metrics such as sensitivity, specificity, accuracy, F1-score, Jaccard
coefficient, and overlap error for comparing the performance of our proposed method with the rivals
from the state-of-the-art. We used 5-fold cross-validation and the average score is listed in Tables 2–5
for OD and OC segmentation in the DRISHTI-GS and RIMONE datasets.

Table 2: Comparison of optic disc segmentation results of proposed model with state-of-the-art
methods on the DRISHTI-GS dataset

Method Year F1 SEN SPE JC OE ACC

Dense FCN [17] 2018 0.9490 0.9268 0.9992 0.9042 0.0958 –
M-Net [20] 2018 0.9678 0.9651 0.9910 0.9386 0.0614 0.9827
U-Net [22] 2015 0.9721 0.9804 0.9850 0.9467 0.0533 0.9829
SegNet [23] 2017 0.9565 0.9652 0.9684 0.9387 0.0613 0.9742
Modified U-Net CNN [39] 2017 0.9043 0.9156 0.9969 0.8350 0.1650 –

(Continued)
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Table 2 (continued)

Method Year F1 SEN SPE JC OE ACC

PSPNet [40] 2017 0.9691 0.9913 0.9773 – 0.0587 0.9813
FCN [41] 2015 0.9558 0.9611 0.9988 0.9188 0.0903 0.9713
DeepLab v3+ [42] 2017 0.9677 0.9677 0.9856 0.9389 0.0611 0.9802
GAN network [43] 2019 0.9527 0.9747 0.9977 0.9185 0.0815 –
Encoder-decoder CE-Net [44] 2019 0.9642 0.9759 0.9986 0.9323 0.0677 –
Attention U-Net [45] 2021 0.9638 0.9488 0.9975 0.9301 0.0699 –
GlaucoNet [46] 2021 0.9310 – – 0.8709 0.1291 –
FBLS [49] 2021 0.9680 – – – – –
Modified U-Net + Post processing [50] 2023 0.9430 – – 0.8930 – –
CPFNet [51] 2020 0.9714 – – 0.9446 – –
CS2-Net [52] 2021 0.9657 – – 0.9346 – –
Auto encoder + Adversial learning [53] 2022 0.9620 – – – – –
Proposed 0.9728 0.9883 0.9988 0.9481 0.0519 0.9985

Table 3: Comparison of optic cup segmentation results of proposed model with state-of-the-art
methods on the DRISHTI-GS dataset

Method Year F1 SEN SPE JC OE ACC

Dense FCN [17] 2018 0.8282 0.7413 0.9995 0.7113 0.2887 –
M-Net [20] 2018 0.8618 0.8822 0.9561 0.7730 0.2270 0.9469
U-Net [22] 2015 0.7897 0.9240 0.9628 0.6675 0.3325 0.9519
SegNet [23] 2017 0.7738 0.8957 0.9572 0.7836 0.2164 0.9464
Modified U-Net CNN [39] 2017 0.8521 0.8476 0.9881 0.7515 0.2485 –
PSPNet [40] 2017 0.7969 0.9485 0.9592 0.6885 0.3115 0.9544
FCN [41] 2015 0.8519 0.8618 0.9857 0.7590 0.2410 0.9428
DeepLab v3+ [42] 2017 0.7586 0.9554 0.9399 0.6491 0.3509 0.9365
GAN network [43] 2019 0.8643 0.8539 0.9907 0.7748 0.2252 –
Encoder-decoder CE-Net [44] 2019 0.8818 0.8352 0.9909 0.8006 0.1994 –
Attention U-Net [45] 2021 0.8793 0.8765 0.9977 0.7846 0.2154 –
GlaucoNet [46] 2021 0.8592 – – 0.7532 0.2468 –
FBLS [49] 2021 0.8800 – – – – –
Modified U-Net + Post processing [50] 2023 0.8890 – – 0.8010 – –
CPFNet [51] 2020 0.8890 – – 0.8168 – –
CS2-Net [52] 2021 0.8250 – – 0.7249 – –
Auto encoder + Adversial learning [53] 2022 0.8570 – – – – –
Proposed 0.8938 0.8857 0.9855 0.8159 0.1840 0.9638
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Table 4: Comparison of OD segmentation results with state-of-the-art methods on the RIM-ONE
dataset

Method Year F1 SEN SPE JC OE ACC

Dense FCN [17] 2018 0.9036 0.8737 0.9976 0.8289 0.1711 –
M-Net [20] 2018 0.9526 0.9481 0.9986 0.9114 0.0886 0.9675
U-Net [22] 2015 0.9626 0.9467 0.9899 – 0.0717 0.9745
SegNet [23] 2017 0.9483 0.9449 0.9985 0.9080 0.0920 0.9526
Modified U-Net CNN [39] 2017 0.9359 0.9502 0.9973 0.8808 0.1192 –
PSPNet [40] 2017 0.9659 0.9648 0.9850 – 0.0652 0.9785
FCN [41] 2015 0.9508 0.9494 0.9984 0.9081 0.0919 0.9754
DeepLab v3+ [42] 2017 0.9677 0.9690 0.9827 – 0.0624 0.9783
GAN network [43] 2019 0.9532 0.9457 0.9987 0.9122 0.0878 –
Encoder-decoder CE-Net [44] 2019 0.9527 0.9502 0.9986 0.9115 0.0885 –
Attention U-Net [45] 2021 0.9401 0.9236 0.9986 0.8870 0.1130 –
GlaucoNet [46] 2021 0.9498 – – 0.8972 0.1028 –
Entropy sampling + U-Net [47] 2021 0.9362 – – 0.8841 – –
FBLS [49] 2021 0.9530 – – – – –
Modified U-Net + Post processing [50] 2023 0.9100 – – 0.8300 – –
CPFNet [51] 2020 0.9523 – – 0.9110 – –
CS2-Net [52] 2021 0.8917 – – 0.8189 – –
Auto encoder + Adversial learning [53] 2022 0.8980 – – – – –
Proposed 0.9590 0.9582 0.9987 0.9219 0.0781 0.9974

Table 5: Comparison of OC segmentation results with state-of-the-art methods using RIM-ONE
dataset

Method Year F1 SEN SPE JC OE ACC

Dense FCN [17] 2018 0.6903 0.9052 0.9944 0.5567 0.4433 –
M-Net [20] 2018 0.7985 0.7698 0.9900 0.7300 0.2700 0.9602
U-Net [22] 2015 0.7842 0.7624 0.9884 0.6597 0.3403 0.9576
SegNet [23] 2017 0.7828 0.7568 0.9879 0.7250 0.2750 0.9584
Modified U-Net CNN [39] 2017 0.8128 0.7545 0.9976 0.6977 0.3023 –
PSPNet [40] 2017 0.7754 0.7453 0.9891 0.6436 0.3564 0.9571
FCN [41] 2015 0.7752 0.7582 0.9872 0.6818 0.3182 0.9574
DeepLab v3+ [42] 2017 0.7569 0.7432 0.9880 0.6424 0.3576 0.9534
GAN network [43] 2019 0.8250 0.8142 0.9965 0.7165 0.2835 –
Encoder-decoder CE-Net [44] 2019 0.8435 0.8352 0.9970 0.7424 0.2576 –
Attention U-Net [45] 2021 0.8397 0.8133 0.9987 0.7237 0.2763 –
GlaucoNet [46] 2021 0.8507 – – 0.7401 0.2599 –

(Continued)
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Table 5 (continued)

Method Year F1 SEN SPE JC OE ACC

Entropy sampling + U-Net [47] 2021 0.7830 – – 0.6559 – –
FBLS [49] 2021 0.8560 – – – – –
Modified U-Net + Post processing [50] 2023 0.7700 – – 0.6400 – –
CPFNet [51] 2020 0.8262 – – 0.7217 – –
CS2-Net [52] 2021 0.7215 – – 0.5961 – –
Auto encoder + Adversial learning [53] 2022 0.7910 – – – – –
Proposed 0.8481 0.8572 0.9821 0.7428 0.2572 0.9661

We have compared our proposed method with several state-of-the-art techniques for OD and OC
segmentation using the DRISHTI-GS dataset and presented the results in Tables 2 and 3, respectively.
These tables illustrate the comparative performance of our approach against existing methods. While
the evaluation scores for optic cup segmentation may be lower compared to those for optic disc
segmentation, our proposed method consistently achieves better segmentation accuracy for the optic
cup when compared to other methods. This trend is also reflected in Tables 4 and 5, which present
results on the RIMONE dataset.

The green and blue highlighted values in all these tables represent the best and second-best results,
respectively.

Our obtained results based on the Drishti-GS dataset for OD and OC detection are presented
in Tables 2 and 3, respectively. The results in Table 2 reveal that for the DRISHTI-GS dataset, our
proposed method got the best score in four of the six evaluation metrics for OD segmentation. For the
remaining two metrics, our model achieved the second-best score. Our method achieved the highest
F1-score of 0.9728 among numerous other methods. Al-Bander et al. [17] proposed Dense FCN, which
had the best specificity but had low sensitivity and F1-score compared to our proposed method.

The U-Net model proposed by Ronneberger et al. [22] achieved the second-best F1-score, Jaccard
coefficient, overlapping error, and accuracy. However, a standard U-Net architecture has a large
computational complexity, with nearly 34 million trainable parameters compared to our proposed
model, which has just 0.88 million parameters. Zhao et al. [40] proposed PSPNet and obtained the
best sensitivity among all other methods. However, none of their other evaluation metrics scores is in
the top two. Furthermore, the number of trainable parameters for PSPNet is approx. 48 million which
is one of the highest among all other methods. The fuzzy based learning system (FBLS) proposed by
authors in [49] achieved competitive F1-score as shown in Tables 2 and 3. However, none of their other
evaluation metrics are reported in their work.

As shown in Table 3, we ranked first in four out of six evaluation metrics for the optic cup
segmentation for the DRISHTI-GS dataset. The proposed method has the highest F1-score and Jac-
card coefficient among state-of-the-art methods, at 0.8938 and 0.8159, respectively. The Deeplabv3+
proposed by Chen et al. [42] is ranked first in terms of sensitivity but has the lowest F1-score, accuracy,
and specificity among the other approaches. When compared to other state-of-the-art approaches,
their proposed model has the highest overlapping error. For the DRISHTI-GS dataset, our proposed
model achieved an overlapping error of 0.18 for optic cup segmentation, which is the lowest among
the other approaches.
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Our obtained results based on the RIM-ONE dataset for OD and OC detection are provided in
Tables 4 and 5, respectively. In the RIM-ONE dataset, we outperformed all other methods in terms of
specificity, Jaccard coefficient, and accuracy for optic disc segmentation, while the results for F1-score,
sensitivity, and overlapping error are very close to the best score, as shown in Table 4. Chen et al. [42]
is ranked first in terms of F1-score, sensitivity, and overlapping error. However, the computational
complexity of their proposed model is too high, with approximately 41 million trainable parameters.

The optic cup segmentation of the RIM-ONE dataset is the most challenging task for which
our proposed model outperformed all other methods in terms of sensitivity, Jaccard coefficient,
overlapping error, and accuracy. DeepLabv3+ and PSPNet ranked first and second in terms of F1-
score and overlapping error for optic disc segmentation of the RIM-ONE dataset.

However, these models had one of the lowest F1-score and overlapping error for the optic cup
segmentation which limits their generalization ability. Our proposed model obtained an overlapping
error of 0.2572 which is the lowest among all the state-of-the-art methods as shown in Table 5. The
CE-Net model proposed by Gu et al. [44] ranked second for optic cup segmentation. However, for
optic disc segmentation their performance is not in the top two which limits their generalization ability.

We can make one important observation from these tables that the average score of the Jaccard
coefficient and F1 for optic cup segmentation for the RIM-ONE dataset is lower than for the
DRISHTI-GS dataset across all models. The fundus images from the RIM-ONE dataset have a
difficult optic cup boundary, which explains the low score.

5.2 Qualitative Assessment

The OD segmentation results for a few representative images from the Drishti-GS database are
shown in Fig. 6.

Figure 6: Model prediction vs. expert segmentation of optic disc boundary for DRISHTI-GS dataset
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The black color represents the ground truth boundary, whereas the green color represents the
boundary recognized by the proposed DNN model. The JC and the F1-score of the OD detection
are overlaid on the respective retinal fundus images. The F1-score for the worst case (bottom-left)
and best-case (bottom-right) is 0.9654 and 0.9868, respectively. The segmentation accuracy for OD is
unaffected by contrast variation in fundus images, as seen in Fig. 6. The OC segmentation results for
a few representative images from the Drishti-GS database are shown in Fig. 7. The worst case (bottom
left) and best case (top left) F1-scores are 0.7855 and 0.9633, respectively. It can be observed that the
black and green boundaries are quite close to each other for most of the cases of OC detection, which
shows the high reliability and robustness of the DNN model.

Figure 7: Model prediction vs. expert segmentation of optic cup boundary for DRISHTI-GS dataset

Figs. 8 and 9 show the optic disc and cup segmentation results for the RIM-ONE dataset,
respectively. The worst-case (bottom left) and best case (bottom center) F1-scores for optic disc
segmentation are 0.9351 and 0.9782, respectively whereas the worst case (top center) and best case
(bottom right) F1-scores for optic cup segmentation are 0.7998 and 0.8923, respectively. Our model
not only achieves a higher level of segmentation accuracy over state-of-the-art methods, but it also
requires less time to reach a stable state during training.

Figure 8: (Continued)
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Figure 8: Model prediction vs. expert segmentation of the optic disc boundary for RIM-ONE dataset

Figure 9: Model prediction vs. expert segmentation of the optic cup boundary for RIM-ONE dataset

The mean JC for the validation data of our proposed model based on images of both databases for
OC and OD segmentation is shown in Figs. 10 and 11, respectively. As shown in Fig. 10, the mean JC
value quickly rises to 0.75 after only around 15 training epochs. The blue line and orange line shows
the mean JC values for OC segmentation where the model is trained on RIMONE and DRISHTI-
GS datasets, respectively. The mean JC for RIMONE is slightly lower compared to the mean JC of
DRISHTI-GS dataset which is reflected in the optic cup segmentation accuracies on both datasets.
Fig. 11 shows how the mean JC value for the RIMONE dataset quickly rises to 0.90 after just around 5
training epochs. However, for the DRISHTI-GS dataset, the model reached a stable state after around
20 epochs.

The average training time of our proposed model for optic cup segmentation is 45 and
36 min whereas for optic disc segmentation is 1 h 20 min and 1 h 06 min for DRISHTI-GS and
RIMONE datasets, respectively. Al-Bander et al. [17] proposed the DenseFCN approach, which
is computationally very expensive, with an average training time of about 15 h. Sevastopolsky [39]
suggested a modified U-Net model with just 0.69 M trainable parameters that is exceptionally light-
weight. However, on both datasets, his suggested model did not place in the top two for any of the
evaluation metrics for OC/OD segmentation.
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Figure 10: The mean JC values for OC segmentation

Figure 11: The mean JC values for OD segmentation

Zhao et al. [45] proposed an attention U-Net model with only 1.03 M trainable parameters. Except
for specificity, their suggested model did not place in the top two for any of the evaluation metrics.
Our proposed model ranked second in terms of being lightweight with 0.88 M trainable parameters as
shown in Table 6. The generalization ability of our proposed model is justified from the segmentation
results mentioned in Tables 2 to 5.

Table 6: Parameters comparison of the proposed model with other best models from literature

Reference Method Parameters

Long et al. [41] FCN 134.30 M
Zhao et al. [40] PSPNet 47.18 M
Chen et al. [42] DeepLab v3+ 41.25 M
Ronneberger et al. [22] U-Net 31.05 M
Badrinarayanan et al. [23] SegNet 29.50 M
Gu et al. [44] Encoder-decoder CE-Net 29.00 M
Fu et al. [20] M-Net 8.50 M
Zhao et al. [45] Attention U-Net 1.03 M
Sevastopolsky et al. [39] Modified U-Net CNN 0.69 M
Proposed 0.88 M
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Table 6 indicate that the only method with fewar trainabale parameters than our proposed method
is Modified U-Net CNN (Sevastopolsky [39]). However the results in Tables 2 to 5 indicate that none
of its evaluation metrics received first, second or third place. On the other hand, our proposed method
achieved second lowest computational complexity and memory overhead based on fewer trainable
parameter and also achieved most of its evaluation metrics in the first, and second place. For both
databases, none of the approaches except our suggested model were consistent with the segmentation
of the optic cup and optic disc.

To summarize the results obtained by the proposed model in comparison to numerous state-of-
the-art methods, we can say that our proposed model performed very well both in term of significantly
improved evaluation metrics and second lowest memory overhead (lower trainable parameters). Hence,
based on the the obtained results, we can generalize that our proposed DNN model can be used for
early screening of glaucoma disease at the point of care in hospitals.

6 Conclusion

In this work, we developed a DNN model by introducing several modifications to the basic
Anam-Net and demonstrated its effectiveness for the detection of OC and OD in retinal fundus
images. The DNN model is applied to segment the OC and OD in two publicly available databases
i.e., DRISHTI-GS and RIMONE. The modifications are introduced, where the focus has been on
reducing the computational complexity of the model. The model is very lightweight, attributing
0.88 M trainable parameters in addition to its powerful generalization ability. Due to the attributes of
being lightweight (lower trainable parameters), both the training and prediction time are significantly
lower compared to other rivals from the state-of-the-art. We achieved a training time of approximately
45 mins and 1 h 20 mins for OC and OD, respectively. Furthermore, we achieved the lowest prediction
time, which is approximately 0.05 s. Also, in terms of segmentation performance, our developed DNN
model outperformed several other models for both optic cup and disc detection in several well-known
evaluation metrics. The proposed model achieved lower sensitivity for a few images where the optic cup
was small. Even though the results achieved using the proposed model are superior to those obtained
using other methods, we believe there is still room for improvement in optic cup segmentation. The
attribute of being lightweight makes our developed DNN model a better choice to be selected for
front-end clinical settings. The achieved significantly impressive segmentation performance along
with substantially lower computational complexity of our developed DNN model advocates for its
deployment in apparatus used for patient care in general hospitals for early screening of eye diseases.
We plan to improve the proposed model in the future to extend its application to various medical image
segmentation such as lesion detection, and tumor detection.
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