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ABSTRACT

To reduce the negative effects that conventional modes of transportation have on the environment, researchers
are working to increase the use of electric vehicles. The demand for environmentally friendly transportation may
be hampered by obstacles such as a restricted range and extended rates of recharge. The establishment of urban
charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue. Nevertheless,
the powering of these terminals presents challenges because of the high energy requirements, which may influence
the quality of service. Modelling the maximum hourly capacity of each station based on its geographic location
is necessary to arrive at an accurate estimation of the resources required for charging infrastructure. It is vital
to do an analysis of specific regional traffic patterns, such as road networks, route details, junction density, and
economic zones, rather than making arbitrary conclusions about traffic patterns. When vehicle traffic is simulated
using this data and other variables, it is possible to detect limits in the design of the current traffic engineering
system. Initially, the binary graylag goose optimization (bGGO) algorithm is utilized for the purpose of feature
selection. Subsequently, the graylag goose optimization (GGO) algorithm is utilized as a voting classifier as a
decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of
traffic congestion. Based on the results of the analysis of variance (ANOVA), a comprehensive summary of the
components that contribute to the observed variability in the dataset is provided. The results of the Wilcoxon
Signed Rank Test compare the actual median accuracy values of several different algorithms, such as the voting
GGO algorithm, the voting grey wolf optimization algorithm (GWO), the voting whale optimization algorithm
(WOA), the voting particle swarm optimization (PSO), the voting firefly algorithm (FA), and the voting genetic
algorithm (GA), to the theoretical median that would be expected that there is no difference.
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1 Introduction

To mitigate the adverse effects that conventional forms of transportation have on the environment,
researchers are aiming to expand the usage of electric vehicles. Barriers such as a limited range and
extended rates of recharge may make it more difficult to meet the demand for ecologically friendly
modes of transportation [1]. To solve this matter effectively, it is necessary to construct a metropolitan
charging infrastructure that has both fast and ultra-fast terminals. However, the power of these
terminals causes issues due to high energy consumption, which may affect the quality of service
that is provided. To arrive at an accurate calculation of the resources that are required for charging
infrastructure, it is important to model the maximum hourly capacity of each station depending on its
geographic position. Instead of drawing arbitrary conclusions about traffic patterns, it is essential to
analyze specific regional traffic patterns, such as road networks, route specifics, junction density, and
economic zones. It is necessary to understand the dynamics of traffic patterns. By simulating vehicle
traffic with the help of this data and other variables, it is possible to identify limitations in the design
of the existing traffic engineering system [2].

Metaheuristic and evolutionary algorithms have been developed and applied in recent years
and have been shown to be effective in engineering [3], economics [4], transportation [5], mechanics
[6], and smart cities [7]. These algorithms have proven to be the best at tackling many problems.
The two-layer taxonomy review introduced in [7] surveys the evolutionary computation research for
intelligent transportation in smart cities. The review studied different methods in the application scene
of the optimization problem for land, air, and sea transportation categories, as well as government,
business, and citizen perspectives categories based on the objective of the optimization problem.
Many techniques have arisen to handle specific issues and capitalize on unique optimization settings.
Revolutionary methods include the particle swarm optimization (PSO) algorithm [8], which inspired
bird and fish behavior. The whale optimization algorithm (WOA) [9], inspired by whale social
behavior, is another contender. This method balances exploration and exploitation well, making it
ideal for difficult optimization problems. The hierarchical organization of wolf packs inspired the
grey wolf optimization (GWO) algorithm [10]. Classical genetic algorithms like the genetic algorithm
(GA) [11] use natural selection to evolve a population of alternative solutions iteratively. The liver
cancer algorithm (LCA) [12] and the learning-aided evolutionary optimization (LEO) [13] are novel
optimization tools that address certain problem features. The graylag goose optimization (GGO)
algorithm [14] mimics geese collaboration and navigation techniques to determine optimal solution
that improves performance dynamically.

The authors in [15] addressed a multi-objective optimization problem related to the positioning
of electric vehicle parking areas through the utilization of GA and PSO. They consider the land cost,
distribution network reliability, and power loss expenses. The ideal location for the parking lot was
identified in a previous study, which considered the expenses related to power loss, charging, and
discharging in the garage and Distributed Energy Resources (DER). They used the artificial bee colony
(ABC) approach and the firefly algorithm (FA) to solve the optimization problem [16]. The balanced
mayfly (MA) algorithm in [17] calculates the best position for a charging station by considering the
expenses of establishing the station, power loss during charging and usage, and voltage fluctuations
caused by various charging sites. The authors in [18] introduced a grasshopper optimization algorithm
(GOA) for addressing a multi-objective optimization problem. The main problem was determining the
optimal locations for charging stations, by considering voltage profile and power loss.

This work presents innovative metaheuristic optimization approaches: binary GGO (bGGO)
and voting GGO. The optimization algorithms aim to enhance the efficiency of the electric car
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charging station’s size and position. A multi-phased approach is employed to achieve the required
tasks. A preprocessing phase includes data augmentation and feature extraction to improve data
quality and accuracy. In the second phase, the binary optimization technique, bGGO, is influenced
by the geese’s collaboration with the original GGO algorithm. The bGGO algorithm determines the
optimal charging station characteristics that are expected to improve performance. The final phase
uses powerful machine learning classification models by the voting GGO as a classifier to increase the
charging station performance. Linear Regression (LR), Support Vector Classifier (SVC), Gaussian
Naive Bayes (Gaussian NB), Decision Tree (DT), Neural Networks (NN), K-Neighbours Neighbors
(KNN), and Random Forest (RF) Classifiers are tested on the dataset. The research uses an analysis
of variance (ANOVA) to identify dataset variability factors. A Wilcoxon Signed Rank Test compares
theoretical and actual median accuracy for multiple approaches. This category includes the voting
GGO, GWO, PSO, WOA, FA, and GA algorithms. The tested electric vehicle population data in
this work provides a comprehensive overview of the Battery Electric Vehicles (BEVs) and the Plug-
in Hybrid Electric Vehicles (PHEVs) that are currently registered in the state [19].

The paper is divided into the following sections: Section 2 discusses the binary and voting algo-
rithms based on the GGO algorithm. Section 3 explains the basic machine learning models, including
the models used for the proposed voting GGO algorithm. Section 4 presents the experimental results
of feature selection, classification, and statistical analysis. Section 5 discusses the conclusion and future
directions for applying the proposed algorithms.

2 Binary and Voting GGO Algorithms

This section discusses the introduction of two algorithms of Binary and voting GGO. The GGO-
based algorithms are innovative techniques designed to improve the efficiency and efficacy of electric
car charging station size and position. As seen in Algorithm 1, voting GGO generates a set of people
randomly. The binary version of the GGO algorithm is applied for feature selection. Each person
could solve the problem. Voting GGO population is initiated as Xi (i = 1, 2, . . . , n), where n is the
size. Fn is used to evaluate group members objectively. After computing the objective function for
agents/individuals (Xi), P is the leader (best solution). The voting GGO algorithm dynamically groups
agents into an exploration (n1) and exploitation (n2). Each iteration dynamically adjusts the solutions in
each group based on the leader. The n1 and n2 agents start with 50% exploration and 50% exploitation.
Next, the n1 group decreases and the n2 group increases. If the leader’s objective function value remains
fixed for three iterations, the method increases the exploration group’s number of agents (n1) to find
the best new solution and overcome local optima.

Algorithm 1: Proposed Voting GGO Algorithm
1: Initialize population Xi (i = 1, 2, . . . , n), size n, iterations tmax, objective function Fn

2: Initialize other parameters
3: Calculate objective function Fn for agents Xi

4: Set P = leader (best agent)
5: Update solutions in exploration (n1) and exploitation (n2) groups
6: while (t ≤ tmax) do
7: for (i = 1: i < n1 + 1) do
8: if (t%2==0) then
9: if (r3 < 0.5) then
10: if (|A| < 1) then

(Continued)
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Algorithm 1 (continued)
11: Update current agent position as in Eq. (1)
12: else
13: Select three random agents XPaddle1, XPaddle2, and XPaddle3

14: Update z as 1 −
(

t
tmax

)2

15: Update current agent position as in Eq. (2)
16: end if
17: else
18: Update current agent position as in Eq. (3)
19: end if
20: else
21: Update individual positions as in Eq. (4)
22: end if
23: end for
24: for (i = 1: i < n2 + 1) do
25: if (t%2==0) then
26: Calculate X1, X2, and X3 as in Eq. (5)
27 Update individual positions as Xi

∣∣3

0

28: else
29: Update position of current agent as in Eq. (4)
30: end if
31: end for
32: if (Leader Fn is constant for three iterations) then
33: Increase n1

34: Decrease n2

35: end if
36: Calculate Fn for agents
37: Update other parameters
38: end while
39: Return leader as P

The following steps can explain the algorithm:

Steps 1–2: Initialization of the algorithm parameters.

Steps 3–5: Calculate the objective function and find the best solution based on the initialized
parameters.

Steps 6–23: The algorithm uses a set of equations in the exploration operation to move towards
the best agent using the A = 2a · r1 − a and C = 2 · r2 vectors, where r1, r2, r3, r4, and r5 are updating
within [0, 1], randomly. The w, w1, w2, w3, and w4 parameters are updated within [0, 2]; b is a constant,
while l is a random value in [−1, 1]. This can be achieved by getting multiple choices to determine the
most suitable solution according to the fitness value.

X (t + 1) = X ′ (t) − A · |C · X ′ (t) − X (t)| (1)

where X ′ (t) is position of current best solution and X (t + 1) is updated position. Based on choosing
three random solutions, named XPaddle1, XPaddle2, and XPaddle3 will force the solutions not to be affected by
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one best solution to explore more. The current agent position is updated as:

X (t + 1) = w1 ∗ XPaddle1 + z ∗ w2 ∗ (XPaddle2 − XPaddle3) + (1 − z) ∗ w3 ∗ (X (t) − XPaddle1) (2)

where z is decreasing exponentially. The next updating process is as follows:

X (t + 1) = w4 ∗ |X ′ (t) − X (t)| · ebl · cos (2π l) + [2w1 (r4 + r5)] ∗ X ′ (t) (3)

Then the algorithm prompts some solutions to search by investigating the surrounding region,
named XFlock1. The algorithm performs that using this equation,

X (t + 1) = X (t) + D (1 + z) ∗ w ∗ (X (t) − XFlock1) (4)

Steps 24–31: The algorithm uses a set of equations in the exploitation operation to move towards
the best agent from steps 24–26 and search the area around the leader at step 28. The parameters of
C1, C2, and C3 are calculated as C = 2 · r2, and the parameters of A1, A2, and A3 are calculated as
A = 2a · r1 −a. The algorithm employs the following strategies to achieve the exploitation process. The
three solutions, XSentry1, XSentry2, and XSentry3 will guide other solutions to update their positions toward
the estimated position of the best solution. The position’s update will be as follows:

X1 (t) = XSentry1 − A1 · ∣∣C1 · XSentry1 − X (t)
∣∣ ,

X2 (t) = XSentry2 − A2 · ∣∣C2 · XSentry2 − X (t)
∣∣ , (5)

X3 (t) = XSentry3 − A3 · ∣∣C3 · XSentry3 − X (t)
∣∣

Updated positions X (t + 1) will be expressed as the three solutions, in Eq. (5), average.

Steps 32–38: The algorithm dynamically adjusts the number of agents in the exploration group
(n1) and the exploitation group (n2) based on whether the Fn is the same for the last three iterations or
not. Then, the Fn and parameters are updated.

Step 39: The algorithm selects the best solution.

For extracting features from the tested dataset, the GGO algorithm’s solutions will represent
binary. The continuous values of the GGO algorithm will be changed to be binary values [0, 1]. A
solution’s quality in the binary GGO (bGGO) algorithm is assessed using the Fn. For α = 1 −β and α

within [0, 1], Fn will equal (αErr + β |s|/|S|). This equation uses Fn to represent a classifier’s error rate,
Err, a set of chosen features, s, and a set of missing features, S. The k-NN approach will be applied to
get a subset of features with low Err, which makes the k-NN to be used as a classifier to guarantee the
selected features validity.

3 Machine Learning Basic Models

The Gaussian Naive Bayes method (Gaussian NB) is a probabilistic classification system that is
based on Bayes’ theorem. This model assumes that attributes are independent of one another [20].
K-Neighbours Classifier is an instance-based learning method that operates straightforwardly and
efficiently. It categorizes instances according to the class that is most prevalent among their k-nearest
neighbours [20]. The Random Forest Classifier is an ensemble approach that, during the training
process, builds several decision trees and then outputs the mode of the classes for classification tasks
[20]. The Linear Regression (LR) model can be described as a linear model for binary classification.
LR models the probability of an instance belonging to a certain class, and the logistic function is
employed in this model [21].
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The Support Vector Classifier (SVC), on the other side, is a method for supervised learning. SVC
seeks to locate a hyperplane in a high-dimensional space. This model has an advantage that enables it
to create the most effective separation of input points into distinct categories [22]. The Decision Tree
(DT) is a kind of classifier that can be considered as a tree-based model. Recursively, this model can
separate the data depending on the feature values. The DT model can make judgments at each node to
classify different instances [22]. The NN classifier has been used to refer to a neural networks classifier
and could make use of artificial neural networks, which can learn from complex patterns and finally
generate predictions as required [23]. Every type of machine learning technique has a set of advantages
and disadvantages, and some of them are better suited for certain kinds of data than others, and other
types of problems can be applied.

4 Experimental Results
4.1 Dataset

The Electric Vehicle Population Data, which is kept by the Department of Licencing (DOL) of the
state of Washington is tested in this work. This data provides a comprehensive overview of the Plug-in
Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs) that are currently registered
in the state [19]. The utilization of this dataset, which is available to the public and is updated on a
consistent basis, can be helpful for the examination of the ever-changing landscape of electric vehicles.
The data has full information about BEVs and PHEVs, which can enable researchers and analysts
in the field to investigate various aspects of environmentally friendly transportation. The dataset
covers the period beginning on 10 November, 2020, and ending on 16 December, 2023. This offers a
dynamic and ever-evolving depiction of the population of electric vehicles in the state of Washington.
The most recent update was performed on 16 December, 2023. The studying and analysis of the
dataset will help in evaluating the current growth and adoption of electric vehicles and will provide
an indispensable source of data for urban planners and industry stakeholders who are committed to
advancing sustainable mobility initiatives in the region. The data is hosted on data.wa.gov/ (accessed
on 20/03/2024) and managed by the DOL. The distribution of BEVs and PHEVs around the state is
presented in Fig. 1.

Figure 1: The prediction dataset shows BEV and PHEV distribution in the state

https://data.wa.gov/
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4.2 Feature Selection Results

Table 1 reviews binary optimization methods across multiple criteria. Each algorithm—bGGO,
bGA, bPSO, bWOA, bGWO, and bFA—is evaluated using key markers for optimization efficiency.
bGGO has the lowest “Average Error” value, indicating better convergence to optimal solutions. This
shows that bGGO approximates the true solution better than other algorithms. The “Average Select
Size” measure shows algorithm convergence. BGA has the shortest average select size, indicating
a more focused optimization search. However, bWOA’s average choice size is substantially higher,
meaning deeper solution space investigation. This statistic measures the “Average Fitness”of solutions.
GGO and bGA have competitive average fitness, but bFA is behind. This shows that bFA solutions
optimize less well.

Table 1: Effectiveness assessment of suggested and compared binary algorithms for tested dataset

Metrics/Algorithms bGGO bGA bPSO bWOA bGWO bFA

Average error 0.584858 0.615658 0.635858 0.635658 0.622158 0.634258
Average select size 0.537658 0.680058 0.737658 0.901058 0.660458 0.772158
Average fitness 0.648058 0.675658 0.662658 0.670458 0.670358 0.714558
Best fitness 0.549858 0.578958 0.642958 0.634558 0.648158 0.633258
Worst fitness 0.648358 0.694058 0.710658 0.710658 0.724358 0.730858
Standard deviation 0.470358 0.476658 0.474458 0.476658 0.475658 0.511258

The lowest “Best Fitness” statistic shows bGGO can find high-quality solutions. BGA carefully
selects the fittest runs. BFA’s slowness emphasizes its bad performance. “Worst Fitness” measures
algorithm robustness. Again, bGGO shines with the lowest worst fitness value. This illustrates that
bGGO’s least optimal solutions outperform others. The “Standard Deviation Fitness” indicator evalu-
ates algorithm stability. Lower standard deviation values improve bGGO and bGA consistency during
optimization runs. The standard deviation of bFA is bigger, indicating more solution unpredictability.
bGGO uses targeted search despite having the lowest average error, highest fitness, and constant
stability. Other algorithms like bPSO, bWOA, bGWO, and bFA have varied benefits and drawbacks,
emphasizing the need to match the optimization problem. The average error of the proposed and
compared binary algorithms for the assessed dataset is presented in Fig. 2. Fig. 3 shows binary GGO
heatmap analysis, residual values, and approach comparisons.

Figure 2: Average error of bGGO and compared binary algorithms for tested dataset
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Figure 3: Residual values and heatmap analysis for binary GGO and compared algorithms

4.3 Classification Results

Table 2 shows categorization model performance metrics across evaluation criteria. To evaluate
classification performance, Gaussian NB, Linear Regression (LR), SVC, Decision Tree (DT) Classifier,
K-Neighbors Classifier (KNN), NN Classifier, and Random Forest (RF) Classifier are evaluated
using key indicators. The Random Forest Classifier has the highest accuracy at 94.03%, followed by
the NN Classifier at 92.17%. These models classify occurrences well, capturing many true positives
and negatives. With a TRP of 92.50% and a TNP of 88.65%, K Neighbors Classifier succeeds at
identifying positive and negative instances. Decision Tree Classifier has strong TRP and TNP, proving
its sensitivity and specificity. Positive predictive value (PPV) measures precision, or the percentage
of predicted positives that are correct. Random Forest Classifier has the highest PPV at 94.70%,
followed by NN Classifier at 92.59%. These models excel in reducing false positives. The percentage of
accurately anticipated negatives is called negative predictive value (NPV). Random Forest Classifier
again performs well in NPV at 93.09%, demonstrating its capacity to recognize negative cases. Based
on precision and recall, Random Forest Classifier has the highest F1 Score (94.88%), followed by NN
Classifier (92.81%). These models balance precision and recall, making them suitable categorization
candidates. Random Forest Classifier and NN Classifier lead numerous criteria with great accuracy,
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precision, and a balanced F1 Score. The best model may depend on interpretability, computational
efficiency, and dataset properties.

Table 2: Basic classification models result for the tested dataset

Classifiers/Metrics Accuracy TRP TNP PPV NPV F1 Score

Gaussian NB 0.84870849 0.886699507 0.735294118 0.909090909 0.684931507 0.897756
LR 0.85664336 0.886699507 0.78313253 0.909090909 0.738636364 0.897756
SVC 0.861486486 0.889423077 0.795454545 0.911330049 0.752688172 0.900243
DT 0.88150289 0.889423077 0.869565217 0.911330049 0.839160839 0.900243
KNN 0.909090909 0.925 0.886524823 0.92039801 0.892857143 0.922693
NN 0.921717172 0.930232558 0.91160221 0.925925926 0.916666667 0.928074
RF 0.940265487 0.950570342 0.925925926 0.946969697 0.930851064 0.948767

The results evaluate a Voting Classifier using GGO, GA, PSO, WOA, GWO, and FA optimization
methods for important classification metrics, as presented in Table 3. The voting classifier is based on
model predictions to decide, and the output indicates its performance. The voting GGO classifier has
a remarkable 99.45% accuracy, which has the highest model accuracy, contributing to this success.
This shows that the classifier’s accurate and robust classification is due to the models’ different
predictions. Voting GGO is the best model, with a TRP of 99.40% and a TNP of 99.50%. This
shows the voting GGO’s ability to detect positive and negative situations, which helps the classifier
succeed. Voting GGO has the highest PPV of 99.60% and NPV of 99.25%, which reduces false positives
and negatives. Voting GGO has the greatest F1 Score of 99.50%, which also indicates a balanced
performance between precision and recall. Voting GGO’s contribution to the classifier’s success is
further highlighted. Despite their lower individual accuracy, voting GA, PSO, WOA, GWO, and FA
algorithms improve the voting classifier. This voting approach uses each algorithm’s skills to create a
powerful, accurate, and robust classification model. The voting classifier, especially driven by the GGO
algorithm, is a highly accurate classification solution with balanced performance across measures.

Table 3: Assessment of the effectiveness of voting GGO and compared voting algorithms

Voting classifier/Metrics Accuracy TRP TNP PPV NPV F1 Score

GGO 0.994463 0.994036 0.995 0.996016 0.992519 0.995025
GA 0.976087 0.980392 0.970732 0.976563 0.97549 0.978474
PSO 0.967672 0.968992 0.966019 0.972763 0.961353 0.970874
WOA 0.959402 0.968992 0.947619 0.957854 0.961353 0.963391
GWO 0.957207 0.968992 0.94086 0.957854 0.956284 0.963391
FA 0.950783 0.968992 0.925926 0.94697 0.956284 0.957854

Based on numerical data, Table 4 shows the statistical performance of voting optimization
algorithms of GGO, GA, PSO, WOA, GWO, and FA. Each voting algorithm’s minimum to maximum
values shows its variability. The number of values for each algorithm is ten. Voting GGO has the
narrowest range, showing dataset consistency. Data distribution is further defined by median and
quartile values. Voting GGO routinely outperforms other algorithms with the highest median and
lower quartiles. Voting GGO has the highest mean and lowest standard deviation, indicating stability
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and reliability, and regularly beats competing voting algorithms in these criteria, suggesting statistical
robustness. Skewness and kurtosis provide distribution shape and tail characteristics. Voting GGO
has a symmetric distribution (skewness near zero) and modest kurtosis, making it more normal than
other methods. It performs well across statistical parameters like mean, median, confidence intervals,
and distribution shape, making it a consistent and trustworthy optimization technique. These results
indicate that voting GGO is reliable for numerical optimization.

Table 4: Thorough examination of the performance metrics for different voting algorithms

Metrics/Voting classifier GGO GA PSO WOA GWO FA

Minimum 0.9915 0.9696 0.9608 0.9509 0.9507 0.9491
25% percentile 0.9945 0.9761 0.9672 0.9593 0.9571 0.9506
Median 0.9945 0.9761 0.9677 0.9594 0.9572 0.9508
75% percentile 0.9945 0.9761 0.9677 0.9594 0.9572 0.9508
Maximum 0.9975 0.9836 0.9767 0.9649 0.9637 0.9675
Range 0.006 0.014 0.01595 0.014 0.013 0.01843
10% percentile 0.9918 0.9703 0.9613 0.9517 0.9513 0.9492
90% percentile 0.9972 0.9829 0.9758 0.9644 0.9631 0.9658
Skewness 0 0.4717 0.9642 −1.223 0.07224 3.098
Kurtosis 4.5 4.609 4.583 5.21 4.46 9.719
Sum 9.945 9.762 9.677 9.591 9.572 9.522

After the completion of the earlier experiment, various voting classifiers, such as GGO, GA,
PSO, WOA, GWO, and FA, were investigated when applied to the previously described dataset. The
main objective was to assess and compare the levels of accuracy demonstrated by each approach. As
depicted in Fig. 4, the results reveal that the GGO voting algorithm outperforms alternative solutions,
displaying a significantly higher accuracy rate than the other options.

Figure 4: Assessment of the accuracy of voting GGO and compared models

In the upcoming experiment, we will explore how different voting algorithms demonstrate
diverse levels of accuracy. Employing a methodology involving ten repetitions of the experiment and
presenting the outcomes in the form of a histogram allows us to determine an average. The data
gathered from each iteration of the experiment is illustrated in Fig. 5, offering a visual representation
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of the distribution of accuracy across multiple repetitions. The experiments compute residual values
and heat and display the results in charts and comparisons. The residual values are graphed on
a scattered, column-grouped y-axis during the initial computation. Fig. 6 shows the residual value
distribution. QQ plots determine the similarity between expected and actual residual values. This
graphic shows that the two sets of values match closely. Fig. 6 shows the homoscedasticity plot used
to compare group variances. This shows the groups’ consistent differences. A heatmap in Fig. 6 is
also used to appropriately examine the dataset’s values. When combined, these investigations provide
a comprehensive understanding of residual values, their distribution, and group variance, which
improves experiment interpretation.

Figure 5: Exploration of the histogram of accuracy with bin center range of (0.948 0,998) for different
voting classifiers

Figure 6: Residual values and heatmap analysis for voting GGO and compared models
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4.4 Statistical Analysis

Table 5 compares the binary GGO (bGGO) algorithm to different binary optimization strategies
using ANOVA. The analysis breaks variance into Treatment (between columns), Residual (within
columns), and Total. The “Treatment” component, representing algorithm variability, yields a strong
F-statistic of 173.4 for F (5, 54) and a low p-value (<0.0001), showing significant variances in algorithm
group means. This implies that at least one algorithm performs significantly differently. Unexpected
variation within each algorithm group is explained by the “Residual” component. The ANOVA results
show that algorithm performance disparities are statistically significant, rejecting the null hypothesis
of identical performance. This investigation illuminates binary optimization algorithm efficacy.

Table 5: ANOVA findings for binary GGO (bGGO) and comparing algorithms

Terms SS DF MS F (DFn, DFd)

Treatment 0.01946 5 0.003892 173.4
Residual 0.001212 54 2.24E-05
Total 0.02067 59

Table 6 presents the results of the Wilcoxon Signed Rank Test comparing the bGGO algorithm
with other algorithms, namely bGA, bPSO, bWOA, bGWO, and bFA. The theoretical median for
all algorithms is set at 0, and the actual medians for each algorithm are provided. The number of
values is set to be ten for each algorithm. The test statistics include the sum of signed ranks (W),
sum of positive ranks, and sum of negative ranks, all of which are equal at 55. The two-tailed p-
values for each comparison are consistently low at 0.002, indicating a statistically significant difference
between bGGO and each of the other algorithms. The discrepancy values highlight the magnitude of
the differences in medians between bGGO and the other algorithms. In summary, the Wilcoxon Signed
Rank Test results indicate that bGGO significantly outperforms each of the compared algorithms, with
a substantial and statistically significant discrepancy in median values.

Table 6: Binary GGO (bGGO) and other algorithms’ wilcoxon signed rank test statistics

Metrics/Algorithms bGGO bGA bPSO bWOA bGWO bFA

Actual median 0.5849 0.6157 0.6359 0.6357 0.6222 0.6343
Discrepancy 0.5849 0.6157 0.6359 0.6357 0.6222 0.6343

The ANOVA results in Table 7 compare the performance of a voting technique using the GGO
algorithm to others. The analysis breaks variance into Treatment (between columns), Residual (within
columns), and Total. The “Treatment” component, representing algorithm group variability, has a
significant F-statistic of 187.7 for F (5, 54) and a low p-value (<0.0001). This shows large algorithm
group mean disparities, rejecting the null hypothesis of equal performance. Each algorithm group’s
“Residual” component represents unexplained unpredictability. The ANOVA results demonstrate the
statistical significance of algorithm performance differences, proving at least one algorithm is better
in the voting process. This investigation sheds light on voting algorithm performance.
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Table 7: ANOVA findings for voting GGO and comparing algorithms

Terms SS DF MS F (DFn, DFd)

Treatment 0.01214 5 0.002428 187.7
Residual 0.000698 54 1.29E-05
Total 0.01284 59

Table 8 compares the voting GGO algorithm to GA, PSO, WOA, GWO, and FA using the
Wilcoxon Signed Rank Test. The theoretical median for all methods is 0, while the actual medians are
presented. The number of values is set to be ten for each algorithm. Test statistics like the sum of signed
ranks, positive ranks, and negative ranks are always 55. All two-tailed p-values for each comparison
are 0.002, showing a statistically significant difference between the voting GGO algorithm and the
others. The exact test was used, and the p-value summary shows “∗∗”. The discrepancy numbers show
how much the voting GGO algorithm’s medians deviate from the others. In conclusion, the Wilcoxon
Signed Rank Test shows that the voting GGO algorithm surpasses all other algorithms with a large
and statistically significant median difference.

Table 8: Voting GGO and other algorithms’ wilcoxon signed rank test statistics

Metrics/Algorithms GGO GA PSO WOA GWO FA

Actual median 0.9945 0.9761 0.9677 0.9594 0.9572 0.9508
Discrepancy 0.9945 0.9761 0.9677 0.9594 0.9572 0.9508

By contributing to the optimization of charging infrastructure for electric vehicles, this work can
play a crucial role in advancing the global transition to a low-carbon transportation system, which
can also be aligned with climate change mitigation goals. The optimization of charging infrastructure
stands to mitigate air pollution in some urban areas, which promotes the use of electric vehicles
that are already known for lower emissions and, in turn, improve air quality and public health. The
work also addresses energy-related concerns by positioning charging stations, which offer demand
control through metaheuristic optimization algorithms. It could reduce the electricity expenses for
consumers during peak hours. The optimization of electric vehicle charging infrastructure holds
promise for significant societal advantages, including enhanced air quality, improved public health,
emission reduction, and potential energy cost savings.

5 Conclusion and Future Directions

Finally, this study tackles the urgent need for sustainable mobility by examining the broad
adoption of electric cars (EVs) and the constraints of urban charging infrastructure. The research
emphasizes the need to overcome range and recharge time issues to promote EVs due to conventional
transportation’s environmental impacts. Urban charging stations with fast and ultra-fast connectors
are crucial. However, the research notes that high energy needs and service quality issues make
powering these stations difficult. The study suggests a model that estimates each charging station’s
maximum hourly capacity based on its geographic location to better estimate resource needs. This
paper uses the binary graylag goose optimization (bGGO) algorithm for feature selection and the
GGO approach for voting classifier and charging station demand allocation. The cost of traffic
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congestion is an important factor in decision-making. The study uses statistical analysis, including
ANOVA and the Wilcoxon Signed Rank Test, to understand dataset variability and evaluate algorithm
performance. Results demonstrate the Voting GGO algorithm allocates charging station demand
well. A comparison with other optimization algorithms, such as the voting grey GWO, voting PSO,
voting WOA, voting FA, and voting GA, sheds light on sustainable transportation and charging
infrastructure planning in the future, emphasizing the need for tailored approaches based on regional
traffic dynamics and effective algorithmic decision-making to meet the demands of a rapidly evolving
transportation and charging infrastructure. More powerful evolutionary computation algorithms,
such as learning-aided evolutionary optimization (LEO), will be studied and applied in the future
for the charging station demand allocation of electric cars.
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