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ABSTRACT

Addressing the challenges of passive Radio Frequency Identification (RFID) indoor localization technology in
Non-Line-of-Sight (NLoS) and multipath environments, this paper presents an innovative approach by intro-
ducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference
of Arrival (SD-PDOA) and Received Signal Strength Indicator (RSSI). This methodology utilizes the distinct
channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract
localization information, thereby facilitating high precision and stability in passive RFID localization. The efficacy
of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built
experimental platform consisting of passive RFID tags and an R420 reader. The findings are significant: in NLoS
conditions, the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of
5 m. In complex multipath environments, this system achieved a localization accuracy of approximately 0.5 m at
a distance of 5 m. When compared to conventional passive localization methods, our proposed solution exhibits
a substantial improvement in indoor localization accuracy under NLoS and multipath conditions. This research
provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of
Things (IoT) system, marking a significant advancement in the field.
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1 Introduction

With the rapid development of the IoT, Radio Frequency Identification (RFID) as a key part
of the IoT is finding widespread application [1,2]. Over the past decade, RFID technology has
significantly penetrated sectors such as healthcare, security markets, logistics, and assisted living due
to its high sensitivity, low power consumption, affordability, and seamless integration onto a diverse
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array of objects [3–7]. In many applications, it is essential to store tagged items in enclosed spaces,
such as drawers and containers designated for medicines and chemicals [8,9]. Passive UHF RFID
localization technologies eliminate the need for battery operation, thus lowering maintenance costs
and circumventing concerns related to battery life, thereby enhancing reliability, despite a reduction in
communication range when compared to active RFID systems [10,11]. Current localization technolo-
gies often rely on vision-based target detection and 3D localization. While this method can provide
high accuracy, it is not suitable for logistics and warehouse environments with obstructions [12]. In
contrast, passive Ultra High Frequency (UHF) RFID systems operate within the UHF spectrum and
exhibit superior signal penetration, facilitating long-range, multi-tag inventory management, making
them ideally suited for item localization and inventory tasks in closed storage spaces [13–15].

Indoor localization technologies based on RFID primarily involve passive RFID tags transmitting
signals to readers via backscatter communication. The readers subsequently determine the tags’
location by analyzing the energy, transmission time, and phase information of the returned signals
[16]. Thus, the accuracy of the localization depends on the quality of the tag signal received by the
reader. Zhao et al. proposed an optimal beamforming design that enhances both communication
distance and quality, aiding in passive RFID localization at long distances [17]. Existing passive
RFID localization technologies include Time of Arrival (TOA), Time Difference of Arrival (TDOA),
RSSI, and SD-PDOA [18–21]. The TOA technology is known for its high localization precision,
but it requires strict time synchronization between the tag and interrogating reader to achieve this
level of accuracy [21]. Meanwhile, TDOA technology is an advancement upon TOA. It employs
the differential signal arrival times at various receivers for localization, addressing synchronization
challenges between tags and readers. However, it requires considerable synchronization among readers
and entails increased computational complexity [22]. Passive RFID applications extensively use phase-
based and RSS-based methods due to their high localization accuracy without the need for precise
clock synchronization. The indoor localization approach based on RSSI estimates the position of a
target tag by comparing its RSS readings with those of its surrounding reference tags or by using
multiple readers for trilateration [23,24]. The use of a limited number of reference tags in localization,
as well as fewer positioning directions in trilateration with multiple readers, may compromise the
localization accuracy of passive RFID tags [25]. The SD-PDOA passive localization technique uses
multiple antennas to receive reflected signals from tags and calculates the phase of the signal to
estimate the absolute position of the object. This method often provides better localization accuracy
than other methods due to the inherent stability and accuracy of the phase information, but it requires
high performance readers to acquire the phase data of the reflected signals [26].

Although the proposed localization technologies show effective performance in LoS environ-
ments, their accuracy deteriorates significantly in complex environments with obstructions due to the
uncertainty in the extracted arrival time, magnitude and phase of the backscattered signals influenced
by multipath and NLoS effects [27,28]. Therefore, achieving accurate indoor localization of passive
RFID tags in enclosed spaces remains a challenge.

To address the challenges of passive RFID localization in NLoS and multipath environments,
current researches often model multipath and NLoS channels, transforming NLoS and multipath
problems into LoS scenarios [7,27]. Some researchers have combined or improved various passive
RFID Localization technologies to enhance accuracy in complex environments [28–30]. For instance,
Wang et al. have improved accuracy in multipath environments by analyzing multipath channel models
and using a residual weighted multidimensional scaling PDOA measurement [27]. Techniques like
second-order cone relaxation, multidimensional scaling framework, and residual hypothesis testing
can also reduce the nonlinearity and uncertainty of localization information in NLoS environments,
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thereby enhancing accuracy [31,32]. Moreover, researchers have proposed using reference tags to assist
in localization, eliminating interference from multipath and NLoS conditions, thus improving accu-
racy. Tian et al. propose a method to improve localization accuracy by utilizing the linear difference
in received power of a target tag when reference tags are activated and deactivated. This approach
enables the separation of the target tag signal from the received signal [24]. Fingerprint database-
based localization systems use fingerprints of reference tags combined with common passive RFID
localization technologies to improve accuracy. However, these databases require regular updates,
which increase labor costs [33–35]. Machine learning and other artificial intelligence technologies can
enhance accuracy and reliability by analyzing and processing localization data, but they demand high
equipment requirements and computational complexity [36,37].

Therefore, this paper focuses on exploring passive localization technology in multipath and NLoS
environments. Section 2 analyses passive RFID localization in NLoS and multipath environments,
establishes propagation models. In Section 3, we provide a brief introduction to existing RSS-
based and phase-based localization methods. Section 4 proposes localization techniques to mitigate
interference caused by multipath and NLoS conditions on passive localization. The Simulation and
test results are presented and discussed in Section 5. Finally, Section 6 gives our conclusions.

2 UHF RFID Signal Propagation Model

The signal propagation models in NLoS and multipath environments, as shown in Fig. 1, differ
significantly. In NLoS environments, the received signals are typically reflections from multiple points,
while in multipath environments, the signals are a combination of multiple pathways, having the same
frequency but varying in signal strength and phase. Both NLoS and multipath propagation can cause
signal loss, increased noise, and reduced signal throughput.

Figure 1: Illustration of NLoS and multipath propagation scenarios (a) NLoS; (b) multipath

2.1 Signal Propagation Model in NLoS Environments

As shown in Fig. 1a, the LoS path for signal dlos while the NLoS path is represented by dnlos =
d1 + d2. NLoS propagation affects the received signal strength; when wireless signals encounter
obstacles, the received signal strength experiences greater attenuation compared to propagation in a
LoS environment. As shown in Eq. (1), a log-normal shadowing model is commonly used to represent
the indoor signal strength attenuation model.
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PLm(dm) = PL0(d0) + 10nlos/nloslog10

(
dm

d0

)
+ Slos/nlos (1)

where PL0(d0) is the signal attenuation at a reference distance, nlos/nlos represents the path LoS, generally
ranging from 1.6 to 1.8 for line-of-sight conditions and 4 to 6 for NLoS conditions. Slos ∼ N(0, σ 2

los)

denotes the measurement noise in LoS conditions, characterized by a Gaussian white noise distribution
with a mean of 0 and a variance of σ 2

los. Snlos ∼ N(μnlos, σ 2
nlos) represents the measurement noise under

NLoS conditions, following a Gaussian white noise distribution with a mean of μnlos and a variance
of σ 2

nlos. These parameters are generally derived from simulations or experimental studies in actual
environments. Eq. (2) is the actual distance from the antenna to the tag, and the estimated distance
can be expressed using Eqs. (3)–(5) is derived from Eq. (3), and consequently, the estimated distance
d̂m is reformulated as Eq. (6).

dm =
√

(xm − x)
2 + (ym − y)

2 (2)

d̂m = 10
(
10nlos/nloslog10dm + Slos/nlos

)
/10nlos/nlos

= dm · 10Slos/nlos/10nlos/nlos

= dm + (
10Slos/nlos/10nlos/nlos − 1

)
dm (3)

Nlos = (10Slos/10nlos − 1)dm ∼ N(0, σ 2
1 ) (4)

Nnlos = (10Snlos/10nnlos − 1)dm ∼ N(μ2, σ 2
2 ) (5)

d̂m = dm + Nlos/nlos (6)

2.2 Signal Propagation Model in Multipath Environments

As shown in Fig. 1b, there are multiple propagation paths between the reader antenna and the tag
in a multipath environment. The signal captured by the receiver includes not only the direct LoS signal,
but also multiple NLoS signals that have undergone reflection, diffraction or scattering. It causes
changes in the phase and amplitude of the received signal, affecting the quality of signal reception. To
accurately describe the signal propagation characteristics in such environments, path loss models are
used to quantify the attenuation of the signal.

PLmultipath = PLLoS +
∑N

i=1
PLNLos,i (7)

PLLoS is the LoS signal, PLNLos, i is the signal from the i NLoS path; and N is the total number of
NLoS paths. The multipath effect not only increases the propagation time of the signal, but can also
lead to an uneven distribution of signal strength in space due to the different combinations of paths.
In practical signal processing, it is essential to consider the effects of all direct and NLoS signals in a
comprehensive manner, and to use appropriate signal processing algorithms to improve the quality of
the received signal, thereby increasing the accuracy and reliability of positioning and communication.

3 RSSI and SD-PDOA Localization Methods

This section presents an examination of RSSI and SD-PDOA localization methods that are
relevant to our work in passive IoT systems.
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3.1 RSSI Triangulation Technology

RSSI technology is commonly used to integrate passive IoT localization with cellular networks,
the main diagram as described in Fig. 2. This parameter is closely related to the distance of signal
propagation. In an RSSI-based localization system, it is usually necessary to deploy three or more
antennas or use a single antenna with known reference tags for positioning. Eq. (1) presents the
logarithmic path loss model.

Figure 2: RSSI-based localization technology principal diagram

If the coordinates of each antenna are known as (x1, y1), (x2, y2), and (x3, y3), then the distance
formulas between the tag and each antenna are given by Eq. (8). This equation can be transformed
as shown in Eq. (9) by letting Ki = x2

i + y2
i . Subsequently, a matrix equation is constructed as

demonstrated in Eq. (10). Finally, the position of the tag is solved using the least squares method,
as described in Eq. (11).⎧⎪⎨
⎪⎩

d2
1 = (x1 − x)2 + (y1 − y)2

d2
2 = (x2 − x)2 + (y2 − y)2

d2
3 = (x3 − x)2 + (y3 − y)2

(8)

{
d2

2 − d2
1 + K2

1 − K2
2 = 2x(x1 − x2) + 2y(y1 − y2)

d2
3 − d2

1 + K2
1 − K2

3 = 2x(x1 − x3) + 2y(y1 − y3)
(9)

Y = AX (10)

X = (ATA)−1ATY (11)



918 CMC, 2024, vol.80, no.1

3.2 SD-PDOA Hyperbolic Localization Technology

The SD-PDOA localization technology uses the phase difference of signals received at different
antenna locations to locate tags. The carrier signal phase has a strict constraint relationship with the
signal propagation distance. Passive IoT tags typically operate in the 920 to 925 MHz frequency range,
with signal wavelengths around 0.3 m. The principle of SD-PDOA localization is shown in Fig. 3.

Figure 3: SD-PDOA localization principal diagram

To ensure a sufficiently large measurement area and avoid phase measurement errors caused by
whole cycle ambiguity, the distance between antennas is usually set to half the wavelength of the
wireless signal. In an indoor planar coordinate system, the coordinates of the tag’s geometric center
are (x, y), and the geometric center coordinates of antennas 1, 2, and 3 are (x1, y1), (x2, y2), and
(x3, y3), respectively. The distances between each antenna and the tag, see Eq. (12), with the carrier
signal phase at antenna i at a certain time being ϕi, can be expressed as:

ϕi = 2π

[
2di

λ
+ (δtr − δts)

c
λ

+ Ni + ε1i + εni

]
+ φi + φrefi (12)

where λ represents the wavelength of the carrier signal. δtr and δts represent the clock offsets of the tag’s
modulated signal and the reader, respectively. Ni represents the whole cycle ambiguity of the carrier
signal phase received by antenna i. E1i represents the phase offset caused by antenna 1, 2, and other
hardware devices. Eni represents the phase offset caused by environmental factors in measurement,
and φrefi represents the phase change caused by reflection during the signal’s propagation to antenna
i. When the signal transmission and reception links of two antennas are highly matched, the observed
phase difference between antennas i and j, 	ϕi, j, can be expressed as Eq. (13):

	ϕi, j = 2π

(
2(di − dj)

λ
+ Ni − Nj + εni − εnj

)
+ φi − φj (13)

mod(	ϕi, j, 2π) = 2π

(
2(di − dj)

λ
+ εni − εnj

)
(14)
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Due to the whole cycle ambiguity problem, both sides of Eq. (13) are taken modulo 2π to obtain
the actual observed phase difference value. Combined with Eq. (8), a set of constraint equations are
constructed, as shown in Eq. (15):⎧⎪⎪⎨
⎪⎪⎩

(x − xA)
2

aA
2

− y2

bA
2 = 1

(x − xB)
2

aB
2

− y2

bB
2 = 1

(15)

aA
2 =

(
d1 − d2

2

)2

, bA
2 = D2

1

4
−aA

2, aB
2 =

(
d2 − d3

2

)2

, bB
2 = D2

2

4
−aB

2, xA = x1 + x2

2
, xB = x1 + x2

2
.

In this localization system, the antenna array is positioned along the y-axis with a coordinate value
of zero. The variables D1 and D2 represent the differences in distances from the tag to antennas 1 and 2,
and antennas 2 and 3, respectively. The solutions of the two sets of hyperbolas typically comprise four
parts. The appropriate quadrant and region can be selected based on the actual situation to determine
the intersection point that meets the criteria, thereby obtaining the correct localization result.

4 The Proposed Method

This section introduces the localization technology used in NLoS and multipath environments.
It describes the integration of SD-PDOA and RSSI for passive localization technology in multipath
environments. These technologies leverage the channel characteristics of NLoS and multipath envi-
ronments to eliminate interference caused by NLoS and multipath, thereby improving the accuracy of
passive RFID localization.

4.1 Improved Kalman Filter Algorithm

This subsection proposes an improved Kalman filter algorithm that combines standard and biased
Kalman filters. Kalman filter is an algorithm for estimating system states and is widely used in indoor
localization. The improved Kalman filter algorithm, shown in Table 1, is primarily used for passive
localization in NLoS environments. It involves adjusting the parameters of the filter. During the
process of optimal estimation, the algorithm reduces the error caused by NLoS by subtracting the
noise bias σ nlos introduced by NLoS conditions. This approach minimizes the impact of NLoS errors
on the optimal estimate.

Table 1: Details of improved Kalman filter algorithm

Algorithm: Improved Kalman filter for NLoS localization

Parameter:
xk: State vector at iteration k
Hk : Observation matrix
wk : System noise at measurement k
vk : Observation noise
Fk : State transition matrix
Pk : The estimation error covariance matrix

(Continued)
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Table 1 (continued)

Algorithm: Improved Kalman filter for NLoS localization

P−
k : Prediction error covariance matrix

Qk : Covariance matrix of the process noise
Kk : Kalman gain
Rk : Observation noise covariance matrix
I : Identity matrix
σ NLOS: Noise bias due to NLoS conditions
λ: Adjustment factor for the NLoS condition
Input:
Initial Kalman parameters
zk : Observed value at iteration k
Output:
x̂k: Optimal estimate at iteration k
Initialization:
Set x̂0 and P0

For each iteration k:
// Prediction step
x̂−

k = Fkx̂k

Pk
− = FkPkF

T
k + Qk

If NLoS is detected,
Kk = P−

k HT
k (HkP

−
k HT

k + λRk)
−1

x̂k = x̂−
k + Kk(zk − Hkx̂

−
k − σ NLOS)

Else
Kk = P−

k HT
k (HkP

−
k HT

k + Rk)
−1

x̂k = x̂−
k + Kk(zk − Hkx̂

−
k )

// Update error covariance
Pk = (I − KkHk) P−

k

Return x̂k // Return the optimal estimate

4.2 Improvement in NLoS Environment Localization Technology

Based on the presented theoretical foundations, we propose a combined localization technology
integrating an improved Kalman filter with SD-PDOA in NLoS environments. The procedure starts
with computing the variance of the observation values. A threshold criterion is then applied to
determine if the signal originates from an NLoS source, as shown in Fig. 4. A biased Kalman filter
is used for estimation purposes for signals identified as NLoS, while signals confirmed as LoS are
processed using a standard Kalman filter.
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Figure 4: Improved Kalman filter and SD-PDOA combined localization technology process flow

4.3 Improvement in Multipath Environment Localization Technology

In a multipath environment, the distances between the antenna array and their relative distances to
the tag under test are crucial parameters. The system combines the RSSI trilateration and SD-PDOA
hyperbolic solution methods to determine the coordinates of the tag. A minimum of three antennas
are required for two-dimensional plane localization.

The RSSI and SD-PDOA combined localization method initially uses the RSSI values received
by different antennas, input into the logarithmic path loss model to estimate distances. This is then
combined with RSSI trilateration and the Kalman filter technology to produce a set of localization
results. Based on these results, a two-dimensional confidence region is established. Results outside this
confidence region are discarded as invalid, while those insides are considered valid, thereby achieving
precise localization in multipath environments. The specific technology process is illustrated in Fig. 5.

The RSSI and SD-PDOA combined localization method integrates the wide localization area
of the RSSI trilateration and the high accuracy of the SD-PDOA hyperbolic localization method.
It overcomes the limitations of low accuracy in RSSI localization and restricted localization range
in SD-PDOA, effectively utilizing the strengths of different localization methods to enhance passive
localization accuracy in multipath environments.

5 Experiment Results and Discussion
5.1 Simulation Result

In this section, we evaluate the performance of our proposed method for localizing tags in an
indoor setting against existing techniques. We assume that the tags are uniformly distributed in a
5 m × 5 m area, and the reader is connected to three or four equally spaced antennas. Baffle is placed
between the antennas and tags to emulate NLoS conditions. During simulations, Gaussian white noise
with a mean of zero and a variance of 0.1 is introduced into the localization system to simulate phase
errors caused by the environment. Gaussian noise with a mean of 3.27, 3.48 and 5.97 and a variance of
0.1 is added to the phases of antennas 1, 2 and 3, respectively, to simulate the phase error introduced
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by NLoS propagation. The signal frequency is set to 920 MHz with an antenna spacing of 0.1631 m.
The URL for the simulation code is provided in Appendix A. The simulation setup is shown in Fig. 6
and 6a.

Figure 5: RSSI and SD-PDOA combined localization technology process flow

Figure 6: Simulation deployment diagram (a) NLoS environment; (b) multipath environment

The performance is evaluated in terms of the Root Mean Square Error (RMSE), defined by

RMSE =
√

1
M

∑M

i=1

∥∥x̂i − xi

∥∥2
, where x̂i is the estimate of the true source location xi and M is the

total number of simulations. The simulation in NLOS environment as shown in Fig. 7a.
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Figure 7: NLoS simulation result (a) comparison of localization accuracy; (b) variation of localization
accuracy with noise variance under the three antennas test condition

As demonstrated in Fig. 7a, the passive localization method using SD-PDOA combined with an
improved Kalman filter demonstrates an increase in localization accuracy of almost 40% compared to
the traditional SD-PDOA approach. The four-antenna system demonstrated a 50% improvement in
accuracy compared to the three-antenna system. At a distance of 5 m from the antenna, the localization
error for the three-antenna system reached the meter level. In contrast, the four-antenna system could
achieve an accuracy of 0.4 m, as demonstrated by tag3. The system’s accuracy could be improved
to within 0.25 m by optimizing it with the improved Kalman filter algorithm. The paper found that
the average localization error for the four-antenna system under NLoS conditions was 0.2 m. The
accuracy was determined by uniformly evaluating all tags within a 5 m × 5 m area, with some tags
reaching centimeter-level accuracy. Additionally, the measurement noise for phase difference in the
antenna array was gradually reduced to 0.01 dB. The RMSE decreased as shown in Fig. 7b.

Simulations were conducted for passive localization in multipath environments using the RSSI and
SD-PDOA combined localization technology. Fig. 6b shows the deployment of different tags within a
5 m × 5 m space.

The scatter plot coordinates of the trilateration results based on RSSI generate a 2D confidence
area, as shown in Fig. 8a, which indicates that the further a tag is from the antenna array, the
larger the confidence ellipse. In Fig. 8b, the 68% confidence area for each tag has minimal overlap,
suggesting a low chance of misjudgment in SD-PDOA localization. In Fig. 8c, the 95% confidence
area shows a more significant overlap, increasing the likelihood of misjudgments. In Fig. 8d, the
confidence areas of Tags 2, 6, and 4 partially overlap. Considering the distribution characteristics
of SD-PDOA localization results, this overlap has minimal impact on judgments. To balance the
probability of successful judgment and misjudgment, the 68% confidence area is chosen for the
combined localization simulation analysis.
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Figure 8: RSSI localization scatter plot confidence area: (a) scatter plot; (b) 68% confidence; (c) 95%
confidence; (d) 99.7% confidence

As illustrated in Fig. 9a, the success rates for identifying each tag vary based on their spatial
positioning. Specifically, Tags 1, 3, and 5 have lower detection success rates, in contrast to the higher
rates seen with the other tags. A notable trend is that tags located closer to the center of the antenna
array tend to have lower hit rates. This phenomenon is attributed to the smaller confidence regions for
these tags, calculated based on the strength of the received signals. While this smaller confidence area
results in lower hit rates, it concurrently enhances the overall accuracy of the localization process. The
RMSE values for the six tags were calculated based on the 68% confidence area, and a comparison
of RMSEs for RSSI trilateration and SD-PDOA hyperbolic localization is made, as shown in Fig. 9b.
The error for the combined SD-PDOA and RSSI localization is the smallest, achieving more than a
50% increase in accuracy compared to traditional passive localization methods using SD-PDOA or
RSSI alone, with the RMSE for the six tags ranging from 0.3 to 0.5 m in multipath environments.
Among these, Tag 3 (2.5, 2) had a smaller SD-PDOA localization error than the combined method.
Analysis revealed that when determining using the confidence area, the center of the confidence area
for Tag 3 is higher on the y-axis than the actual value, increasing the error on the y-axis. However,
as the tag is located directly above the centerline of the antenna array, it is in the optimal area for
SD-PDOA localization, hence the smallest error. When tags were further from the antenna array or
had larger angles with the array central vertical line, such as Tags 1, 2, 5, and 6, the combined method
significantly improved accuracy compared to RSSI and SD-PDOA localization. Therefore, the RSSI
and SD-PDOA combined method effectively merged the advantages of both approaches, significantly
improving indoor localization accuracy in multipath environments.

5.2 Test Result

Fig. 10 shows the test scenarios for the passive IoT localization technology. The reader used is
Impinj’s R420, with a transmission signal frequency of 924.125 MHz and a transmission power of
32.5 mW. Fig. 10a depicts the NLoS environment test scenario, where the direct path is blocked by
a barrier, and the accuracy of localization is measured by varying the distance. Fig. 10b shows the
multipath environment test scenario, where tags are dispersed in different positions to analyze the
impact of multipath on passive localization performance.
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Figure 9: Multipath simulation result (a) tag hit rate at different confidence levels; (b) comparison of
localization accuracy by different methods

Figure 10: Passive IoT localization technology test scenarios (a) NLoS environment; (b) multipath
environment scenarios; (c) multipath environment structure

As shown in Fig. 11a, the passive localization performance of combining SD-PDOA and RSSI
with the improved Kalman filter algorithm was compared. The four-antenna system showed an
improvement in average localization error at distances of 1, 2.1, and 5 m, compared to the three-
antenna system, with approximate improvements of 0.1, 0.3, and 0.5 m, respectively. Under NLoS
conditions, the 5 m localization precision could reach 0.46 m. SD-PDOA generally had better
localization accuracy than RSSI. By using the proposed technology for passive localization, issues
of signal attenuation and increased noise in NLoS environments were resolved.

Passive localization tests in the multipath environment depicted in Fig. 11b were conducted using
the RSSI and SD-PDOA combined localization method. In the experimental tests, the greater the
distance, the larger the phase shift, the larger the confidence area, and the larger the localization
error. When the tag was approximately 2 m from the antenna array, the system exhibited a RMSE of
0.2 m. At a distance of 4 m, the RMSE increased to 0.4 m. This paper employed a hybrid localization
approach that combined RSSI-based localization and SD-PDOA to estimate the localization results
and determine the confidence area. It resolved the issues of low accuracy in RSSI-based localization
at longer distances and instability in phase localization in SD-PDOA, especially in the presence of
multipath interference. Additionally, it avoided the ambiguity in whole cycles inherent in SD-PDOA,
effectively merging the advantages of different RF signal parameters to enhance localization accuracy.
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Figure 11: Test results (a) RMSE in NLoS environment; (b) localization accuracy results in multipath
environment

5.3 Discussion

The computational process for the proposed method, which combines improved Kalman filter
with SD-PDOA, consists of two main parts: SD-PDOA hyperbolic localization and the application
of improved Kalman filter. First, the SD-PDOA algorithm calculates the coordinates of the tags by
using the phase differences of the signals received by the antennas, with a computational complexity of
O(k × N), where N is the number of tags and k is the number of antennas. It can be further written as
O(N) because k is a constant. In the second part, improved Kalman filter is applied to the coordinates
obtained by the SD-PDOA algorithm. For a two-dimensional localization problem, the complexity of
these matrix operations is considered to be constant, O(1), so the computational complexity of this
part also scales linearly with the number of tags, i.e., O(N). Summarizing the above two parts, the total
complexity of the method can be expressed as O(N).

For the method combining RSSI and SD-PDOA in a multipath environment, the computational
process is mainly divided into three parts. The first part involves triangulation based on RSSI and
hyperbolic localization based on SD-PDOA, with a computational complexity of O(N). The second
part applies Kalman filter to the localization results obtained from RSSI, with a computational
complexity of O(1). The third part uses confidence intervals generated from RSSI to filter the
localisation results obtained from SD−PDOA, where each tag is evaluated based on its own confidence
interval, resulting in a computational complexity of O(N). Summarizing the above three parts, the
complexity of the method can be expressed as O(N).

Tables 2 and 3 present a comparative analysis of different passive localization methods in
NLoS and multipath environments, respectively. The proposed method, which combines an improved
Kalman filter with SD-PDOA in NLoS environments, along with the method that integrates RSSI
with SD-PDOA in multipath environments, demonstrates the lowest RMSE on a unit test area
and exhibits the lowest computational complexity. This suggests that the passive RFID localization
methods presented in this paper are capable of achieving more accurate localization results in shorter
computation times in both multipath and NLoS conditions. This effectively solves the problem of
reduced localization accuracy in existing passive RFID localization techniques due to multipath and
NLoS interference.
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Table 2: Comparison of passive positioning methods in NLOS environment

The proposed [21] [29]

Method Improved Kalman filter
+ SD-PDOA

Reference-free RSS
profile

Robust second-order
cone relaxation

RMSE 0.17 m 0.027 m 3.2 m
Test scenario 5 m × 5 m area 0.38 m × 0.28 m area 20 m × 20 m area
Computational complexity O (N) O

(
N2

)
O(

√
N((N + k)3+

18N(N + k))

Table 3: Comparison of passive positioning methods in multipath environment

The proposed [24] [25]

Method RSSI + SD-PDOA
combined

RSSI and SD-PDOA
two-ray channel

PDOA + residual
weighted
multidimensional
scaling

RMSE 0.46 m 0.06 m 1 m
Test scenario 5 m × 5 m area 1.41 m distance 10 m × 10 m area
Computational complexity O (N) N/A N/A

6 Conclusion

In this paper, we investigate RSSI trilateration and SD-PDOA hyperbolic localization tech-
nologies, and signal propagation in NLoS and multipath environments. We propose a combined
localization technology that integrates an improved Kalman filter with SD-PDOA and RSSI tech-
niques to address the problem of poor accuracy in passive RFID localization under NLoS and
multipath conditions. Extensive simulations and test results demonstrate that the indoor passive RFID
localization technology presented here effectively overcomes the limitations of single technologies
in complex environments, providing a more efficient and accurate passive localization solution for
complex indoor scenarios. The application of this research in machine learning and automated
systems could lead to more intelligent, responsive, and efficient AI applications, capable of navigating
and interpreting complex indoor spaces with unprecedented precision. This represents a promising
direction for future research and development in AI-enhanced indoor localization systems. However,
it is important to acknowledge the limitations of our approach. Significant signal attenuation occurs at
longer distances between the tag and the reader, resulting in substantial fluctuations in collected data,
particularly in carrier phase. As a result, positioning accuracy decreases with increasing distance. In
future research, we will focus on improving passive localization techniques to address the challenge of
poor accuracy encountered at long distances.
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