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ABSTRACT

Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across
various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the
Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and
entrapment in local optima during function optimization processes, this study introduces an advanced Improved
Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement
strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to
generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after the first phase
of the NGO’s iterative process, a whale fall strategy is introduced to prevent premature convergence into local
optima. This is followed by the integration of T-distribution mutation strategies and the State Transition Algorithm
(STA) after the second phase of the NGO, achieving a balanced synergy between the algorithm’s exploitation and
exploration. This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE
CEC 2017 benchmark functions, accompanied by a statistical analysis of the results. The experimental outcomes
demonstrate INGO’s superior achievements in function optimization tasks. Furthermore, its applicability in solving
engineering design problems was verified through simulations on Unmanned Aerial Vehicle (UAV) trajectory
planning issues, establishing INGO’s capability in addressing complex optimization challenges.

KEYWORDS
Northern Goshawk Optimization; tent chaotic map; T-distribution disturbance; state transition algorithm; UAV
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1 Introduction

The growing complexity of optimization problems, combined with the limitations of traditional
algorithms, has underscored the need for developing meta-heuristic algorithms in recent years [1].
Focusing solely on inputs and outputs, metaheuristic algorithms excel in solving a broad spectrum
of complex optimization problems across different fields. Applications range from path planning [2],
and scheduling [3,4], to image threshold segmentation [5], and feature extraction and selection [6].
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The inspiration behind metaheuristic algorithms stems from natural phenomena such as evolution,
fundamental physicochemical laws, and the intelligent behaviors of swarms. By simulating these
behaviors to construct models, these algorithms approximate the global optima of nonlinear, non-
convex, discontinuous, and discrete complex optimization problems, thus achieving high-quality
solutions at lower computational costs.

Metaheuristic algorithms are categorized into four types: Evolutionary, swarm intelligence-based,
physicochemical law-grounded, and social or human behavior-modeled. The Genetic Algorithm (GA)
[7] is notably the most influential among evolution-based algorithms. is notably the most influential
among evolution-based algorithms. Mimicking Darwin’s evolution process, GA assesses organism
fitness to their environments and uses genetic operators—selection, crossover, mutation—to iteratively
improve solution quality, effectively solving optimization problems. Evolutionary algorithms, appli-
cable broadly and independent of gradient information, are marked by high computational costs and
slow convergence. Swarm intelligence algorithms replicate group information exchange capabilities
and characteristics. For example, the particle swarm optimization (PSO) [8] mirrors birds’ predation
behavior, simplifying optimization problem-solving to a quest for nourishment. Leveraging population
and evolution concepts, these algorithms facilitate complex solution space exploration via individual
cooperation. A common trait of swarm intelligence algorithms is their vulnerability to local optima,
resulting in quicker convergence at the risk of settling for suboptimal solutions. Algorithms grounded
in physical and chemical principles, like the Simulated Annealing algorithm (SA) [9] and Sine and
Cosine Algorithm (SCA) [10], offer superior convergence accuracy. However, these algorithms have
notable drawbacks, such as an excessive dependency on parameter settings, slow convergence rates, and
applicability to only specific types of optimization problems. Algorithms inspired by social or human
behaviors, like the Brain Storm Optimization Algorithm (BSOA) [11] and Tabu Search (TS) [12],
derive their search strategies from the simulation of human behaviors in social interactions, learning,
competition, and cooperation, aiming to solve complex optimization problems. The design of their
search strategies significantly influences the convergence speed and stability of these algorithms.

Swarm intelligence algorithms offer significant benefits and potential for solving real-world
engineering problems. As a result, numerous novel and enhanced swarm intelligence algorithms
have been developed to address practical challenges. Introduced in the early 1990s, the Ant Colony
Algorithm (ACO) [13] mimics ants’ foraging behavior to find the shortest path. It uses stochastic
state transitions and pheromone updates, effectively solving the Traveling Salesman Problem. After
2000, swarm intelligence algorithms gained researchers’ attention for their fast convergence and robust
stability. The Grey Wolf Optimizer (GWO) [14] was proposed in 2014, followed by the Whale Opti-
mization Algorithm (WOA) [15] in 2016, igniting a surge in swarm intelligence algorithm proposals
and improvements. In recent years, algorithms including the Dragonfly Algorithm (DA) [16], Aquila
Optimizer (AO) [17], Harris Hawks Optimization (HHO) [18], Hunger Games Search (HGS) [19],
Prairie Dog Optimization Algorithm (PDO) [20], Dwarf Mongoose Optimization Algorithm (DMO)
[21], Chimp Optimization Algorithm (ChOA) [22], Beluga Whale Optimization (BWO) [23], have been
introduced and shown effectiveness in various benchmarks and specific problems. The introduction of
these algorithms has markedly facilitated solving complex engineering challenges in the real world.

Dehghani et al. [24] proposed the NGO in 2022, building on the simulation of the Northern
goshawk’s predation behavior, featuring a mathematically simple model and rapid computation
speeds, finding application across numerous domains. Yu et al. [25] enhanced NGO’s performance
through methods such as leader mutation and sine chaos mapping, proposing a Chaotic Leadership
Northern Goshawk Optimization (CLNGO), effectively addressing rolling bearing fault diagnosis
issues. Youssef et al. [26] introduced an Enhanced Northern Goshawk Optimization (ENGO) for
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smart home energy management, incorporating Brownian motion in the first phase and Levy flight
strategy in the second phase of NGO, which, although improving global search capability to some
extent, rendered the algorithm prone to convergence difficulties. Liang et al. [27] improved NGO
by integrating a polynomial interpolation strategy and multi-strategy opposite learning method,
evaluating its performance using multiple benchmark function test sets, achieving noteworthy results,
albeit the search methodologies of these strategies were relatively singular compared to others. El-
Dabah et al. [28] employed NGO for identifying Photovoltaic (PV) model parameters. Satria et al. [29]
introduced a hybrid algorithm, Chaotic Northern Goshawk, and Pattern Search (CNGPS), merging
NGO with pattern search to improve convergence accuracy in PV parameter identification, reducing
early-stage local optima’s impact and preventing premature convergence. Zhong et al. [30] optimized
the hyperparameters of the Bi-directional Long Short Term Memory (BILSTM) network for facial
expression recognition using NGO, with the proposed NGO-BILSTM model achieving an accuracy
of 89.72%. Tian et al. [31] extended NGO into a multi-objective version to address multi-objective
Disassembly Line Balancing Problems (DLBP) in remanufacturing, significantly contributing to
solving DLBP issues. Wang et al. [32] refined NGO using Tent chaotic mapping, adaptive weight
factor, and Levy flight strategy, applying the novel algorithm to tool wear condition identification,
reaching an accuracy of 97.9%. Zhan et al. [33] expanded NGO into Multi-objective Northern
Goshawk Optimization Algorithm (MONGO) for environmentally oriented disassembly planning of
end-of-life vehicle batteries, aiming to maximize disassembly efficiency and quality. Bian et al. [34]
combined NGO with Henry Gas Solubility Optimization (HGSO) to create the eXtreme Gradient
Boosting Northern Goshawk (XGBNG) model, which predicts the compressive strength of self-
compacting concrete with unparalleled accuracy. Wang et al. [35] applied NGO to address buyer-seller
behavior models in the electric power trading system, effectively enhancing the rational reutilization
of electricity in private electric vehicles. Ning et al. [36] proposed an Artificial Neural Network (ANN)
model optimized by NGO, resulting in the NGO-ANN model with high predictive accuracy.

Despite the emergence of numerous NGO variants, they exhibit limitations and excel only in
specific problems. This reality persists regardless of the type or extent of modifications researchers
apply to any algorithm, as each harbors its inherent constraints. The No Free Lunch (NFL) theorem
[37] elucidates that for any optimization algorithm, the expected performance across all possible
problems is equivalent, signifying that no algorithm can universally attain the global optimum for
every problem. This theorem has led researchers to work on improving existing algorithms and intro-
ducing new ones and their enhanced versions. Based on this principle, it is imperative to continuously
propose new algorithms and adapt these proposals to address the characteristics of different types
of problems to tackle both current and forthcoming optimization challenges [38]. NGO exhibits
exceptional performance across a variety of optimization problems; however, it is undeniable that
limitations remain. The research improvements on NGO have not transcended beyond optimization
initialization, parameter enhancement, and mutation strategies. These strategies effectively ameliorate
the algorithm’s convergence speed and, to some extent, its global search capability, yet their impact
on the precision of NGO’s convergence is minimal. This article, starting from the NFL theorem and
focusing on the minimization of functions as the problem type, addresses the issue of suboptimal
convergence accuracy inherent in both NGO and its enhancements. Innovatively, this work integrates
STA [39] into NGO, proposing a multi-strategy improved version, INGO, aimed at augmenting the
algorithm’s local exploitation capacity. The performance of NGO is evaluated on two public test
sets and one engineering problem. The contribution of this study is not limited to presenting an
optimization algorithm with superior performance but also lies in the in-depth exploration of strategies
for algorithm improvement, offering new insights and methodologies for future related research.
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Furthermore, through the application case of UAV path planning, the potential of INGO in practical
engineering problems is showcased, further demonstrating its value as an effective tool for engineering
design and global optimization. Following is a summary of the paper’s main contributions:

(1) This study synthesizes the high convergence accuracy of physics-based algorithms and the
rapid convergence speed of swarm intelligence algorithms by incorporating the STA into the
optimization process of NGO, thereby proposing a novel algorithm with superior performance,
denoted as INGO.

(2) In the initialization phase, INGO utilizes Tent chaotic mapping to seed the population, thereby
augmenting population diversity and boosting the chances of circumventing local optima in
pursuit of superior solutions.

(3) The integration of the BWO’s whale fall strategy and the T-distribution variation strategy as
mutation strategies significantly augments the global search capability of NGO.

(4) The incorporation of the STA facilitates sampling and comparison within the vicinity of the
optimal solution in each iteration of the NGO, thereby enhancing the precision of solution
convergence.

(5) The performance of INGO was tested and evaluated using 53 benchmark functions and a path
planning scenario of UAV.

The structure of this paper is as follows: Section 2 delineates the foundational principles and
models of NGO. Section 3 outlines the development of the INGO algorithm. Section 4 reports on the
evaluation of the algorithm’s efficacy through testing on 53 benchmark functions. Section 5 elaborates
on the deployment of this algorithm in UAV path planning and shares the outcomes. Section 6 offers
a concluding summary of the paper.

2 Northern Goshawk Optimization (NGO)

Inspired by the predatory behavior of the northern goshawk, NGO takes each northern goshawk
as an individual of a population and abstracts the predatory behavior into two stages. The first stage is
to explore and attack prey, which reflects the group behavior by identifying the position of the current
best solution and influencing each individual to update their position through the optimal solution,
representing the global exploration ability. The second stage is the escape behavior of prey, symbolizing
the local exploitation ability.

2.1 Initialization of the Algorithm

NGO considers each northern goshawk as an individual of a population, that is, a viable solution,
and searches for the best value in the viable solution space by moving. Like most swarm intelligence
algorithms, NGO generates initial populations by randomly generating initial populations. In the
mathematical model, each individual represents a D-dimensional vector, N individuals constitute the
entire population, and the population is an N × D matrix. The mathematical model of the population
is given by formula (1):

X =

⎡
⎢⎢⎢⎢⎢⎣

X1

...
Xi

...
XN

⎤
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Here, the population N and individual’s position are represented by X and Xi, respectively, Xi,j

denotes the value on the jth dimension and M are the number of individuals and the largest dimension.
The objective function is represented by the fitness function.

2.2 Prey Identification and Attack

The search and attack of prey is the first stage of the NGO in each iteration, which simulates
the optimal solution as prey and each individual launches the attack it. In this stage, every individual
identifies the location of the current best solution and updates their position based on this optimal
solution. The main purpose is to enable the northern goshawk individual to search the feasible solution
space more widely. Thus, global search is carried out. Formulas (2)–(4) represent the mathematical
model for the initial phase.

Pi = XZ (2)

xnew1
i,j =

{
xi,j + r

(
pi,j − I ∗ xi,j

)
, Fpi < Fi

xi,j + r
(
xi,j − pi,j

)
, Fpi ≥ Fi

(3)

Xi =
{

xnew1
i , Fnew1

i < Fi

Xi, Fnew1
i ≥ Fi

(4)

where i = 1, 2, · · · , N, the value of I can be 1 or 2 and r = rand (0, 1).. Pi is a candidate solution. FPi

is its objective function value. xnew1
i is the new position of the first stage, xnew1

i,j is its jth dimension. Fnew1
i

represents objective function value of the first stage.

2.3 Chase and Escape Operation

The second stage is the chase and escape of prey, and the local exploitation is carried out by
simulating the local activities of prey to affect the individual position of the northern goshawk. The
position updating formula of the second stage is shown in formulas (5)–(6):

xnew2
i,j = xi,j + R (2r − 1) xi,j (5)

Xi =
{

xnew2
i , Fnew2

i < Fi

Xi, Fnew2
i ≥ Fi

Z = 1, 2, · · · I , · · · N (6)

where xnew2
i is the new position of the second stage and xnew2

i,j is its value in jth dimension. Fnew2
i represents

objective function value of the second stage. R is the hunting radius. The expression of R is shown in
formula (7):

R = 0.02
(

1 − t
T

)
(7)

where t denotes the iteration number, and T signifies the maximum iteration number. R will diminish
as the iteration count increases, indicating that the hunting radius of the NGO contracts in the later
stages of iteration, thereby enhancing the algorithm’s local exploitation capability. This mechanism is
pivotal to NGO achieving superior optimization accuracy compared to many other.

Each iteration within the NGO process encompasses these two phases. The prevailing optimal
solution serves as a beacon for other members to gravitate towards improved outcomes. Upon
reaching the maximum iteration limit, the algorithm concludes. Fig. 1 illustrates the flowchart of the
standard NGO.
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Figure 1: The flowchart of the northern Goshawk algorithm

3 The Proposed Algorithm: INGO

The essence of swarm intelligence algorithm lies in the algorithm’s capability to explore and
exploit. The improvement of the so-called swarm intelligence algorithm is to help algorithms to strike
a balance between the exploration and exploitation. This facilitates the algorithm’s capacity to not
only broadly search the feasible solution space but also to refine its approach in achieving a closer
approximation to the optimal solution with greater accuracy. Based on previous research, this section
presents four effective improvement strategies for function optimization of NGO. By combining all
four strategies, the NGO is strengthened in terms of its ability to explore and exploit.

3.1 Tent Chaotic Mapping

Given the lack of prior knowledge about the global optimal solution for the optimization problem,
it is advisable to distribute the population evenly throughout the search space. However, the randomly
generated initial population is frequently distributed unevenly, thereby impacting the diversity of the
population. Although the intelligent algorithm is insensitive to the initialization method and there
are no notable disparities among the methods of population initialization after enough iterations [40],
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using a more uniform initialization technique will improve the algorithm’s exploration ability during
the early iteration.

Chaotic sequence is used to generate initial population instead of randomly generated initial
population in this paper. Tent mapping is widely used in the initial improvement of swarm intelligent
algorithm due to its ability to generate more uniform chaotic sequence [41]. The iterative formula of
tent mapping operator adopted is shown as formula (8):

Xt+1 =
{

2Xt, Xt ∈ [0, 0.5]

2 (1 − Xt) , Xt ∈ (0.5, 1]
(8)

3.2 Whale Fall

The convergence speed of NGO is quick, which it also makes the local optimal value affecting the
algorithm tremendously in the early stage, resulting in the low global search ability of it. In the first
stage of NGO search, there is a phenomenon of rapid convergence, and it is quite probable to fall into
local optimality. Therefore, improving the global exploratory ability is of great significance to improve
NGO performance.

Targeted addition of some strategies is often an effective technique to improve the global
exploratory capability of the algorithm. Whale fall refers to the phenomenon wherein a whale dies
and its body descends to the bottom of the ocean and it is one of the main reasons life in the deep
ocean flourishes. The whale fall phenomenon was introduced into the beluga optimization algorithm.
The BWO gives a model of the falling behavior of the whale after death in each iteration. An updated
position is established by using the beluga whale’s position and the length of its fall, along with a tiny
probability.

Taking into account NGO’s inclination to get stuck in local optimum, this paper incorporated
the whale fall phenomenon into the first stage search of it, representing the behavior of the northern
goshawk, which has a very small probability of falling or was affected by other random individuals
for other reasons after the large-scale exploration behind the first stage search, assists the algorithm
in increasing its chances of breaking free from local optimal values. Formula (9) expresses the
mathematical model of the whale fall.

Xi (t + 1) = r1Xi (t) − r2XR (t) + r3Xstep (9)

where r1, r2, r3 ∈ (0, 1) are random numbers, XR is random individuals, and the mathematical
expression of Xstep is illustrated in formula (10):

Xstep = (ub − lb) e(−ct/T) (10)

where ub is the upper bounds and lb is the upper bounds of variables. C is related to whale landing
probability Wf and population size N. The mathematical expression of C and Wf is given by
formula (11):{

C = 2Wf N

Wf = 0.1 − t
20T

(11)

In the process of each iteration of the NGO, the whale landing operation is carried out after the
completion of the prey discovery and attack stage, which can better conduct a global search, so that
the algorithm approaches the global optimal solution with a greater probability.
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3.3 T-Distribution Variation

Variation is the most common strategy used for swarm intelligence algorithms to fall into local
optimality. Cauchy variation and Gaussian variation are common. According to the characteristics
of the NGO, this paper adopts T-distribution mutation strategy [42] to improve its weaknesses. The
algorithm’s iteration count serves as the degree of freedom for the T-distribution. Following each
individual’s completion of the initial two search stages, a variation operation is performed on the
optimal solution. The fitness value of the optimal solution before and after variation is compared to
re-evaluate the optimal solution and retain it. The variation formula is shown in formula (12):

Xi (new) = (T + 1) Xi (12)

Here, T is a T-distribution. The mathematical formula for the T-distribution is shown in
formula (13):

fz (x) =
�

(
t + 1

2

)
√

nπ�

(
t
2

) (
1 + x2

t

)− t+1
2

(13)

Here, t is the number of iterations.

During the initial phase of iteration, the T-distribution resembles the Cauchy distribution, mitigat-
ing the impact of local extremities. This alteration increases the likelihood of the algorithm breaking
free from local optima, thereby boosting its global exploratory capabilities. In the subsequent phases,
the T-distribution approaches the characteristics of a Gaussian distribution, facilitating improved local
exploitation and enhanced convergence precision for the algorithm, while simultaneously quickening
the rate of convergence.

3.4 Added the State Transition Algorithm (STA)

Algorithm fusion is the trend of swarm intelligence algorithm improvement recently. The main
purpose is to combine the advantages of various algorithms so that new algorithms have stronger
exploration and exploitation ability. STA is a competitive intelligent algorithm proposed by Zhou in
2012. It uses the state space expression as the framework to design four transformation operators,
considering the process of the feasible solution iteration as a process of state transition. Based on
the current optimal solution, some state transition operator is run, and the candidate solution set is
generated by generating neighborhood and sampling in the neighborhood, and then compared with
the current best solution, a new optimal solution is obtained.

STA utilizes the state space expression as a framework to simulate the iterative updating process
of the solution, as shown in formula (14):

xt+1 = Atxt + Btut

yt+1 = f (xt+1) (14)

Here, xt = [x1, x2, · · · xi, · · · , xn]
T represents a candidate solution, At and Bt are state transition

matrices, which can be random matrices, ut is the state function. f (xt) is the objective function.
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The expression of the rotation transformation operator is shown in formula (15):

xt+1 = xt + α
1

n ‖xt‖2

Rrxt (15)

Here, Rr ∈ Rn×n is the random matrix uniformly distributed between [−1, 1]. ‖·‖2 is the norm.
α > 0 is the rotation factor.

The expression of translation transformation operator is shown in formula (16):

xt+1 = xt + βRt

xt − xt−1

‖xt − xt−1‖2

(16)

Here, Rr ∈ R is the random number uniformly distributed between [0, 1]. β > 0 is the translation
factor.

The expression of expansion transformation operator is shown in formula (17):

xt+1 = xt + γ Rext (17)

Here, Re ∈ Rn×n is the value of non-zero element following the random diagonal matrix of
Gaussian distribution. γ > 0 is the expanding factor.

The expression of axesion transformation operator is shown in formula (18):

xt+1 = xt + δRaxt (18)

Here, Ra ∈ Rn×n is the value of non-zero element, which follows the sparse random diagonal matrix
of Gaussian distribution. δ > 0 is the axial factor. The axesion transformation operator improves the
ability to search in a certain dimension.

For the existing optimal solution, a neighborhood is constructed through a candidate solution
set generated by a specific transformation operator. Sampling within this neighborhood is executed
via a defined sampling method, from which the superior solution is identified. Subsequently, optimal
solutions undergo updates through greedy mechanisms; namely, comparing the derived solutions with
the current optimal and selecting the most advantageous one. The greedy mechanism is shown in
formula (19):

xt =
{

xnew
t , if f

(
xnew

t

)
< f (xt)

xt, other
(19)

Aimed at the characteristics of NGO, which has high search speed but low search accuracy, STA
is introduced into NGO to enhance its convergence accuracy, so that it could get better optimization
results when solving function optimization problems. STA possesses strong local exploitation capa-
bility and is capable of thoroughly exploring the surrounding space of the current optimal solution.
Upon discovering the best outcome during each NGO iteration, STA employs its four transformation
operators to explore the vicinity of the optimal solution, thereby guaranteeing enhanced local
exploitation of the algorithm.

3.5 The Pseudo-Code and Flowchart of INGO

Algorithm 1 outlines INGO’s pseudo-code. At line 3, the Tent chaotic map initializes the popula-
tion. Line 11 updates positions through the whale fall strategy, and line 18 applies the T-distribution
for variations. STA’s utilization for neighborhood searches of the optimal solution is marked at line 20.
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Algorithm 1: Pseudo-code of INGO algorithm
Start INGO
1. Enter the information for the objective function.
2. Define the values of parameters T and N
3. The initial position of INGO is generated using Tent chaotic mapping
4. for 1 t = 1: T
5. for 2 i = 1: N
6. Select the prey using (2).
7. for 3 j = 1: m
8. Update the position of each dimension using (3).
9. end 3
10. Update the position of the optimal solution using (4).
11. Whale fall strategy: Use formulas (9)–(11) for location updates
12. Calculate the value of Rusing (5)
13. for 4 j = 1: m
14. Update the position of each dimension using (7).
15. end 4
16. Update the position of the optimal solution using (6).
17. for 5 j = 1: m
18. T-distribution variation strategy: Use formulas (12) and (13) for location updates
19. end 5
20. STA strategy: Use STA for local search
21. end 2
22. Save the optimal solution.
23. end 1
24. Output best solution.
25. end INGO.

Fig. 2 displays the flowchart of INGO. Upon setting the algorithm’s maximum iterations T and
population size N, execution commences. Initially, population generation via Tent chaotic mapping,
individual fitness evaluation, and sorting to identify the optimum position sets the stage. Subsequent
phases leverage prey identification and the attack strategy for positional updates and the whale-fall
technique to enhance escape from local optima. The NGO’s chase and escape mechanism then refines
accuracy, followed by a T-distribution variation to intensively explore the solution space. Conclusively,
sampling near the optimum with the state transition algorithm identifies a superior solution, ensuring
progression to the next iteration once neighborhood superiority is confirmed. The algorithm concludes
once it fulfills the stopping criteria.
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No
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Figure 2: Flowchart of the INGO

4 Experimental Results
4.1 Experimental Setup

This section mainly analyzes the performance of INGO. Firstly, the effectiveness of the strategy
is analyzed by gradually adding the strategy, secondly, the scalability of the algorithm is verified by
testing on different dimensions, and finally, the algorithm is compared with other algorithms on 23
benchmark functions [43] and CEC2017 test set [44]. The algorithms involved in the comparison of
these 53 benchmark functions are: AO, Hunter–prey Optimization (HPO) [45], Sand Cat Swarm Opti-
mization (SCSO) [46], HHO, WOA, GWO, SCA, DA, Salp Swarm Algorithm (SSA) [47], BWO and an
Improved Northern Goshawk Optimization (INGOfu) [48]. These algorithms can be categorized into
four types: Classical swarm intelligence algorithms that are widely applied (GWO, WOA, DA, SSA),
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which have garnered significant attention from researchers; physics-based algorithms (SCA), with
SCA often being utilized in conjunction with other swarm intelligence algorithms; recently developed
competitive swarm intelligence algorithms (AO, HPO, SCSO, HHO), which, when compared with
newer algorithms, can better highlight the performance of INGO; and the improved NGO algorithm
(INGOfu). The diversity of the types of algorithms involved in the comparison provides a better and
more comprehensive assessment of INGO’s performance. The population of all algorithms is 50, with
a maximum iteration count of 1000 and a dimension of 30. The information and parameters of the
algorithms used in this paper are given in Table 1. Run the algorithm independently for 30 times and
compare the mean value and standard deviation. All algorithm tests were carried out on Windows
10(64-bit), Intel(R) Core(TM) i7-11800H, CPU@2.30 GHz, RAM:16 G MATLAB 2021b.

Table 1: The information and parameters of the algorithms used in this paper

Algorithm Parameter

AO α, β: 0.1
HPO C: [1,0.02], β: 0.1
SCSO Sensitivity range: [2,0]

HHO
Escaping probability: 0.5
Escaping energy: 0.5

WOA a: [2, 0], r: rand (0, 1), l: rand (-1, 1)
GWO a: [2, 0], A: [2, 0], C: 2∗rand (0, 1)
SCA N/A

DA
r1, r2: rand (0, 1), s, a = 0.1, c = 0.7
f , e = 1, w ∈ (0.2,0.9)

SSA p: 0.5
BWO N/A
INGOfu n = 1.02e + 04

4.2 The Impact of Optimization Strategies on Algorithm

A set of experiments is set up in this section to analyze the effect of the four strategies introduced
in INGO algorithm on the algorithm. Four strategies are added to NGO successively, and different
combinations are shown in Table 2, where A represents tent chaotic mapping strategy, B represents
whale fall strategy, C represents T-distribution variation strategy, D represents neighborhood search
strategy, 1 represents these strategies are added to the NGO algorithm, and four new algorithms are
obtained: NGO-A, NGO-B, NGO-C and NGO-D. NGO-D is equivalent to our proposed INGO
algorithm. At the same time, NGO and these four algorithms were compared and tested on part
of the benchmark functions. Table 3 shows the average and standard deviation test results of the 12
functions F1–F6 and F8–F13 out of 23 benchmark functions of 5 different algorithms. It is worth
mentioning that, all the five algorithms F14–F23 have obtained the optimal values. Table 4 displays
the performance outcomes of five algorithms across 30 functions within the CEC2017 test suite,
with the reported results reflecting the mean of 30 independent trials. The data reveal a progressive
improvement in algorithmic performance correlating with the incremental integration of strategies,
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thereby validating the efficacy of the four strategies. This enhancement signifies their collective
capability to augment the algorithm’s search efficiency.

Table 2: Combination of strategies

Name A B C D

NGO 0 0 0 0
NGO-A 1 0 0 0
NGO-B 1 1 0 0
NGO-C 1 1 1 0
NGO-D 1 1 1 1

Table 3: The results of the five algorithms on benchmark functions

Index FUN F1 F2 F3 F4 F5 F6

NGO MEAN 1.27E−88 7.12E−46 1.87E−20 1.26E−37 2.53E+01 1.94E−05
STD 1.86E−88 4.71E−46 1.02E−19 1.56E−37 4.20E−01 1.02E−04

NGO-A MEAN 1.33E−88 9.78E−46 5.52E−22 1.25E−37 2.52E+01 1.41E−05
STD 2.08E−88 7.57E−46 1.54E−21 1.17E−37 4.05E−01 5.76E−06

NGO-B MEAN 5.82E−89 2.84E−46 8.74E−23 3.25E−38 1.38E−06 3.09E−06
STD 1.49E−88 2.78E−46 4.25E−22 2.05E−38 4.52E−06 2.14E−06

NGO-C MEAN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.23E−07 7.13E−07
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.09E−07 3.75E−07

NGO-D MEAN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.87E−07 2.53E−10
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.23E−07 6.41E−11

Index FUN F8 F9 F10 F11 F12 F13

NGO MEAN −7.69E+03 0.00E+00 5.98E−15 0.00E+00 1.04E−06 6.36E−02
STD 4.87E+02 0.00E+00 1.79E−15 0.00E+00 4.41E−06 6.82E−02

NGO-A MEAN −7.64E+03 0.00E+00 7.21E+00 0.00E+00 8.82E−07 7.01E−02
STD 1.36E+03 0.00E+00 7.56E+00 0.00E+00 4.44E−07 5.86E−02

NGO-B MEAN −3.17E+41 0.00E+00 6.10E−15 0.00E+00 7.63E−08 1.81E−10
STD 1.58E+42 0.00E+00 1.80E−15 0.00E+00 1.35E−07 2.76E−10

NGO-C MEAN −6.23E+23 0.00E+00 8.88E−16 0.00E+00 2.11E−08 1.52E−10
STD 2.66E+24 0.00E+00 1.00E−31 0.00E+00 1.29E−08 2.23E−10

NGO-D MEAN −1.70E+23 0.00E+00 8.88E−16 0.00E+00 2.88E−11 7.10E−11
STD 7.68E+23 0.00E+00 1.00E−31 0.00E+00 2.02E−11 4.52E−11
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Table 4: The average of the test results of the 5 algorithms on CEC2017 benchmark functions

Name NGO NGO-A NGO-B NGO-C NGO-D

F1 2.636E+06 4.271E+06 1.621E+05 1.319E+05 4.026E+03
F2 5.091E+16 5.719E+18 1.003E+16 1.466E+16 1.014E+08
F3 6.222E+04 6.157E+04 4.998E+04 4.104E+04 1.926E+04
F4 5.184E+02 5.117E+02 5.124E+02 4.973E+02 4.844E+02
F5 6.836E+02 6.676E+02 6.770E+02 6.362E+02 6.153E+02
F6 6.256E+02 6.266E+02 6.058E+02 6.080E+02 6.017E+02
F7 9.855E+02 9.833E+02 9.377E+02 8.950E+02 8.792E+02
F8 9.528E+02 9.463E+02 9.420E+02 9.351E+02 9.172E+02
F9 3.379E+03 3.464E+03 1.647E+03 1.621E+03 1.301E+03
F10 5.431E+03 5.647E+03 6.135E+03 6.220E+03 4.443E+03
F11 1.235E+03 1.246E+03 1.243E+03 1.234E+03 1.217E+03
F12 1.201E+06 1.336E+06 1.936E+06 1.654E+06 1.100E+06
F13 1.951E+04 2.350E+04 7.213E+03 6.283E+03 8.851E+03
F14 1.276E+04 1.272E+04 2.550E+04 1.696E+04 1.577E+04
F15 4.986E+03 4.726E+03 3.147E+03 3.773E+03 3.009E+03
F16 2.750E+03 2.724E+03 3.138E+03 2.628E+03 2.489E+03
F17 2.038E+03 1.999E+03 2.024E+03 1.946E+03 1.915E+03
F18 1.532E+05 1.834E+05 7.345E+05 3.544E+05 2.357E+05
F19 5.196E+03 6.539E+03 5.851E+03 5.953E+03 5.146E+03
F20 2.439E+03 2.412E+03 2.589E+03 2.440E+03 2.354E+03
F21 2.441E+03 2.429E+03 2.387E+03 2.381E+03 2.368E+03
F22 2.313E+03 2.653E+03 2.317E+03 2.305E+03 2.300E+03
F23 2.797E+03 2.797E+03 2.752E+03 2.750E+03 2.730E+03
F24 2.933E+03 2.935E+03 2.948E+03 2.916E+03 2.919E+03
F25 2.932E+03 2.928E+03 2.897E+03 2.896E+03 2.891E+03
F26 3.899E+03 5.179E+03 3.894E+03 4.256E+03 4.349E+03
F27 3.227E+03 3.230E+03 3.200E+03 3.200E+03 3.200E+03
F28 3.303E+03 3.299E+03 3.300E+03 3.300E+03 3.300E+03
F29 4.040E+03 3.906E+03 3.833E+03 3.730E+03 3.666E+03
F30 2.205E+04 2.276E+04 1.856E+04 1.690E+04 1.216E+04

4.3 The Impact of Problem Dimensions

The dimensionality of optimization problems exerts a discernible influence on the operational
efficiency of algorithms. The intricacy of high-dimensional optimization problems serves as a more
effective measure for assessing an algorithm’s performance. In this section, the first 13 functions of 23
benchmark functions (F1–F13) are used to conduct dimensional tests on INGO. The performance of
NGO and INGO was tested on four dimensions: 30, 50, 100 and 500. Table 5 shows the test results.
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The results show that the performance of both algorithms deteriorates with the increase of dimension,
while INGO is less affected and can still find better solutions except for function F7, which proves that
after the improvement of four strategies, INGO still has a strong development and exploration ability
even when dealing with high-dimensional problems.

Table 5: The results of NGO and INGO in different dimensions on 13 classical benchmark functions

F/dim 30 50 100 500

NGO INGO NGO INGO NGO INGO NGO INGO

F1 2.35E−88 0.00E+00 1.50E−88 0.00E+00 2.11E−88 0.00E+00 2.33E−88 0.00E+00
F2 6.56E−46 0.00E+00 8.13E−46 0.00E+00 8.37E−46 0.00E+00 8.70E−46 0.00E+00
F3 1.92E−21 0.00E+00 3.15E−22 0.00E+00 4.51E−22 0.00E+00 5.05E−22 0.00E+00
F4 7.99E−38 0.00E+00 1.27E−37 0.00E+00 9.21E−38 0.00E+00 1.02E−37 0.00E+00
F5 2.55E+01 2.40E−07 2.54E+01 1.65E−07 2.54E+01 2.30E−07 2.54E+01 2.57E−07
F6 9.66E−07 2.72E−10 3.27E−06 2.60E−10 1.63E−06 2.49E−10 9.13E−07 2.54E−10
F7 4.78E−04 1.46E−02 4.89E−04 1.42E−02 4.70E−04 1.77E−02 4.67E−04 1.70E−02
F8 −7.75E+03 −3.01E+24 −7.74E+03 −2.47E+25 −7.67E+03 −1.20E+39 −7.69E+03 −4.35E+24
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 5.74E−15 8.88E−16 5.39E−15 8.88E−16 5.63E−15 8.88E−16 6.10E−15 8.88E−16
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 2.10E−7 2.98E−11 1.88E−07 2.87E−11 2.29E−07 2.86E−11 4.18E−07 2.34E−11
F13 7.55E−02 5.54E−11 7.75E−02 7.83E−11 7.75E−02 7.79E−11 6.07E−02 6.42E−11

4.4 Comparison with Other Algorithms on 23 Classical Benchmark Functions

INGO’s function optimization performance is tested using 23 classic benchmark functions.
There are 7 single-peak functions (F1–F7), 6 multi-peak functions (F8–F13) and 10 fixed-dimension
multi-peak test functions (F14–F23). The algorithm’s exploitation ability is verified using unimodal
functions. Multimodal function is used to reveal the algorithm’s exploration ability. INGO is compared
with the NGO, AO, HPO, SCSO, HHO, WOA, GWO, SCA and DA.

Table 6 presents the test results for functions F1–F7, encompassing both mean and standard
deviation values. In a comparative analysis involving the initial seven benchmark functions against
nine alternative algorithms, INGO consistently achieved the theoretical optimal value of zero across
the first four functions and secured the leading position for functions F5 and F6, culminating
in a composite ranking of first place. This underscores INGO’s superior exploratory capabilities
over the existing NGO algorithm, alongside enhanced local convergence precision, attributed to the
refined integration of the STA strategy that bolsters INGO’s local exploratory proficiency. Notably,
INGO’s performance was subpar on function F7, a function whose complexity escalates linearly with
dimensionality and emulates noise encountered in real-world scenarios. This underperformance on
such problems indicates a deficiency in INGO’s learning capacity during the optimization process,
marked by an inability to make dynamic adjustments during the search. Future enhancements of the
algorithm could consider the incorporation of dynamic parameter adjustments to facilitate adaptive
modifications, thereby augmenting its optimization efficacy.
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Table 6: Fitness results of different algorithms on unimodal functions (F1–F7)

Function Index INGO NGO AO HPO SCSO HHO WOA GWO DA SCA

F1 MEAN 0.00E+00 1.02E−177 5.18E−200 0.00E+00 1.10E−231 1.01E−183 5.36E−147 6.18E−59 1.29E+03 3.21E−02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.92E−146 2.16E−58 6.18E+02 6.63E−02

F2 MEAN 0.00E+00 1.37E−92 6.60E−100 2.61E−186 4.33E−123 5.46E−95 2.02E−101 1.09E−34 1.55E+01 2.03E−05
STD 0.00E+00 2.11E−92 3.28E−99 0.00E+00 1.35E−122 2.98E−94 1.10E−100 1.60E−34 5.87E+00 4.60E−05

F3 MEAN 0.00E+00 1.65E−49 7.13E−199 1.14E−299 1.15E−197 4.38E−144 1.96E+04 1.07E−13 9.77E+03 4.49E+03
STD 0.00E+00 5.47E−49 0.00E+00 0.00E+00 0.00E+00 2.40E−143 1.14E+04 3.27E−13 5.57E+03 4.56E+03

F4 MEAN 0.00E+00 2.38E−76 1.30E−103 1.74E−153 1.32E−103 6.03E−94 4.93E+01 1.51E−14 2.04E+01 2.09E+01
STD 0.00E+00 4.66E−76 6.92E−103 9.51E−153 4.33E−103 2.42E−93 3.09E+01 1.52E−14 7.45E+00 1.19E+01

F5 MEAN 3.00E−06 2.37E+01 1.08E−03 2.17E+01 2.77E+01 2.62E−03 2.71E+01 2.69E+01 1.54E+05 9.46E+02
STD 5.14E−06 5.25E−01 1.24E−03 5.03E−01 8.33E−01 3.69E−03 3.84E−01 7.52E−01 1.57E+05 2.21E+03

F6 MEAN 2.46E−11 6.59E−08 1.74E−05 4.00E−11 1.96E+00 4.44E−05 4.25E−02 5.54E−01 1.35E+03 4.68E+00
STD 4.20E−11 6.37E−08 4.72E−05 2.11E−10 5.77E−01 5.82E−05 5.83E−02 3.35E−01 7.14E+02 3.74E−01

F7 MEAN 3.28E−02 2.77E−04 4.13E−05 9.67E−05 1.00E−04 7.76E−05 2.08E−03 8.55E−04 3.47E−01 3.30E−02
STD 2.69E−02 9.17E−05 4.19E−05 9.83E−05 1.11E−04 6.09E−05 2.24E−03 6.16E−04 1.73E−01 1.96E−02

The test results for the multimodal functions F8–F13 are displayed in Table 7. Across these
six multimodal functions, INGO consistently ranks first in comprehensive comparisons with other
algorithms, indicating its superior exploratory capabilities and broader search scope within the feasible
solution space. This is attributed to the enhanced global search ability of the algorithm, which is a result
of the T-distribution mutation and the improved whale landing behavior strategies. Notably, INGO’s
performance on F12 was slightly inferior to that of HPO, ranking second.

Table 7: Fitness results of different algorithms on multimodal functions (F8–F13)

Function Index INGO NGO AO HPO SCSO HHO WOA GWO DA SCA

F8 MEAN −4.36E+30 −7.93E+03 −1.01E+04 −9.29E+03 −6.73E+03 −1.26E+04 −1.06E+04 −5.99E+03 −5.81E+03 3.87E+03
STD 2.39E+31 5.26E+02 3.62E+03 6.69E+02 6.97E+02 2.84E−01 1.88E+03 8.00E+02 8.19E+02 2.55E+02

F9 MEAN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.79E−15 4.50E−01 1.67E+02 1.56E+01
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.44E−14 1.51E+00 3.37E+01 2.41E+01

F10 MEAN 8.88E−16 5.86E−15 8.88E−16 8.88E−16 8.88E−16 8.88E−16 4.09E−15 1.69E−14 8.99E+00 9.90E+00
STD 1.00E−31 1.77E−15 1.00E−31 1.00E−31 1.00E−31 1.00E−31 1.71E−15 2.91E−15 1.47E+00 9.49E+00

F11 MEAN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.86E−03 2.34E−03 1.13E+01 2.91E−01
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.02E−02 6.46E−03 4.84E+00 2.70E−01

F12 MEAN 1.56E−12 5.33E−09 1.11E−06 3.82E−13 1.02E−01 1.44E−06 7.71E−03 3.91E−02 1.60E+02 4.05E+01
STD 1.19E−12 4.51E−09 1.82E−06 1.54E−12 5.00E−02 1.57E−06 9.67E−03 2.04E−02 4.15E+02 1.99E+02

F13 MEAN 1.38E−11 7.88E−02 5.21E−06 9.54E−02 2.38E+00 1.69E−05 2.83E−01 4.79E−01 7.00E+04 6.34E+00
STD 1.41E−11 8.99E−02 6.59E−06 1.36E−01 3.60E−01 2.09E−05 2.52E−01 2.05E−01 1.27E+05 8.19E+00

The experimental outcomes for functions F14–F23 are detailed in Table 8. The optimization
results of INGO and NGO are infinitely close to the theoretical optimal values, demonstrating their
superior optimization precision and stability over other algorithms. Across these ten functions, INGO
consistently ranked first, with both NGO and INGO achieving the theoretical optimal values on seven
of the test functions. This underscores the unique advantage of these two algorithms in addressing
the optimization problems of fixed-dimensional multimodal functions. Although the original NGO
algorithm matched INGO in achieving the optimal mean values across the ten functions, INGO
exhibited a lower standard deviation, indicating greater reliability. This aspect is one of the key factors
in evaluating algorithm performance.
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Table 8: Fitness results of different algorithms on fixed dimensional multimodal functions (F14–F23)

Function Index INGO NGO AO HPO SCSO HHO WOA GWO SCA DA

F14 MEAN 9.98E−01 9.98E−01 1.98E+00 2.50E+00 3.48E+00 1.03E+00 2.02E+00 4.45E+00 1.03E+00 1.26E+00
STD 3.39E−16 3.39E−16 2.72E+00 2.93E+00 3.79E+00 1.81E−01 2.00E+00 4.71E+00 1.81E−01 6.86E−01

F15 MEAN 3.07E−04 3.07E−04 4.28E−04 3.06E−03 3.78E−04 3.61E−04 6.55E−04 3.71E−03 4.38E−03 1.01E−03
STD 3.93E−19 6.87E−08 6.11E−05 6.91E−03 2.48E−04 1.84E−04 3.56E−04 7.58E−03 7.14E−03 3.76E−04

F16 MEAN −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
STD 0.00E+00 0.00E+00 1.84E−04 0.00E+00 6.60E−11 1.17E−11 3.92E−11 5.26E−09 4.54E−06 3.19E−05

F17 MEAN 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.99E−01
STD 1.13E−16 1.13E−16 8.14E−05 1.13E−16 2.08E−08 7.31E−07 3.30E−07 8.21E−06 6.07E−06 2.05E−03

F18 MEAN 3.00E+00 3.00E+00 3.01E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
STD 4.52E−16 4.52E−16 1.48E−02 1.48E+01 2.92E−06 5.40E−08 2.64E−05 9.17E−06 3.25E−05 1.94E−05

F19 MEAN −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
STD 2.71E−15 2.71E−15 2.61E−03 2.00E−03 3.26E−03 2.82E−03 4.35E−03 2.32E−03 3.67E−05 2.09E−03

F20 MEAN −3.32E+00 −3.32E+00 −3.19E+00 −3.26E+00 −3.18E+00 −3.14E+00 −3.27E+00 −3.25E+00 −3.26E+00 −2.88E+00
STD 1.36E−15 1.36E−15 8.88E−02 8.33E−02 2.83E−01 8.15E−02 8.36E−02 7.84E−02 7.13E−02 3.89E−01

F21 MEAN −1.02E+01 −1.02E+01 −1.01E+01 −7.21E+00 −6.08E+00 −5.05E+00 −7.85E+00 −9.31E+00 −7.53E+00 −2.48E+00
STD 1.81E−15 7.64E−07 5.25E−03 2.92E+00 2.07E+00 1.00E−03 2.71E+00 1.92E+00 2.69E+00 2.46E+00

F22 MEAN −1.04E+01 −1.04E+01 −1.04E+01 −7.12E+00 −6.33E+00 −5.43E+00 −8.71E+00 −1.04E+01 −7.19E+00 −3.57E+00
STD 0.00E+00 4.68E−07 9.98E−03 2.74E+00 2.29E+00 1.29E+00 2.64E+00 2.78E−04 3.17E+00 2.04E+00

F23 MEAN −1.05E+01 −1.05E+01 −1.05E+01 −7.21E+00 −7.69E+00 −5.47E+00 −8.43E+00 −1.05E+01 −7.74E+00 −4.04E+00
STD 9.03E−15 9.03E−15 7.87E−03 2.78E+00 2.99E+00 1.31E+00 2.85E+00 2.78E−04 3.36E+00 1.65E+00

Convergence curves offer a more intuitive reflection of an algorithm’s optimization process. The
partial convergence curves for unimodal and multimodal functions are depicted in Figs. 3 and 4,
respectively. These figures reveal that, among the first thirteen test functions, INGO consistently
provides more accurate solutions than its algorithmic counterparts. Furthermore, INGO exhibits a
faster convergence rate on the majority of these functions, indicative of the positive impact derived
from the integration of Tent chaotic mapping. This inclusion significantly enhances the diversity of the
initial population, thereby broadening and equalizing the search across the feasible solution space in
the early phases of iteration. Such observations underscore the efficacy of this strategy in augmenting
the NGO algorithm.

Figure 3: (Continued)
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Figure 3: Iteration curve of unimodal function

Figure 4: Iteration curve of multimodal function
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To mitigate the impact of randomness on the evaluation of algorithm performance, we employed
two statistical tests: The Wilcoxon signed-rank sum and the Friedman tests. Table 9 displays the
statistical analysis results for 23 benchmark functions. Within the context of the Wilcoxon rank-sum
test at a significance level of 0.05, data points with p-values exceeding 0.05 have been highlighted,
with an aggregate statistical analysis conducted. The notation “=” denotes no significant difference
in performance between INGO and the comparison algorithms on the given problem; “+” signifies
that INGO outperformed the comparison algorithms; “−” indicates that the comparison algorithms
surpassed INGO; “NaN” suggests that both algorithms produced identical outcomes across all 30
independent runs, evidencing no performance variation for the specified function problem. Out of a
total of 207 results, INGO achieved 157 instances of “+”, 7 of “−”, 20 of “=”, and 23 of “NaN”.
Results from the Friedman tests demonstrate that INGO possessed the lowest Average Ranks (AVR)
value of 2.61, thereby securing the top rank amongst ten algorithms in a comprehensive comparison.

Table 9: Statistical analysis on 23 benchmark functions

INGO(VS) INGO NGO AO HPO SCSO
P S P S P S P S

F1 N/A 1.21E−12 + 1.21E−12 + NaN 1.21E−12 +
F2 N/A 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
F3 N/A 1.21E−12 + 1.21E−12 + 4.57E−12 + 1.21E−12 +
F4 N/A 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
F5 N/A 2.96E−11 + 8.99E−11 + 3.02E−11 + 3.02E−11 +
F6 N/A 3.02E−11 + 3.02E−11 + 2.20E−07 + 3.02E−11 +
F7 N/A 3.00E−11 – 3.02E−11 – 3.02E−11 – 3.02E−11 –
F8 N/A 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F9 N/A NaN NaN NaN NaN
F10 N/A 4.17E−13 + NaN NaN NaN
F11 N/A NaN = NaN NaN NaN
F12 N/A 3.02E−11 + 3.02E−11 + 3.80E−08 + 3.02E−11 +
F13 N/A 3.00E−11 + 3.02E−11 + 3.28E−03 + 3.02E−11 +
F14 N/A NaN 1.04E−12 + 4.27E−13 + 6.87E−13 +
F15 N/A 3.34E−01 = 1.21E−12 + 3.20E−13 + 1.20E−12 +
F16 N/A NaN 1.21E−12 + 1.69E−14 + 1.69E−14 +
F17 N/A NaN 1.54E−04 + 1.69E−14 + 1.16E−12 +
F18 N/A NaN 1.21E−12 + 3.34E−01 = 1.21E−12 +
F19 N/A NaN 6.41E−01 = 5.86E−11 + 1.53E−04 +
F20 N/A NaN 1.21E−12 + 3.40E−01 = 6.41E−01 =
F21 N/A NaN 1.21E−12 + 5.64E−13 + 1.21E−12 +
F22 N/A NaN 9.30E−04 + 1.51E−01 = 1.54E−04 +
F23 N/A NaN 1.21E−12 + 1.51E−01 = 1.00E+00 =
+/−/= 10/1/2 18/1/1 14/1/4 17/1/2
ARV 2.61 4.20 4.04 4.61 5.72
RANK 1 3 2 4 6

(Continued)
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Table 9 (continued)

HHO WOA GWO SCA DA
P S P S P S P S P S
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
3.69E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.02E−11 – 4.20E−10 – 5.49E−11 – 4.08E−11 + 6.84E−01 =
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
NaN 1.61E−01 = 6.56E−04 + 1.21E−12 + 1.21E−12 +
NaN 1.42E−10 + 3.12E−13 + 1.21E−12 + 1.21E−12 +
NaN 3.34E−01 = 4.19E−02 + 1.21E−12 + 1.21E−12 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
4.16E−14 + 7.32E−13 + 6.53E−13 + 1.20E−13 + 1.21E−12 +
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
1.69E−14 + 1.69E−14 + 1.15E−12 + 1.10E−12 + 1.21E−12 +
7.60E−13 + 1.06E−12 + 1.21E−12 + 1.06E−12 + 7.47E−10 +
1.25E−05 + 1.21E−12 + 1.21E−12 + 2.21E−06 + 1.21E−12 +
2.05E−05 + 6.41E−01 = 1.91E−07 + 1.21E−12 + 1.33E−08 +
1.21E−12 + 6.41E−01 = 1.00E+00 = 1.57E−01 = 1.21E−12 +
1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
1.21E−12 + 1.57E−01 = 1.21E−12 + 5.89E−02 = 1.21E−12 +
1.21E−12 + 1.57E−01 = 1.21E−12 + 6.41E−01 = 1.21E−12 +
+/−/= 19/1/0 16/1/6 21/1/1 20/0/3 22/0/1
ARV 4.96 5.98 6.50 8.50 7.89
RANK 5 7 8 10 9

4.5 Comparison with Other Algorithms on CEC2017 Benchmark Functions

INGO’s performance was tested and evaluated using the IEEE CEC2017 test set from the Con-
ference on Evolutionary Computation 2017, which contains 30 test functions. CEC2017 has greater
computational complexity than the common 23 reference functions and CEC2014. Moreover, the wide
range of function types demonstrates that CEC2017 effectively assesses algorithm performance. In
this test set, NGO, AO, HPO, SCSO, SSA, BWO, HHO, DA and INGOfu are compared. Table 10
records the results of 10 different algorithms in CEC2017. The result shows that INGO ranks the first
overall on 30 test functions, while 28 functions of INGO rank the first among 10 algorithms. NGO’s
original algorithm is narrowly ahead of INGO in only one function F26. The convergence curves of 10
different algorithms on the CEC2017 test set is shown by Fig. 5. It can be seen that INGO algorithm
with four improved strategies has better exploration and exploitation ability, and stronger stability
and robustness than other algorithms. Additionally, the performance on functions F26 and F28
did not achieve optimal results. Function F26, a high-dimensional nonlinear minimization problem,
along with F28, which exhibits rotational characteristics, posed significant challenges. The suboptimal
performance on these two functions indicates certain limitations within INGO’s search strategy,
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suggesting deficiencies in refining search operations and escaping local optima, or a lack of flexibility
in adaptive adjustment of search strategies. This necessitates the enhancement of the algorithm’s
adaptive adjustment capabilities, for instance, through the implementation of adaptive dynamic
adjustment mechanisms to dynamically balance exploration and exploitation. Such improvements will
guide future modifications to INGO.

Table 10: Fitness results of different algorithms on CEC2017
Function Index AO HPO SCSO SSA BWO HHO DA INGOfu NGO INGO

F1 MEAN 1.010E+08 1.133E+04 3.912E+09 6.503E+03 1.874E+07 4.769E+08 1.927E+09 3.599E+09 6.239E+03 4.335E+03
STD 3.902E+07 8.564E+03 2.521E+09 6.308E+03 3.348E+06 3.167E+08 1.501E+09 1.448E+09 6.065E+03 5.454E+03

F2 MEAN 3.850E+30 9.984E+07 1.723E+33 2.037E+16 4.557E+22 4.501E+29 6.095E+30 2.347E+38 2.644E+13 2.052E+02
STD 1.833E+31 3.147E+08 4.633E+33 8.361E+16 2.482E+23 1.290E+30 2.445E+31 9.507E+38 8.524E+13 1.023E+01

F3 MEAN 4.516E+04 3.839E+03 4.593E+04 1.702E+04 2.706E+04 2.425E+05 4.436E+04 1.038E+05 4.475E+04 3.174E+03
STD 4.902E+03 3.125E+03 9.292E+03 1.013E+04 5.425E+03 6.869E+04 1.079E+04 2.970E+04 5.751E+03 2.071E+03

F4 MEAN 5.965E+02 4.847E+02 6.866E+02 5.028E+02 5.420E+02 6.954E+02 5.753E+02 9.552E+02 4.961E+02 4.811E+02
STD 4.266E+01 1.986E+01 1.340E+02 2.340E+01 2.656E+01 9.835E+01 4.627E+01 2.973E+02 2.559E+01 2.337E+01

F5 MEAN 6.840E+02 6.610E+02 7.190E+02 6.544E+02 7.381E+02 8.170E+02 6.023E+02 8.455E+02 6.443E+02 5.827E+02
STD 3.235E+01 3.217E+01 4.224E+01 5.569E+01 3.147E+01 4.912E+01 2.907E+01 6.304E+01 1.907E+01 2.343E+01

F6 MEAN 6.524E+02 6.327E+02 6.608E+02 6.466E+02 6.626E+02 6.730E+02 6.083E+02 6.828E+02 6.226E+02 6.007E+02
STD 5.514E+00 9.664E+00 1.120E+01 1.542E+01 5.486E+00 9.743E+00 3.159E+00 1.345E+01 1.381E+01 1.118E+00

F7 MEAN 1.071E+03 9.925E+02 1.121E+03 9.064E+02 1.284E+03 1.254E+03 8.627E+02 1.125E+03 9.738E+02 8.496E+02
STD 6.536E+01 7.163E+01 8.817E+01 5.268E+01 7.367E+01 1.065E+02 4.135E+01 1.154E+02 5.619E+01 4.521E+01

F8 MEAN 9.509E+02 9.618E+02 9.945E+02 9.390E+02 9.779E+02 1.026E+03 1.088E+03 1.107E+03 9.211E+02 9.006E+02
STD 2.795E+01 3.580E+01 2.837E+01 3.227E+01 2.698E+01 5.510E+01 3.277E+01 5.275E+01 1.808E+01 2.387E+01

F9 MEAN 6.113E+03 4.699E+03 5.744E+03 4.396E+03 7.605E+03 9.709E+03 1.935E+03 1.184E+04 3.275E+03 1.102E+03
STD 9.379E+02 1.120E+03 7.999E+02 1.456E+03 9.218E+02 3.586E+03 6.568E+02 3.328E+03 5.496E+02 3.215E+02

F10 MEAN 5.617E+03 4.867E+03 5.832E+03 5.004E+03 5.769E+03 6.962E+03 4.662E+03 7.506E+03 4.991E+03 4.485E+03
STD 6.331E+02 5.910E+02 6.399E+02 8.813E+02 6.189E+02 8.728E+02 1.163E+03 9.058E+02 2.824E+02 3.525E+02

F11 MEAN 1.715E+03 1.332E+03 2.187E+03 1.319E+03 1.273E+03 5.021E+03 1.702E+03 2.679E+03 1.206E+03 1.194E+03
STD 2.496E+02 9.272E+01 9.252E+02 5.662E+01 4.743E+01 2.646E+03 5.609E+02 1.056E+03 2.665E+01 3.224E+01

F12 MEAN 4.042E+07 1.967E+06 1.290E+08 1.521E+07 2.088E+07 1.789E+08 8.350E+07 4.262E+08 4.402E+05 4.292E+05
STD 2.575E+07 1.476E+06 1.652E+08 1.700E+07 1.585E+07 1.453E+08 9.517E+07 3.581E+08 3.580E+05 3.174E+05

F13 MEAN 4.988E+05 4.859E+04 8.658E+06 1.033E+05 5.288E+05 8.276E+05 4.032E+07 3.327E+07 1.662E+04 8.535E+03
STD 3.207E+05 4.050E+04 3.021E+07 7.226E+04 2.134E+05 1.014E+06 1.073E+08 3.372E+07 1.312E+04 8.976E+03

F14 MEAN 4.984E+05 1.599E+04 4.518E+05 5.175E+04 3.596E+05 1.896E+06 6.574E+05 8.276E+05 6.250E+03 6.214E+03
STD 5.448E+05 1.153E+04 7.153E+05 4.545E+04 3.386E+05 1.934E+06 1.114E+06 9.337E+05 5.011E+03 5.789E+03

F15 MEAN 9.090E+04 1.872E+04 6.949E+05 8.819E+04 5.990E+04 3.780E+05 1.250E+06 3.174E+05 3.299E+03 3.194E+03
STD 5.337E+04 1.570E+04 1.371E+06 6.250E+04 3.181E+04 4.021E+05 4.525E+06 2.080E+05 2.299E+03 1.584E+03

F16 MEAN 3.256E+03 2.881E+03 3.152E+03 2.858E+03 3.398E+03 3.815E+03 2.500E+03 3.891E+03 2.527E+03 2.449E+03
STD 4.271E+02 3.471E+02 4.293E+02 2.985E+02 3.895E+02 4.923E+02 3.278E+02 4.721E+02 1.816E+02 3.494E+02

F17 MEAN 2.292E+03 2.323E+03 2.311E+03 2.231E+03 2.582E+03 2.723E+03 1.950E+03 2.646E+03 1.922E+03 1.859E+03
STD 2.894E+02 3.042E+02 2.027E+02 2.137E+02 2.807E+02 2.614E+02 1.250E+02 2.282E+02 6.039E+01 9.363E+01

F18 MEAN 2.573E+06 1.750E+05 2.239E+06 7.801E+05 1.870E+06 6.585E+06 1.210E+06 5.221E+06 1.224E+05 1.135E+05
STD 2.104E+06 1.459E+05 2.238E+06 8.972E+05 2.640E+06 5.928E+06 1.809E+06 5.739E+06 7.009E+04 1.110E+05

F19 MEAN 1.548E+06 1.253E+04 6.131E+06 2.328E+06 6.954E+05 1.170E+07 7.106E+05 3.159E+07 5.024E+03 4.456E+03
STD 1.010E+06 1.715E+04 2.479E+07 1.279E+06 5.597E+05 1.027E+07 1.118E+06 2.563E+07 2.666E+03 1.927E+03

F20 MEAN 2.583E+03 2.674E+03 2.690E+03 2.558E+03 2.802E+03 2.822E+03 2.434E+03 2.841E+03 2.360E+03 2.283E+03
STD 1.930E+02 2.618E+02 1.528E+02 1.984E+02 1.980E+02 2.124E+02 1.774E+02 1.946E+02 8.031E+01 9.139E+01

F21 MEAN 2.469E+03 2.485E+03 2.515E+03 2.438E+03 2.565E+03 2.614E+03 2.386E+03 2.650E+03 2.417E+03 2.367E+03
STD 2.666E+01 3.546E+01 3.803E+01 3.539E+01 4.495E+01 5.413E+01 1.960E+01 6.081E+01 1.658E+01 1.664E+01

F22 MEAN 2.414E+03 4.017E+03 3.466E+03 4.044E+03 6.522E+03 7.759E+03 4.985E+03 7.824E+03 2.301E+03 2.300E+03
STD 8.520E+01 2.211E+03 1.171E+03 2.226E+03 1.875E+03 1.612E+03 2.046E+03 2.427E+03 2.055E+00 8.666E−01

F23 MEAN 2.917E+03 2.853E+03 2.924E+03 2.772E+03 3.197E+03 3.084E+03 2.769E+03 3.240E+03 2.764E+03 2.724E+03
STD 5.389E+01 4.188E+01 6.594E+01 3.624E+01 1.274E+02 1.064E+02 5.021E+01 1.444E+02 2.353E+01 2.061E+01

F24 MEAN 3.059E+03 3.006E+03 3.064E+03 2.935E+03 3.442E+03 3.221E+03 2.916E+03 3.443E+03 2.927E+03 2.885E+03
STD 5.831E+01 5.664E+01 6.381E+01 3.177E+01 1.394E+02 8.048E+01 4.362E+01 1.526E+02 2.270E+01 1.658E+01

F25 MEAN 2.953E+03 2.902E+03 3.070E+03 2.919E+03 2.929E+03 3.053E+03 2.984E+03 3.228E+03 2.906E+03 2.889E+03
STD 2.940E+01 2.132E+01 8.566E+01 2.148E+01 2.145E+01 5.299E+01 5.647E+01 1.566E+02 1.608E+01 8.287E+00

F26 MEAN 5.164E+03 5.855E+03 6.052E+03 4.861E+03 7.108E+03 8.039E+03 4.632E+03 7.997E+03 3.808E+03 4.150E+03
STD 1.675E+03 8.682E+02 1.099E+03 9.589E+02 1.863E+03 9.025E+02 2.541E+02 1.833E+03 1.306E+03 7.974E+02

(Continued)



1698 CMC, 2024, vol.80, no.1

Table 10 (continued)

Function Index AO HPO SCSO SSA BWO HHO DA INGOfu NGO INGO

F27 MEAN 3.344E+03 3.245E+03 3.339E+03 3.260E+03 3.413E+03 3.402E+03 3.247E+03 3.477E+03 3.221E+03 3.200E+03
STD 6.648E+01 2.218E+01 5.332E+01 3.630E+01 9.864E+01 1.016E+02 2.211E+01 1.372E+02 1.145E+01 7.932E−05

F28 MEAN 3.369E+03 3.221E+03 3.543E+03 3.258E+03 3.299E+03 3.461E+03 3.402E+03 3.759E+03 3.248E+03 3.300E+03
STD 5.107E+01 3.723E+01 1.527E+02 4.097E+01 3.717E+01 9.048E+01 5.758E+01 2.857E+02 2.811E+01 5.118E−09

F29 MEAN 4.543E+03 4.079E+03 4.549E+03 4.186E+03 4.530E+03 5.099E+03 3.774E+03 5.126E+03 3.867E+03 3.528E+03
STD 2.712E+02 3.034E+02 3.112E+02 2.273E+02 3.047E+02 4.559E+02 1.837E+02 4.247E+02 1.462E+02 1.171E+02

F30 MEAN 1.340E+07 3.413E+04 1.301E+07 6.554E+06 3.543E+06 2.764E+07 1.153E+07 4.237E+07 9.997E+03 9.078E+03
STD 1.294E+07 2.582E+04 1.209E+07 6.005E+06 2.142E+06 2.169E+07 1.049E+07 3.184E+07 5.169E+03 2.619E+03

Figure 5: (Continued)
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Figure 5: Iteration curve of CEC2017

Table 11 presents the statistical analysis outcomes of ten distinct algorithms evaluated on the
CEC2017 test suite. Out of a total of 270 results, INGO achieved 249 instances of “+”, 3 instances
of “−”, and 18 instances of “=”, with the lowest AVR value of 1.20, securing the first position. This
suggests that INGO has achieved more favorable optimization outcomes in comparison to the nine
other algorithms evaluated.
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Table 11: Wilcoxon rank-sum test on CEC2017 benchmark functions

INGO(VS) INGO NGO AO HPO SCSO
P S P S P S P S

F1 N/A 2.07E−02 + 3.02E−11 + 4.98E−04 + 3.02E−11 +
F2 N/A 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F3 N/A 3.02E−11 + 3.02E−11 + 7.06E−01 = 3.02E−11 +
F4 N/A 6.97E−03 + 3.02E−11 + 4.04E−01 = 4.50E−11 +
F5 N/A 6.72E−10 + 5.49E−11 + 2.15E−10 + 3.34E−11 +
F6 N/A 8.99E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F7 N/A 5.07E−10 + 3.02E−11 + 1.69E−09 + 3.02E−11 +
F8 N/A 1.17E−03 + 1.20E−08 + 2.19E−08 + 8.15E−11 +
F9 N/A 3.34E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F10 N/A 1.19E−06 + 7.12E−09 + 1.12E−02 + 5.07E−10 +
F11 N/A 9.93E−02 = 3.02E−11 + 4.18E−09 + 3.02E−11 +
F12 N/A 8.30E−01 = 3.02E−11 + 1.25E−07 + 3.02E−11 +
F13 N/A 2.62E−03 + 3.02E−11 + 2.67E−09 + 3.69E−11 +
F14 N/A 6.00E−01 = 4.08E−11 + 7.20E−05 + 8.99E−11 +
F15 N/A 7.73E−01 = 3.02E−11 + 2.19E−08 + 3.02E−11 +
F16 N/A 2.23E−01 = 1.43E−08 + 2.43E−05 + 7.09E−08 +
F17 N/A 7.70E−04 + 6.52E−09 + 9.26E−09 + 7.39E−11 +
F18 N/A 2.58E−01 = 6.07E−11 + 2.92E−02 + 1.09E−10 +
F19 N/A 6.41E−01 = 3.02E−11 + 1.62E−01 = 3.02E−11 +
F20 N/A 7.20E−05 + 4.57E−09 + 1.69E−09 + 4.50E−11 +
F21 N/A 8.15E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F22 N/A 2.54E−08 + 2.92E−11 + 2.97E−04 + 2.92E−11 +
F23 N/A 7.69E−08 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
F24 N/A 1.10E−08 + 3.02E−11 + 3.34E−11 + 3.02E−11 +
F25 N/A 1.64E−05 + 1.09E−10 + 1.06E−03 + 3.02E−11 +
F26 N/A 2.34E−01 = 2.23E−01 = 3.82E−10 + 1.16E−07 +
F27 N/A 5.19E−10 + 2.79E−11 + 2.79E−11 + 2.79E−11 +
F28 N/A 1.21E−12 – 7.47E−10 + 1.21E−12 – 3.36E−11 +
F29 N/A 8.89E−10 + 3.02E−11 + 5.07E−10 + 3.02E−11 +
F30 N/A 6.41E−01 = 3.02E−11 + 1.09E−10 + 3.02E−11 +
+/−/= 21/0/9 29/0/1 26/1/3 30/0/0
ARV 1.20 2.53 6.12 3.93 7.35
RANK 1 2 6 3 8

SSA BWO HHO DA INGOfu
P S P S P S P S P S
4.04E−01 = 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
9.92E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.01E−04 + 1.41E−09 + 3.02E−11 + 4.08E−11 + 3.02E−11 +
5.53E−08 + 3.02E−11 + 3.02E−11 + 2.62E−03 + 3.02E−11 +

(Continued)
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Table 11 (continued)

3.02E−11 + 3.02E−11 + 3.02E−11 + 7.39E−11 + 3.02E−11 +
1.32E−04 + 3.02E−11 + 3.02E−11 + 3.48E−01 = 3.02E−11 +
9.51E−06 + 8.99E−11 + 3.34E−11 + 3.02E−11 + 3.02E−11 +
6.70E−11 + 3.02E−11 + 3.02E−11 + 1.70E−08 + 3.02E−11 +
5.32E−03 + 2.87E−10 + 3.02E−11 + 8.65E−01 = 4.08E−11 +
2.15E−10 + 3.96E−08 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.02E−11 + 3.02E−1 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
8.15E−11 + 3.02E−11 + 3.02E−11 + 4.98E−11 + 3.02E−11 +
5.00E−09 + 6.07E−11 + 3.02E−11 + 2.15E−10 + 3.34E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
3.83E−05 + 3.82E−10 + 8.99E−11 + 4.73E−01 = 3.69E−11 +
1.86E−09 + 3.34E−11 + 3.02E−11 + 1.24E−03 + 3.02E−11 +
3.35E−08 + 9.76E−10 + 3.69E−11 + 2.23E−09 + 4.98E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 1.33E−10 + 3.02E−11 +
2.03E−07 + 3.34E−11 + 3.69E−11 + 1.17E−04 + 3.34E−11 +
1.21E−10 + 3.02E−11 + 3.02E−11 + 2.25E−04 + 3.02E−11 +
3.72E−09 + 2.92E−11 + 2.92E−11 + 2.92E−11 + 2.92E−11 +
3.81E−07 + 3.02E−11 + 3.02E−11 + 5.86E−06 + 3.02E−11 +
1.29E−09 + 3.02E−11 + 3.02E−11 + 2.39E−04 + 3.02E−11 +
1.60E−07 + 2.87E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
8.66E−05 + 5.18E−07 + 3.02E−11 + 3.39E−02 + 4.68E−08 +
2.79E−11 + 2.79E−11 + 2.79E−11 + 2.79E−11 + 2.79E−11 +
1.33E−08 – 6.41E−01 = 1.21E−12 + 1.21E−12 – 1.21E−12 +
8.15E−11 + 3.02E−11 + 3.02E−11 + 2.78E−07 + 3.02E−11 +
3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
+/−/= 28/1/1 29/0/1 30/0/0 26/1/3 30/0/0
ARV 4.17 6.47 8.73 4.95 9.55
RANK 4 7 9 5 10

5 Test of UAV Flight Path Planning Problem
5.1 The Introduction of the Problem

To verify INGO’s performance in solving real-world problems, the algorithm is tested on a UAV
flight path planning problem. UAV path planning represents a constrained optimization challenge
where Swarm Intelligence (SI) finds widespread application [49–53].

Constrained optimization problems are typically addressed using the penalty function approach
and the multi-objective approach [54]. The penalty function method has been widely used because
of its simple execution. Its main idea is to construct the penalty adaptation function by incorporating
penalty terms into the objective function and then solve this new unconstrained optimization problem.

UAV path planning is actually a multi-constraint combinatorial optimization problem [55], and
constraints are dealt with in the form of penalty function, as shown in formula (20):
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F (x) = f (x) + γ
n∑

i=1

δk
i (x) · o (δi (x))

o (δi (x)) =
{

1, δi (x) > 0
0, δi (x) ≤ 0

(20)

Here, F (x) represents the objective function with penalty, f (x) represents the original objective
function, γ is the penalty parameter of the constraint condition. In addition, k ∈ (1, 2) and γ � 1
are the penalty parameters, δi (x) is the inequality constraint condition, n represents the number of
inequality constraints.

To plan UAV flight path using Swarm Intelligent Optimization algorithm, the objective function
should be determined first, and the total flight path evaluation function composed of the flight path
length function, flight height function and angle cost function should be optimized. The total cost
function is taken as the objective function of the algorithm. The indexes affecting UAV performance
mainly include track length, flight altitude, minimum step length, corner cost, maximum climb angle,
etc. [56]. Considering the three factors of track length, flight altitude and maximum turning angle, the
total cost function is shown in formula (21):⎧⎪⎨
⎪⎩

F (x) = w1f (L) + w2f (H) + w3f (Jturn) + · · ·
n∑

i=1

wi = 1 (21)

Here, F (x) is the total cost function, f (L) is the cost function of the trajectory length, f (H) is the
cost function of the flight height, f (Jturn) is the cost function of the UAV turning angle, and wi is the
percentage of each cost function.

In the route planning problem processed by swarm intelligent algorithm, n nodes are selected
from a complete route, where the distance between the ith node and the (i + 1)th node is denoted as
‖l (i + 1) − l (i)‖2 , and the coordinates of the two nodes are denoted as (xi, yi, zi) and (xi+1, yi+1, zi+1),
labeled as l (i) and l (i + 1), respectively. The mathematical model of track length of Lpath is shown in
formula (22):

Lpath =
n−1∑
i=1

‖l (i + 1) − l (i)‖2 (22)

The mathematical model of the standard deviation of flight altitude Hheight is shown in
formula (23), where Hheight is the standard deviation cost function of altitude, z is the average altitude,
and z (i) is the height of the ith node:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hheight =
√√√√1

n

n−1∑
i=0

(z (i) − z)2

z = 1
n

n−1∑
i=0

z (i)

(23)
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The mathematical model of turning angle Jturn is shown in formula (24), where Φ is the maximum
turning angle, θ is the current turning angle, and ai is the track vector of section i:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos θ = aT
i ai+1

|ai| |ai+1|
Jturn =

n∑
i=1

(cos 	 − cos θi)

(24)

5.2 Analysis of Experimental Results

To fully test the performance of the algorithm, the flight space is set to 250 ∗ 250 ∗ 60 km in
the simulation and visualization process, and the coordinates of the starting and ending points are
(10, 10, 10) and (210, 210, 20), respectively, and multiple peaks are added to the environment model to
act as obstacles, with their parameters detailed in Table 12.

Table 12: The obstacles parameters

No. h/km X/km Y/km Sx/km Sy/km

1 20 35 30 20 18
2 16 130 35 14 17
3 17 40 80 19 19
4 19 160 85 20 20
5 15 100 100 10 13
6 20 40 100 20 20
7 23 170 100 20 20
8 18 90 125 15 15
9 24 18 71 18 19
10 25 155 170 17 18
11 19 90 60 18 20
12 21 117 78 20 20
13 16 179 146 15 15

Under identical conditions, the INGO’s outcomes are compared to those of NGO, SSA, BWO,
DA and ChOA through 30 repetitions of the experiment. Table 13 displays the findings. The algorithm
demonstrates its optimization ability and stability by achieving the minimum mean fitness value
and standard deviation, with the optimal value of INGO being 217.2375 and the mean value being
224.1206. The results are superior when compared to other algorithms. It is noteworthy that, in
contrast to other foundational algorithms such as SSA and BWO, the NGO algorithm does not exhibit
rapid characteristics in the context of UAV trajectory planning problems under this mathematical
model, despite its capability to achieve higher precision. The enhanced INGO algorithm, compared
to the original NGO algorithm, demonstrates improvements in both speed and accuracy for such
problems, validating the effectiveness of our four strategies for algorithmic enhancement. However,
within the framework of the NGO algorithm, even the speed performance of INGO remains inferior
compared to other algorithms. Therefore, at this stage, INGO is more apt for addressing static
UAV trajectory planning problems that disregard temporal influences but demand cost minimization.
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Additionally, exploring ways to enhance INGO’s speed performance in these problems constitutes a
potential direction for our future considerations.

Table 13: UAV flight path planning results

No. Indicators INGO NGO SSA BWO DA ChOA

1 Optimal 217.2375 231.1058 220.5907 248.8895 215.0465 216.9916
2 Worst 238.5341 257.9022 246.7527 368.2322 286.4377 319.5354
3 Mean 224.1206 241.8038 242.7427 285.0163 234.9963 246.0827
4 STD 5.9637 7.4185 32.6120 34.4144 15.7019 24.1947
5 Time (s) 12.8619 85.0672 7.8375 3.0306 4.5729 1.100

Fig. 6 shows the convergence curves of the six algorithms. Compared with other algorithms,
INGO gets a smaller fitness value. Compared to NGO, which can approximate the optimal solution
in nearly 10 iterations, it has a faster rate of convergence.

Figure 6: Fitness values change with the iteration

Figs. 7 and 8 show that swarm intelligence algorithm can plan a reasonable flight path for UAV
in the case of obstacles and complete the goal of flight path planning. And the planned flight path
is at a more stable and suitable altitude. The above experimental results show that INGO has good
performance in this kind of problem and can effectively solve the UAV flight path planning problem
under this environmental model.
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Figure 7: UAV path planning with different algorithms

Figure 8: Front view and top view of UAV path planning

6 Conclusion

Within the realm of function optimization, the NGO algorithm exhibits diminished convergence
accuracy and a propensity for entrapment in local optima. This paper proposes four strategic enhance-
ments aimed at harmonizing the exploratory and exploitative abilities of NGO. First, introducing
tent chaotic mapping aims to uniformly distribute the initial population, increasing diversity. Next,
incorporating whale fall phenomena and T-distribution variations increases the algorithm’s chance
of escaping local optima, reducing the risk of falling into local minima. Lastly, integrating the state
transition algorithm’s neighborhood search capability strengthens INGO’s local utilization. INGO’s
performance, assessed on public test sets and UAV trajectory planning, was compared with classic and
new algorithms. Statistical methods analyzed the experimental results, summarizing the algorithm’s
strengths and areas for improvement. The findings show that INGO has higher convergence accuracy
and a better ability to escape local extremes in function optimization.
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Moving forward, our efforts will focus on three main avenues: Firstly, we aim to integrate
various optimization strategies into advanced intelligent optimization algorithms, creating competitive
solutions for real-world problems. Secondly, considering INGO’s limitations, we will explore the
inclusion of adaptive adjustment strategies to enhance algorithmic performance. Lastly, we will extend
the application of INGO to tackle more sophisticated engineering scenarios, such as the complex
task of UAV trajectory planning that involves additional constraints, broadening our approach to
encompass a wider spectrum of intricate engineering problems.
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