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ABSTRACT

Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue
tasks in a post-disaster scenario. In this study, we investigated the post-disaster rescue path planning problem
and modeled this problem as a variant of the travel salesman problem (TSP) with life-strength constraints. To
address this problem, we proposed an improved iterated greedy (IIG) algorithm. First, a push-forward insertion
heuristic (PFIH) strategy was employed to generate a high-quality initial solution. Second, a greedy-based insertion
strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.
Furthermore, three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.
Additionally, an improved simulated annealing (SA) strategy was used as an acceptance criterion to effectively
prevent the algorithm from falling into local optima. To verify the effectiveness of the proposed algorithm, the
Solomon dataset was extended to generate 27 instances for simulation. Finally, the proposed IIG was compared
with five state-of-the-art algorithms. The parameter analysis was conducted using the design of experiments (DOE)
Taguchi method, and the effectiveness analysis of each component has been verified one by one. Simulation results
indicate that IIG outperforms the compared algorithms in terms of the number of rescue survivors and convergence
speed, proving the effectiveness of the proposed algorithm.
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1 Introduction

In the modern world, natural disasters occur with increasing frequency [1]. These disasters present
significant challenges to human society and pose major threats to human safety [2]. Recently, post-
disaster rescue has emerged as a prominent research field garnering widespread attention [3]. In some
severely affected scenarios, it is difficult for rescuers to enter the disaster area. Robot can assist humans
in rescue missions [4]. The robot rescue path planning problem has become a current research hotspot.

Previous studies on rescue robot have mainly focused on structural design [5] and kinematics
modeling [6], achieving some encouraging results. These research works enrich the methods and
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theories of robotic rescue, laying a good foundation for robots to efficiently complete rescue tasks.
Although steady progress has been made in rescue path planning over the past decades, it remains
an open problem [2,3]. One challenging aspect of this problem is that the life strength of survivors
decreases over time [7]. Therefore, fast and effective path planning has become an urgent problem to
be solved. In current research on rescue path planning, most studies model this problem as a variant of
TSP, but rarely consider life strength constraints. In addition, the correlation information between the
locations of survivors was not taken into account when dealing with rescue problem. Currently, the IG
algorithm [8] has become a current research hotspot due to its advantages such as fewer parameters,
strong local search ability, and fast convergence. It has achieved significant results in solving many
problems, laying the foundation for its application in rescue path planning problems. Therefore, this
paper proposes the IIG algorithm to solve the rescue path planning problem. The main contributions
of this paper are as follows:

(1) This study investigated and modeled the post-disaster rescue path planning problem. To the
best of our knowledge, this study is the first attempt to address the rescue path planning
problem using the improved IG algorithm.

(2) A greedy-based insertion strategy is designed and used in the destruction and construction
stage to enhance the global search ability of the algorithm.

(3) Three problem-specific swap operators are developed to improve the proposed algorithm’s
exploitation ability.

(4) An improved acceptance criterion for evolutionary solution is designed.

The rest of this paper is organized as follows. Section 2 provides the literature review and Section 3
formalizes the rescue robot path planning problem. Next, we describe the proposed IIG algorithm
and its detailed components in Section 4. Section 5 presents the simulation environments, parameter
selection, results, and comparative analysis with the outstanding algorithms. Finally, conclusion is
summarized in Section 6.

2 Literature Review

In this section, a concise overview of the relevant literature about both the rescue path planning
problem and the state-of-the-art IG algorithms is provided.

The rescue path planning problem requires identifying the optimal or superior solution from
feasible solutions while adhering to specific rescue constraints. For example, Zhang et al. [9] presented
a heuristic crossing search and rescue optimization algorithm (HC-SAR) for rescue path planning that
improves convergence speed and path efficiency. Cho et al. [10] proposed an effective two-stage path
planning method for search area decomposition and rescue route optimization, which significantly
shortens search time and improves rescue efficiency. In addition, Geng et al. [7] proposed a particle
swarm optimization algorithm (PSO) based on integer coding to plan the route with the highest
number of rescuers. Ding et al. [11] proposed a refined ant colony algorithm (ACO) tailored for rescue
robot path planning in urban disaster scenarios. Moreover, Morin et al. [12] developed a variant of
ACO for planning rescue paths, which maximizes the probability of finding moving search objects
with Markov motion given a limited time range. Yang et al. [13] combined clustering and improved
ACO to enhance urban emergency rescue by optimizing rescue station setup and the obtained path.
To our best knowledge, most of current research on rescue path planning adopts swarm intelligence
algorithms. These swarm intelligence algorithms usually require lots of computational resources and
their efficiency rely on parameter adjustment, such as population size [14–16]. In addition, rescue
path planning problem usually involve large-scale search spaces. Studies have shown that the random
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blind search that intelligent algorithms rely on is not suitable for solving path planning problem with
correlated relationships between rescued individuals. To address these challenges, we attempted to use
the IG algorithm and developed the local search operators based on the characteristics of the problem.

The IG algorithm was first proposed by Ruiz et al. [8] and was used to solve the permutation
flow shop scheduling problem (PFSP). So far, the IG algorithm has been applied to many types of
optimization problems. Similar to the above problem, Li et al. [17] improved the IG algorithm to
solve the distributed permutation flow shop problem (DPFSP). Han et al. [18] proposed a simple
and effective improved IG algorithm, namely NIG, to minimize makespan in DPFSPs. In addition,
Li et al. [19] proposed a hybrid IG algorithm for the crane transportation flexible job shop problem
(CFJSP). Zou et al. [20] proposed an efficient IG algorithm to solve a multi-compartment automated
guided vehicle (AGV) scheduling problem in a matrix manufacturing workshop. Zhang et al. [21]
combined the IG algorithm with the nearest-neighbor-based heuristic to optimize the cost of AGV
problems. Moreover, Qin et al. [22] embedded the neighborhood probabilistic selection strategies for
family and blocking-based jobs in the IG to solve the blocking hybrid flow shop group scheduling
problem (BHFGSP). The rescue path planning problem has certain similarities with the above
problems. They are essentially sorting problems. Inspired by the above problems, we applied IG to
solve the rescue robot path planning problem and made improvements based on the characteristics of
the problem.

3 Problem Description and Modeling

This section presents the description of the rescue robot path planning problem and provides
mathematical models for this problem.

3.1 Problem Description

The objective of this study is to maximize the number of individuals receiving rescue within a
limited time. Therefore, the following assumptions are made:

(1) Before the survivors are rescued by robot, the locations of survivors are static and known in
advance.

(2) The rescue robot has enough power to complete rescue missions.
(3) Each survivor is equipped with a vital signs detector that can provide real-time feedback before

the disaster occurs.
(4) During the rescue process, the robot maintains a constant operating speed, and the time

required to perform a rescue at each survivor point remains uniform.

3.2 Mathematical Model

In a post-disaster scenario, the life strength of survivors decreases over time. When the life strength
of a survivor is below the threshold, it indicates that the rescue of the survivor is failed. It is assumed
that all survivors have equal initial life strength before the disaster, denoted as σ0. After the disaster,
survivors closer to the disaster source have lower initial life strength, denoted as:

σ 0
si

= σ0 · min
{

dsi

L
, 1

}
(1)

where dsi is the Euclidean distance between the survivor and the disaster center, and L is the maximum
value of the distance between two points in the area of the indicated disaster wave. Life strength
decreases over time, according to the existing research results [9], the life strength σsi at the current
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time can be calculated as follows:

σsi = σ 0
si

· e−0.0037tsi (2)

tSi = d (si−1, si)

v
+ ST (3)

where tsi denotes the time spent by the robot starting from the start location and arriving at the target
location si. As shown in Eq. (3), it consists of two parts: the time spent by the robot in rescuing the
target, equal to ST ; and the time taken by the robot to move from its current location to the next
survivor location si. The path between the two survivors is obtained by the A∗ algorithm [23]. To be
more in line with the realities of post-disaster relief. Considering that some of the paths could not be
traveled in both directions after the disaster, some of the relief paths were disturbed so that they could
only be traveled in one direction. If path Eij can only pass in one direction, set its value to 1; otherwise,
the value of Eij is set to 0.

The sequence of the rescue path is denoted as s1, s2,· · · , sn. F(S) represents the number of survivors
rescued, it can be expressed as Eq. (4). When the robot arrives the location of a survivor, if the current
life strength of the survivor σ si is greater than the threshold �σ , it indicates that the survivor can be
successfully rescued, f (si) equals to 1; otherwise, f (si) equals to 0.

F (S) =
N∑

i=1

f (si) (4)

The objective of rescue path planning can be formulated as follows:

max F (S), s.t.S ∈ Rn (5)

where Rn denotes the solution space.

4 The Proposed IIG Algorithm

This section introduces the IIG algorithm designed for solving rescue path planning problems. It
first outlines the framework of the algorithm, followed by a detailed explanation of the initialization
strategy, destruction and construction strategies, local search strategy, and acceptance criterion.

4.1 Framework of the IIG

The proposed IIG algorithm includes four main components, i.e., PFIH strategy, greedy-based
insertion strategy, three problem-specific swap operators, and an improved SA strategy. The framework
of the proposed IIG algorithm is shown in Algorithm 1. Line 1 of Algorithm 1 describes the
initialization strategy, line 3 describes the destruction-construction strategy, line 4 describes the local
search strategy, and lines 5 to 9 describe the acceptance criterion.

Algorithm 1: IIG algorithm
Input: locations of survivors, initial life strength of survivors
Output: the best rescue path
1 The initialization strategy generates the initial path (cf. Subsection 4.2);
2 do
3 Perform destruction-construction strategy on the current path (cf. Subsection 4.4);

(Continued)
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Algorithm 1 (continued)
4 Perform the local search strategy (cf. Subsection 4.5);
5 if the maximum number of rescues increases then
6 Replace the best path with the current path;
7 else
8 Perform the acceptance criterion for the current path (cf. Subsection 4.6);
9 end
10 while the stopping criterion is not met
11 return the best rescue path

4.2 Initialization Strategy

In general, an excellent initial solution can accelerate the convergence speed of the algorithm. This
paper uses the PFIH strategy to generate a high-quality initial solution. The time complexity of the
initialization strategy is O(n2). The initialization strategy works as follows:

Step 1: Select the point with the lowest life strength as the initial rescue point.

Step 2: Select the point closest to the current rescue point and attempt to insert it into each location
of the rescue path.

Step 3: Calculate the number of survivors successfully rescued when inserting into each location.

Step 4: Insert the selected point into the location that maximizes the number of successfully rescued
survivors.

Step 5: Return to step 2 until all rescue points have been inserted.

4.3 Encoding

For solving the rescue path planning problem, the solution in the algorithm is represented by an
integer sequence. Each survivor in the scenario is assigned a unique integer number. Consequently, the
path planned by IIG is represented as a sequence of integers, indicating the order of rescuing survivors.
For example, we assume that 6 survivors are waiting for rescue. The robot starts from point 0 and first
rescues survivor 1, then rescues survivors in order of 5, 4, 6, 3, and 2. Finally, return to the starting
point. Hence, the rescue path is represented as [0, 1, 5, 4, 6, 3, 2, 0].

4.4 Destruction and Construction Strategies

Destruction and construction strategies are used to enhance the algorithm’s exploration ability
and prevent the algorithm from falling into local optima. Algorithm 2 outlines the pseudocode for
the destruction and construction strategies. As shown in Fig. 1a, during the destruction stage, random
select points from the current path and save them to PSd. ‘d’ describes the number of points in the set
PSd. The remainder of points are denoted as PSr. ‘r’ describes the number of points in the set PSr. The
time complexity of the destruction strategy is O(n).

The construction strategy is used to reinsert the points in the set PSd back into the set PSr. First,
select one point from the set PSd, insert it into each location in the set PSr, and calculate the number
of deaths. Then, select the location with the lowest number of deaths to insert. Next, repeat the above
steps until all points in the set PSd are reinserted into the path. Finally, a new path is obtained.
Fig. 1b provides a graphical explanation of the construction strategy, corresponding to lines 3 to 10 of
Algorithm 2. The time complexity of the construction strategy is O(n2).



936 CMC, 2024, vol.80, no.1

Figure 1: A graphical explanation of the destruction and construction strategies

Algorithm 2: Destruction and construction strategies
Input: a feasible rescue path
Output: a new rescue path

1 PSd ← random select points from the current path;
2 PSr ← remainder points in the current path;
3 for each rescue point i in PSd do
4 remove the rescue point i from PSd;
5 for each location in PSr do
6 insert point i into this location;
7 calculate the number of deaths;
8 end
9 insert point i into the location with the lowest number of deaths;

10 end
11 return a new rescue path

4.5 Local Search Strategy

Generally, compared to insertion operators, swap operators have lower time complexity. Therefore,
this paper uses swap operators for local search. We consider the characteristics of the problem and
develop three swap operators, i.e., random swap operator, complementary swap operator, and 2-opt
swap operator. Fig. 2 provides a graphical illustration of these three swap operators, which work as
follows.

Figure 2: A graphical explanation of local search operators

Random swap: as shown in Fig. 2a, the specific steps of the operator are as follows. (1) Random
select one point from the failed rescue sequence, denoted as P1. (2) Select the point closest to P1, such
as P6. (3) Swap P1 and P6 to generate a new path. The time complexity of random swap is O(n).
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Complementary swap: as shown in Fig. 2b, the specific steps of the operator are as follows. (1)
Choose the point with the highest health intensity, such as P5, and choose the point with the lowest
health intensity, such as P2. (2) Swap these two points, if the number of successful rescues increases,
maintain the swap. (3) Otherwise, choose the point with the second highest life strength, such as P4,
and choose the point with the second lowest life strength, such as P3, swap these two points. (4) And
so on, until the number of successful rescues increases or all points are swapped. The time complexity
of random swap is O(n).

2-opt swap: as shown in Fig. 2c, the specific steps of the operator are as follows. (1) Select a
continuous sequence, such as 5, 4, 6, 3, 2. (2) If there are more than 2 failed rescue points in this
sequence segment, perform a 2-opt swap. (3) Otherwise, select a new sequence segment. The time
complexity of random swap is O(n).

This study adopts a probability dynamically changing roulette wheel strategy to select local search
operators. When one of the operators is successfully used once, increase its probability of being
selected and decrease the probability of the other two operators being selected. Meanwhile, to avoid
the proposed algorithm overly relying on a specific operator during the evolution process, we set a
maximum selection probability threshold for all three swap operators.

4.6 SA-Based Acceptance Criterion

The SA-based acceptance criterion is introduced to effectively prevent the algorithm from falling
into local optima. The temperature of the acceptance criterion is shown in Eq. (6):

Temperature = F (S)

10 · N
(6)

where F(S) represents the number of survivors rescued, the number of successful rescuers is relatively
small in the early stages of the algorithm operation. The algorithm is highly likely to accept poor
solutions to avoid falling into local optima. As the algorithm runs, the number of successful rescues
increases. The algorithm accepts poor solutions with a lower probability to exploit the neighborhood
of the current solution further.

4.7 Complexity of the IIG Algorithm

As described above, the time complexity of the initialization strategy is O(n2). The time complexity
of the destruction strategy is O(n). The time complexity of the construction strategy is O(n2). The
time complexity of the random swap operator is O(n). The time complexity of the complementary
swap operator is O(n2). The time complexity of the 2-opt swap operator is O(n). In summary, the time
complexity of the IIG algorithm is approximately O(n3).

5 Experimental Results

To verify the effectiveness of the proposed algorithm, we extended the Solomon dataset to generate
27 instances and conducted simulations on these instances. First, we conducted parameter analysis for
the algorithm. Next, the effectiveness analysis of each component was verified one by one. Finally, the
proposed IIG was compared with five state-of-the-art algorithms. All the algorithms are implemented
in MATLAB R2020a on an Intel Core i7-12700 PC with 32 GB RAM. To ensure fairness for all
comparison algorithms, the termination criterion is set to a maximum elapsed CPU time of 10 s.
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5.1 Experimental Instances

In this section, we extended the Solomon dataset to generate 27 instances for simulation. The
Solomon dataset was proposed by Solomon [24] in 1987 and was used to simulate many real-world
problems, such as the vehicle routing problem (VRP). The problem studied in this paper has certain
similarities with the VRP. Therefore, we added life-strength information to the Solomon dataset to
simulate post-disaster rescue scenarios. Table 1 shows an example for instance c10, each instance
consists of three parts, the title line is the survivor’s identification number, the first line is the
coordinates of the survivor, and the second line gives the initial life strength of survivors.

Table 1: An example for instance c10

Serial number 1 2 3 4 5 6 7 8 9 10

Coordinates (28, 55) (85, 35) (32, 30) (25, 85) (58, 75) (38, 5) (53, 30) (66, 55) (45, 70) (10, 35)
Life strength 65.29 71.47 37.01 50.93 25.49 34.98 61.35 96.33 94.25 34.41

5.2 Parameter Setting

In this study, two key parameters of the proposed algorithm are considered, including the iteration
times of the local search operator ‘Ln’ and the selected length of the sequence in the destruction strategy
‘Ls’. The levels of each parameter are as follows: Ln = {5, 10, 15, 20} and Ls = {N/2, N/3, N/4, N/5}, N
represents the number of survivors. The DOE Taguchi method [25] is used to construct an orthogonal
matrix of L16. For each parameter combination, the proposed algorithm was run independently 30
times, with the average fitness value of the algorithm being recorded as a response variable. According
to the factor-level trend of the parameters shown in Fig. 3, the proposed algorithm with the best
performance is obtained by taking Ln = 10 and Ls = N/4. The simulation environment is a 100 ×
100 grid map, and the coordinate of the disaster center is D (14, 11). The life strength threshold is
equal to 2, the speed of the robot is equal to 20, the time ‘ST’ spent by the robot to rescue a survivor
is 5, and the initial life strength is equal to 100. All compared algorithms adopted their parameter
settings and have been tuned appropriately. The tuned parameters are shown in Table 2.

Figure 3: Factor-level trends of parameters
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Table 2: Tuned parameters for each algorithm

Algorithm Parameters

IABC The population size Ps = 100, the times of iterations without improvement Ln = 10
NIG Points removed during the destruction phase d = 5, the temperature reduction factor T

= 0.2
IGDLM Points removed during the destruction phase d = 4, the rate of variation Pm = 0.3, the

temperature reduction factor T = 0.5
IIG∗ Points removed during the destruction phase d = 4, the temperature reduction factor T

= 0.6, the number of choices of operators in the local search phase OperNumber = 60

5.3 Efficiency of the Proposed Strategy

In IIG, three key strategies are proposed: a PFIH strategy, local search strategy, and reconstruction
strategy. To investigate the effectiveness of the proposed three strategies, we designed four algorithms,
the first one is the proposed IIG, the second one is the IIG without the PFIH strategy (IIG_NP), the
third one is the IIG without the proposed local search strategy (IIG_NL), and the fourth one is the
IIG without the proposed construction strategy (IIG_NC). All the four compared algorithms were run
independently 30 times on 27 instances. The relative percentage increase (RPI) is employed to measure
the algorithm’s performance.

RPI = fbest − fc

fbest

× 100% (7)

where f best is the best value found by all of the compared algorithms, and f c is the best value of the
current algorithm.

Table 3 presents the comparison results for RPI values. From the comparison results, we can
observe that: (1) All algorithms can obtain optimal solutions small-scale instances. (2) The IIG
algorithm obtains 14 optimal solutions out of 18 large-scale instances while the remaining three
algorithms obtained only 4 optimal solutions. (3) The average RPI value obtained by IIG is 0.001,
which is significantly lower than the average RPI values obtained by the other three algorithms.
Therefore, the results verify that the proposed strategy can significantly improve the efficiency of the
algorithm. Fig. 4 shows the results of the analysis of variance (ANOVA) for the four algorithms, the
p-value = 0.0087674 < 0.05, indicating the significant difference among the comparison algorithms.

Table 3: Comparison results for IIG, IIG_NP, IIG_NL, and IIG_NC

Instance Best Algorithm RPI
IIG IIG_NP IIG_NL IIG_NC IIG IIG_NP IIG_NL IIG_NC

c10 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000
c20 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000
c30 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000
c40 40.00 39.90 40.00 39.80 39.80 0.003 0.000 0.005 0.005
c50 44.35 44.35 44.30 44.20 44.30 0.000 0.001 0.003 0.001
c60 43.75 43.65 43.70 43.75 43.60 0.001 0.001 0.000 0.003

(Continued)
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Table 3 (continued)

Instance Best Algorithm RPI
IIG IIG_NP IIG_NL IIG_NC IIG IIG_NP IIG_NL IIG_NC

c70 44.55 44.55 43.70 43.90 43.80 0.000 0.019 0.015 0.017
c80 44.00 44.00 41.80 41.70 42.00 0.000 0.050 0.052 0.045
c90 41.50 41.50 41.40 41.00 41.40 0.000 0.002 0.012 0.002
r10 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000
r20 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000
r30 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000
r40 39.10 39.10 38.60 38.90 38.70 0.000 0.013 0.005 0.01
r50 42.15 41.90 42.15 42.15 41.80 0.006 0.000 0.000 0.008
r60 41.95 41.95 41.50 40.15 41.00 0.000 0.011 0.043 0.023
r70 42.55 42.55 41.85 39.75 41.50 0.000 0.016 0.066 0.025
r80 42.55 42.55 40.30 39.25 40.80 0.000 0.053 0.078 0.041
r90 41.90 41.90 39.80 38.70 40.50 0.000 0.050 0.076 0.033
rc10 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000
rc20 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000
rc30 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000
rc40 39.60 39.60 39.35 39.05 39.35 0.000 0.006 0.014 0.006
rc50 43.50 43.50 43.40 43.30 43.30 0.000 0.002 0.005 0.005
rc60 42.75 42.75 42.15 42.20 42.10 0.000 0.014 0.013 0.015
rc70 42.10 41.75 42.10 41.60 41.70 0.008 0.000 0.004 0.010
rc80 41.35 41.35 40.80 40.95 41.00 0.000 0.013 0.010 0.008
rc90 42.75 42.75 41.30 41.40 41.40 0.000 0.034 0.032 0.032
Mean 34.83 34.80 34.38 34.14 34.37 0.001 0.011 0.016 0.011

5.4 Comparison of Several Efficient Algorithms

This section aims to evaluate the performance of the proposed IIG by comparing five algorithms:
the NIG algorithm [18], the iterative greedy algorithm with double layer mutation strategy (IGDLM)
[26], the improved artificial bee colony (IABC) algorithm [27], the improved iterated greedy (IIG)
algorithm [28] (denoted IIG∗) and the improved genetic algorithm IGA [29]. The IABC algorithm, as
a typical swarm intelligence algorithm, shows good performance in solving the VRP problems. The
other three IG based algorithms have achieved good results in solving flow shop scheduling problems
which are similar to the path planning problems. The IGA algorithm has shown excellent performance
in solving rescue path planning problems derived from VRP with time window. Therefore, these five
algorithms are chosen to be compared with the proposed IIG.
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Figure 4: The ANOVA comparisons of IIG, IIG_NP, IIG_NL, and IIG_NC

Table 4 presents the comparison results of RPI values. It can be seen that: (1) Compared to other
algorithms, the proposed IIG algorithm obtains 22 optimal results for the given 27 instances. (2) Both
the IIG and the compared algorithms obtained the optimal results on small-scale instances. However,
the IIG obtained 13 optimal results on large-scale instances, while the remaining algorithms only
obtained 5 optimal results. (3) The average RPI of the IIG algorithm is only 0.002, which is 0.08,
0.25, 0.11, 0.14 and 0.25 times those of the IGDLM, NIG, IABC, IIG* and IGA, respectively. The
ANOVA results shown in Fig. 5 indicate that the RPI value of IIG is significantly lower than the other
five algorithms (p-value = 0.0017869 less than 0.05). Therefore, we can conclude that the IIG has
better effectiveness and stability.

Table 4: Comparison results between IIG and other algorithms

Instance Best Algorithm RPI

IIG IGDLM NIG IGA IABC IIG∗ IIG IGDLM NIG IGA IABC IIG∗
c10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000 0.000 0.000
c20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000 0.000 0.000
c30 30.00 30.00 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000 0.000 0.000
c40 40.00 39.90 40.00 39.90 40.00 39.85 39.60 0.003 0.000 0.003 0.000 0.004 0.010
c50 44.35 44.35 43.90 44.15 44.20 43.20 44.20 0.000 0.010 0.005 0.003 0.026 0.003
c60 43.65 43.65 43.20 43.45 42.85 42.90 43.10 0.000 0.010 0.005 0.018 0.017 0.013
c70 44.55 44.55 41.60 43.65 44.30 42.35 42.90 0.000 0.044 0.020 0.006 0.049 0.037
c80 44.00 44.00 41.10 43.65 43.25 41.15 42.75 0.000 0.066 0.008 0.017 0.065 0.028
c90 41.50 41.50 41.30 40.90 40.00 40.75 41.10 0.000 0.005 0.014 0.036 0.018 0.010
r10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000 0.000 0.000
r20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000 0.000 0.000
r30 30.00 30.00 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000 0.000 0.000
r40 39.85 39.10 39.85 39.70 39.80 39.15 39.35 0.019 0.000 0.004 0.001 0.018 0.013
r50 42.15 41.90 41.05 41.85 42.05 42.15 41.75 0.006 0.026 0.007 0.002 0.000 0.009
r60 41.95 41.95 40.30 41.85 41.50 39.85 41.25 0.000 0.039 0.002 0.010 0.050 0.017
r70 42.55 42.55 40.00 42.10 42.00 39.85 41.35 0.000 0.060 0.011 0.013 0.063 0.028
r80 42.55 42.55 37.45 41.85 41.75 40.75 40.85 0.000 0.120 0.016 0.019 0.042 0.040
r90 42.10 41.90 38.75 42.10 40.25 41.95 41.15 0.005 0.080 0.000 0.044 0.004 0.023

(Continued)
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Table 4 (continued)
Instance Best Algorithm RPI

IIG IGDLM NIG IGA IABC IIG∗ IIG IGDLM NIG IGA IABC IIG∗
rc10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.000 0.000 0.000 0.000 0.000 0.000
rc20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 0.000 0.000 0.000 0.000 0.000 0.000
rc30 30.00 30.00 30.00 30.00 30.00 30.00 30.00 0.000 0.000 0.000 0.000 0.000 0.000
rc40 40.00 39.60 40.00 39.30 40.00 39.85 39.70 0.010 0.000 0.018 0.000 0.004 0.008
rc50 43.50 43.50 42.20 42.50 43.20 42.75 43.10 0.000 0.030 0.023 0.007 0.017 0.009
rc60 42.75 42.75 42.05 42.40 42.10 41.70 42.10 0.000 0.016 0.008 0.015 0.025 0.015
rc70 41.75 41.75 41.60 41.45 41.55 41.20 40.75 0.000 0.004 0.002 0.005 0.013 0.024
rc80 41.35 41.35 40.70 40.40 41.15 40.55 40.55 0.000 0.016 0.023 0.005 0.019 0.019
rc90 42.75 42.75 38.20 41.20 42.00 40.20 39.85 0.000 0.110 0.036 0.018 0.060 0.070
Mean 34.86 34.80 33.82 34.53 34.52 34.08 34.27 0.002 0.024 0.008 0.008 0.018 0.014

Figure 5: The ANOVA comparisons of IIG, NIG, IGDLM, IABC, IIG∗ and IGA

To intuitively reflect the evolution process of the algorithm, Fig. 6 shows the convergence curves
of all comparison algorithms on four instances, i.e., c70, c80, r80, and rc90, where all compared
algorithms are run for 10 s on the aforementioned PC. Furthermore, Fig. 7 shows the rescue path
diagrams for the four selected instances. The flags in the figure represent the starting point, the red
dots represent the survivors, the green path represents the rescue path, and the blue path represents the
return path to the starting point after rescuing the last survivor. Table 5 provides the rescue sequence
on the four instances of c10, c50, r10 and rc60.

The analysis of the simulation results verified that the proposed IIG is competitive in solving
rescue path planning problems. The main advantages of this algorithm are as follows. First, in the
initialization stage, the generation of high-quality initial solutions accelerates the convergence of the
algorithm. Second, the greedy-based insertion strategy is applied in the construction stage to increase
the algorithm’s exploration ability. Additionally, three problem-specific swap operators are proposed to
improve local search efficiency. Finally, the SA strategy is used as an acceptance criterion to effectively
prevent the algorithm from falling into local optima.
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Figure 6: Convergence curves of the four different scale instances

Figure 7: (Continued)
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Figure 7: Chart of robotic rescue routes of the four instances

Table 5: Rescue sequences corresponding to the four selected instances

Instance Rescue sequences

c10 1-6-4-2-3-5-7-10-9-8-1
c50 23-22-11-12-9-8-6-4-2-3-5-7-10-1-26-21-24-27-14-13-41-50-38-15-17-16-20-18-19-31-29-28-30-

35-37-40-39-34-36-32-33-49-46-45-47-43-42-44-48-25-23
r10 1-8-9-10-7-5-3-2-4-6-1
rc60 42-44-28-27-29-40-35-8-9-14-20-13-16-17-15-19-18-12-11-10-7-3-2-4-6-1-56-57-58-60-41-45-

43-47-48-50-49-52-53-32-33-34-36-38-39-37-30-31-26-25-21-23-24-5-22-51-46-59-54-55-42

6 Conclusions

In this paper, we proposed an improved IG to solve the rescue path planning problem. The PFIH
strategy is applied to obtain a high-quality initial solution. In addition, we developed a construction
operator based on greedy insertion and three problem-specific swap operators to reinforce the
algorithm’s exploitation and exploration capabilities, respectively. Moreover, an improved SA strategy
was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.
We simulated 27 instances and validated the effectiveness analysis of each component of IIG. Finally,
the IIG was compared with five state-of-the-art algorithms. The simulation results indicate that, the
IIG algorithm obtained 14 optimal solutions from 18 larger instances. Meanwhile, the average RPI
of the IIG algorithm is 0.068, 0.21, 0.087, 0.115, and 0.198 times that of IGDLM, NIG, IABC, IIG∗,
and IGA, respectively. Indeed, the proposed IIG algorithm is applicable to many types of rescue path
planning problems, such as post-earthquake rescue path planning problems. The IIG achieves a rescue
path based on the location coordinates of survivors and their life strength to maximize the rescue of
survivors. The proposed algorithm is not only applicable to post-earthquake rescue. For example, at
a fire scene, the IIG achieves a rescue path to avoid fire sources. For mountainous or hilly areas, IIG
achieves a save path to avoid steep cliffs. In summary, the proposed IIG algorithm is suitable for solving
rescue path planning problem.
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The limitations of this study are as follows: 1) Single robot rescue is constrained by many factors,
such as limited rescue supplies carried by robots and limited working time. 2) The IIG can be
used to solve rescue path planning problems in static environments, but cannot adapt to real-time
environmental changes.

In future work, the following directions can be explored: 1) We will consider the effect of economic
and medical factors on rescue tasks. Expand more factors into the problem model. 2) The proposed
algorithm will consider the effect of secondary disasters on rescue path planning. 3) We will focus on
applying the IG algorithm to solve the multi robot rescue path planning problem.
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