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ABSTRACT

This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrat-
ing Spherical Fuzzy Sets (SFSs) and Z-Numbers (SFZs). A novel group expert consensus technique, the PHI model,
is developed to address the inherent limitations of both SFSs and the traditional Delphi technique, particularly
in uncertain, complex scenarios. In such contexts, the accuracy of expert knowledge and the confidence in their
judgments are pivotal considerations. This study provides the fundamental operational principles and aggregation
operators associated with SFSs and Z-numbers, encompassing weighted geometric and arithmetic operators along-
side fully developed operators tailored for SFZs numbers. Subsequently, a case study and comparative analysis are
conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies. Integrating
the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant
on expert input. Further, this combination serves as a comprehensive tool for decision-makers, enabling them to
achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions. The case
study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios, showcasing its
ability to improve consensus-building processes and enhance decision outcomes. Additionally, the comparative
analysis highlights the superiority of the integrated approach over traditional methodologies, underscoring its
potential to revolutionize decision-making practices in uncertain environments.
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1 Introduction

Recently, numerous scholars have focused on studying the representation of uncertain informa-
tion, and one notable approach is the utilization of fuzzy set theory, which employs membership
degrees (MD) to capture uncertainty. Many extended models have been developed based on classic
fuzzy sets. Zadeh [1] introduced the idea of Fuzzy Sets (FSs) in 1965. The concept of FS is to use an
MD (α with α ∈ [0, 1]) to evaluate criteria. In several circumstances, the FSs cannot handle knowledge
supplied to a person through truth and falsity grades. Therefore, Atanassov [2] developed the theory
of Intuitionistic Fuzz Sets (IFSs) by adding the term of a non-membership degree (NMD) denoted
by β such that β ∈ [0, 1]. IFS is a comprehensive and robust strategy for dealing with complicated
and unreliable data in decision-making settings. Numerous scholars indicated that IFS is a more
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comprehensive and robust strategy for dealing with complex and unreliable data in decision-making
settings than FS. IFS theory has been used by many scholars in various fields [3,4]. However, the IFS
cannot handle this if someone offers such values; the sum of MD and NMD exceeds the unit interval.
Therefore, based on the weakness of IFS, Yager et al. [5] introduced the concept of Pythagorean fuzzy
sets (PyFSs), which have a more flexible condition because they take the square of MD and NMD with
α + β ∈ [0, 1]. Due to the flexible conditions of objects, PyFSs can reduce information loss and are
widely used by many scholars in various business fields [6,7]. However, if the square of MD and NMD
exceeds 1, PyFs cannot handle this object. This is the reason why Yager [8] continuously developed
the q-Rung Orthopair Fuzzy Sets (qROFs) with the restriction that the sum of the q-powers for the
MD and NMD cannot be greater than the unit interval (αq + βq ∈ [0, 1] , q ∈ Z+). The q-ROFS has
received much use and has attracted more interest from researchers because of its structure [9,10].

While q-ROF offers notable advantages, researchers may encounter challenges when assessing
information. In numerous real-life scenarios, MD and NMD may fall short in accurately expressing
information, often due to instances of abstention and refusal, similar to situations encountered in
voting or collecting human opinions. Cuong et al. [11] proposed the Picture Fuzzy Sets (PFSs) to
overcome these problems with four degrees, i.e., MD, NMD, an abstinence degree (AD), and refusal
degree (RD), with the condition (α + β + γ ∈ [0, 1]), where MD, AD, and NMD are denoted by
α, β, and γ , respectively. PFS is a more robust method of handling complex and unreliable information
in decision-making difficulties. Since its debut, PFS has drawn the fascination of numerous works
[12,13]. Although PFSs can find more information loss than IFSs, PyFs, and q-ROFs, PFSs still have
MD, AD, and NMD limitations, making it impossible for decision-makers to voice their opinions
independently. Kutlu Gündoğdu et al. [14] recognized this problem and suggested an extension of
PFS known as Spherical Fuzzy Sets (SFSs), such that the total of the squares of the MD, AD,
and NMD is confined to [0,1] (or α2 + β2 + γ 2 ∈ [0, 1]). Compared to PFS, DEs in SFS have
more discretion when making decisions. SFSs is currently a helpful tool for evaluating information
and has been used in several domains [15]. Since SFSs were introduced, they have attracted the
attention of many researchers. Ashraf et al. [16] developed spherical fuzzy t’-norms and spherical
fuzzy t’-conorms. It also presented a spherical fuzzy negator and several classes of spherical fuzzy
t’-norms and t-conorms, which help develop the aggregation operator that aggregates the spherical
fuzzy data. Ali et al. [17] proposed the complex spherical fuzzy Bonferroni mean (CSFBM) and
complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators based on complex spherical
fuzzy sets (CSFSs), integrating with the Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) to examine the suggested procedures. Güner et al. [18] presented the generalized
spherical fuzzy sets application of a notion about aggregation operators from SFSs by introducing
Einstein sum, product, and scalar multiplication based on Einstein’s triangular norm and conorm.
Ashraf et al. [19] developed Spherical fuzzy Dombi weighted averaging (SFDWA), Spherical fuzzy
Dombi ordered weighted averaging (SFDOWA), Spherical fuzzy Dombi hybrid weighted averaging
(SFDHWA), Spherical fuzzy Dombi weighted geometric (SFDWG), Spherical fuzzy Dombi ordered
weighted geometric (SFDOWG), and Spherical fuzzy Dombi hybrid weighted geometric (SFDHWG)
aggregation operators and discuss several properties of these aggregation operators. Furthermore,
SFSs are usually combined with the MCDM method due to its advantages. Kutlu Gündoğdu et al. [14]
extended traditional Weighted Aggregated Sum Product Assessment (WASPAS), VIseKriterijumska
Optimizacija I KOmpromisno Resenje (VIKOR), Analytic Hierarchy Process (AHP), and TOPSIS
methods to spherical fuzzy WASPAS (SF-WASPAS), spherical fuzzy VIKOR (SF-VIKOR), spherical
fuzzy AHP (SF-AHP), and spherical fuzzy TOPSIS (SF-TOPSIS) methods to deal with the complexity
of MCDM problems.
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Drawing upon an extensive literature review, this study highlights a significant gap in the current
decision-making methodologies, particularly in MCDM. The intrinsic challenge lies in the imperfect
nature of available information, characterized by its ambiguity, unreliability, and partiality [18].
While conventional fuzzy numbers offer a mechanism for grappling with uncertainty, they often
overlook the crucial aspect of certainty within the data [19]. Addressing this shortfall, Z-numbers
emerge as a promising avenue, providing a more nuanced portrayal of incomplete information [20].
These Z-numbers, represented as Z (A, R), encapsulate two critical components: A, denoting the
variable limitation, and R, signifying the reliability degree. This conceptualization presents a more
profound and adaptable framework for formalizing the intricacies of decision-making processes
[21]. As interpreted by Nguyen et al. [22], the Z number generalizes real, interval, random, and
fuzzy numbers, thus offering a heightened level of effectiveness in modeling real-world systems. The
versatility of Z-number theory extends to its ability to accurately encapsulate incomplete information
in a manner akin to natural language expressions [20]. However, the prevailing Delphi method, whether
traditional or spherical fuzzy, often falters in adequately factoring in the reliability of expert opinions,
thereby jeopardizing the integrity of analysis outcomes. For instance, Mohandes et al. [23] constructed
a Pentagonal Fuzzy Delphi Method (PFDM) to determine possible causes of associated accidents on
building sites. Similarly, Nguyen’s work utilized the SF-Delphi technique to establish expert consensus
on the criteria governing employee satisfaction in the logistics service sector [24], as well as to validates
critical criteria influencing Vietnamese customers’ apartment selection [25].

Nevertheless, both traditional Delphi and SF-Delphi models ignore the inherent uncertainty sur-
rounding expert opinions, which can significantly sway analysis results and influence [22]. Therefore,
the primary objective of this study is to lay the groundwork for the pioneering spherical fuzzy Z-
number model. This model showcases exceptional adeptness in articulating ambiguous information,
thus serving as a valuable tool for informed decision-making amidst uncertainty. Notably, it not only
enhances the precision of decision-making data but also embodies qualities of fuzziness, flexibility, and
applicability, as evidenced in Table 1. Furthermore, this research introduces the PHI model, founded
on fully developed Z-SF laws, and presents it through two distinct approaches: the PHI-based SF
approach and the PHI-based Z-numbers approach. Finally, to validate the efficacy of the new model,
the study applies it to identify critical barriers to adopting logistics supply chain management (SCM)
simulation software within Vietnamese universities.

Table 1: Superiority of Z-SFSs over other fuzzy sets

Sets α β γ Reliability Constraints

Fuzzy sets [1] 0 ≤ α ≤ 1
IFSs [2] 0 ≤ α + β ≤ 1
PyFSs [26] 0 ≤ α2 + β2 ≤ 1
qROFs [8] 0 ≤ αq + βq ≤ 1
PFSs [11] 0 ≤ α + β + γ ≤ 1
SFSs [14] 0 ≤ α2 + β2 + γ 2 ≤ 1
Z-number [27] 0 ≤ α (A, F) ≤ 1
This study (SFZs) 0 ≤ α2 (A, F) ≤ + β2 (A, F) ≤ + γ 2 (A, F) ≤ 1

Following this, this study’s objective addresses two key questions: (RQ1) Does the new PHI
method capture vague and uncertain information better than the previous group expert consensus



1658 CMC, 2024, vol.80, no.1

techniques? (RQ2) Applying the new PHI method, what are the crucial barriers to adopting logistics
SCM simulation software in universities in Vietnam?

This research pioneers the fully integrated use of Z-SF numbers within the Delphi approach by
leveraging Z-numbers for information gathering and employing calculations based on SFSs. Initially,
experts’ assessments of criteria importance and evaluation reliability are collected simultaneously
using a language scale. Subsequently, various aggregation approaches are applied to identify essential
criteria influencing the research problem. Finally, correlations are employed to compare the PHI
method based on the Spherical Fuzzy approach and the Z-SF Delphi method based on the Z-numbers
approach with other techniques. The significant contributions of this study can be summarized
as follows:

(i) This research introduces a novel method that surpasses previous Delphi approaches by
integrating the advantages of SFSs and Z-numbers. Unlike prior methods [22,25], this new approach
not only adeptly handles the ambiguity and uncertainty of information using SFSs but also accounts
for the information’s reliability level.

(ii) The proposed combined approach enhances established techniques, analytical precision, and
decision-making abilities when investigating MCDM problems. Scholars and policymakers can utilize
the two suggested approaches to the new method as a guide when applying them to various study
areas, thus advancing the field’s analytical capabilities and decision-making efficacy.

2 Preliminaries and Basic Theory

This section introduces several fundamental definitions and operations that played a crucial role
in shaping the suggested work.

Definition 1 [1]: Suppose F is the universal set, then the fuzzy set is defined as:

X = {〈f , μF (f )〉|f ∈ F}
where μF (f ) is a membership degree of f in X and μF : N → [0, 1].

Definition 2 [27]: A Z-number is an ordered pair of fuzzy numbers (A, R). The A component is the
membership function, while R is the reliability of the A.

Definition 3 [22]: By applying the concept of fuzzy expected value, the Z-number can be converted
to a fuzzy number:

EA (f ) =
∫

F

f μF (f ) df (1)

First, the Z-number (R) is transformed into a numerical value as the following geometrical:

ξ =
∫

f μR (f ) df∫
μR (f ) df

(2)

The computed weight ξ is added to the first component (A):

X
ξ =

{
(f , μAξ (f )) , μAξ (f ) = ξ .μA (f ) , f ∈ √ξF

}
(3)
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Then, the obtained fuzzy number X
′
:

X
′ =

{
(f , μX ′ (f )) , μX ′ (f ) =

(
f√
ξ

)
.μX ′ (f ) , f ∈ √ξF

}
(4)

Definition 4 [14]: Let F be the universal set; the spherical fuzzy set is defined as follows:

X = {〈f , (σ (f ) , ς(f ), τ(f ))〉|f ∈ F} ,

where σ (f ) → [0, 1] , ς (f ) → [0, 1] , and τ(f ) → [0, 1] be the degree of membership, non-membership,
and hesitancy of f to X for each f , respectively, with the condition that 0 ≤ σ 2 (f )+ς 2 (f )+ τ 2(f ) ≤ 1.

Definition 5 [21]: Let F be the universal set, then Spherical fuzzy Z-numbers are defined as the
subsequent form:

Xz = {〈
f ,
(
σXz , ςXz , τXz

)
,
(
	Xz , ρXz , ηXz

)〉|f ∈ N
}

,

where σAz , ςAz , τAz are the membership, non-membership, and hesitancy degrees of A component,
while 	Az , ρAz , ηAz are membership the membership, non-membership, and hesitancy degrees of R
component; σAz → [0, 1] , ςAz → [0, 1] , and τAz → [0, 1] ; and 	Xz → [0, 1] , ρXz→[0,1], and ηXz → [0, 1].
And:

0 ≤ σ 2
Xz

+ ς 2
Xz

+ τ 2
Xz

≤ 1, and

0 ≤ 	 2
Xz

+ ρ2
Xz

+ τ 2
Xz

≤ 1

Definition 6 [21]: Suppose Xz = ((
σXz , ςXz , τXz

)
,
(
	Xz , ρXz , ηXz

))
and Yz = ((

σYz , ςYz , τY

)
,
(
	Yz , ρYz , ηYz

))
be two SFZNs and λ > 0. Then, by the following relations:

Union

Xz ∪ Yz =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝max
(
σXz , σYz

)
, min

(
ςXz , ςYz

)
, min

(√
1 − max

(
σXz , σYz

)2 + min
(
ςXz , ςYz

)2
)

,

max
(
τXz , τY

)
⎞⎠ ,⎛⎝max

(
	Xz , 	Yz

)
, min

(
ρXz , ρYz

)
, min

(√
1 − max

(
	Xz , 	Yz

)2 + min
(
ρXz , ρYz

)2
)

,

max
(
ηXz , ηYz

)
⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

Intersection

Xz ∩ Yz =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝min
(
σXz , σYz

)
, max

(
ςXz , ςYz

)
, max

(√
1 − min

(
σXz , σYz

)2 + max
(
ςXz , ςYz

)2
)

,

min
(
τXz , τY

)
⎞⎠ ,⎛⎝min

(
	Xz , 	Yz

)
, max

(
ρXz , ρYz

)
, max

(√
1 − min

(
	Xz , 	Yz

)2 + max
(
ρXz , ρYz

)2
)

,

min
(
ηXz , ηYz

)
⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

Addition

Xz ⊕ Yz =
⎛⎜⎝

(√(
σ 2

Xz
+ σ 2

Yz
− σ 2

Xz
.σ 2

Yz

)
, ςXz .ςYz ,

√(
1 − σ 2

Yz

)
τ 2

Xz
+ ((

1 − σ 2
Xz

)
τ 2

Yz

)− τ 2
Xz

.τ 2
Yz

)
,(√(

	 2
Xz

+ 	 2
Yz

− 	 2
Xz

.	 2
Yz

)
, ρXz .ρYz ,

√(
1 − 	 2

Yz

)
η2

Xz
+ ((

1 − 	 2
Xz

)
η2

Yz

)− η2
Xz

.η2
Yz

)
⎞⎟⎠ (7)
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Multiplication

Xz ⊗ Yz =
⎛⎝
(
σXz .σYz ,

√
ς 2

Xz
+ ς 2

Yz
− ς 2

Xz
.ς 2

Yz
,
√(

1 − ς 2
Yz

)
τ 2

Xz
+ (

1 − ς 2
Xz

)
τ 2

Yz
− τ 2

Xz
.τ 2

Yz

)
,(

	Xz .	Yz ,
√

ρ2
Xz

+ ρ2
Yz

− ρ2
Xz

.ρ2
Yz

,
√(

1 − ρ2
Yz

)
η2

Xz
+ (

1 − ρ2
Xz

)
η2

Yz
− η2

Xz
.η2

Yz

)
⎞⎠ (8)

Multiplication by a scalar; λ > 0

λ · Xz =

⎛⎜⎜⎝
(√

1 − (
1 − σ 2

Xz

)λ

, ςλ

Xz
,
√(

1 − σ 2
Xz

)λ − (
1 − σ 2

Xz
− τ 2

Xz

)λ

)
,(√

1 − (
1 − 	 2

Xz

)λ

, ρλ

Xz
,
√(

1 − 	 2
Xz

)λ − (
1 − 	 2

Xz
− η2

Xz

)λ

)
⎞⎟⎟⎠ (9)

Power of Xz; λ > 0

X λ

z =

⎛⎜⎜⎝
(

σ λ

Xz
,
√

1 − (
1 − ς 2

Xz

)λ

,
√(

1 − ς 2
Xz

)λ − (
1 − ς 2

Xz
− τ 2

Xz

)λ

)
,(

	 λ

Xz
,
√

1 − (
1 − ρ2

Xz

)λ

,
√(

1 − ρ2
Xz

)λ − (
1 − ρ2

Xz
− η2

Xz

)λ

)
⎞⎟⎟⎠ (10)

Definition 7 [21]: Spherical fuzzy Z-number weighted arithmetic (SFZNWA) with respect to
λ = (λ1, λ2, . . . , λn) ; λi ∈ [0, 1] ;

∑n

i=1 λi = 1, SFZNWA is defined as:

SFZNWAλ

(
Xz1

, . . . , Xzn

) =
n∑

i=1

λ1.Xzi = λ1.Xz1
+ λ2.Xz2

+ . . . + λn.Xzn (11)

=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

√
1 −

n∏
i=1

(
1 − σ 2

Xzi

)λi

,
n∏

i=1

ς
λi
Xzi

,√
n∏

i=1

(
1 − σ 2

Xzi

)λi −
n∏

i=1

(
1 − σ 2

Xzi
− τ 2

Xzi

)λi

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
√

1 −
n∏

i=1

(
1 − 	 2

Xzi

)λi

,
n∏

i=1

ρ
λi
Xzi

,√
n∏

i=1

(
1 − 	 2

Xzi

)λi −
n∏

i=1

(
1 − 	 2

Xzi
− η2

Xzi

)λi

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

Definition 8 [21]: Spherical fuzzy Z-number weighted geometric (SFZNWG) with respect to
λ = (λ1, λ2, . . . , λn) ; λi ∈ [0, 1] ;

∑n

i=1 λi = 1, SFZNWG is defined as:

SFZNWGλ

(
Xz1

, . . . , Xzn

) =
n∏

i=1

X λi
zi

= X λ1
z1

· X λ2
z2

· . . . · X λi
zi

(12)

=

⎛⎜⎜⎝
⎛⎜⎜⎝

∏n
i=1 σ

λi
Xzi

,

√
1 −∏n

i=1

(
1 − ς2

Xzi

)λi
,√∏n

i=1

(
1 − ς2

Xzi

)λi −∏n
i=1

(
1 − ς2

Xzi
− τ 2

Xzi

)λi

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
∏n

i=1 	
λi
Xzi

,

√
1 −∏n

i=1

(
1 − ρ2

Xzi

)λi
,√∏n

i=1

(
1 − ρ2

Xzi

)λi −∏n
i=1

(
1 − ρ2

Xzi
− η2

Xzi

)λi

⎞⎟⎟⎠
⎞⎟⎟⎠

Definition 9 [14]: SFZNs are transformed into Spherical fuzzy numbers XF :

XF = ((
σXz , ςXz , τXz

)⊗ (
	Xz , ρXz , ηXz

))
=
(

σXz .	Xz ,
√

ς 2
Xz

+ ρ2
Xz

− ς 2
Xz

.ρ2
Xz

,

√(
1 − ρ2

Xz

)
τ 2

Xzi
+
(

1 − ς 2
Xzi

)
η2

Xzi
− τ 2

Xzi
.η2

Xzi

)
(13)
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3 Proposed Model of PHI Model-Based SFZNs
3.1 PHI-Based SFSs Approach

The expert’s evaluations can be displayed as Z-numbers, indicating the boundary’s certainty and
value for the required problem. With the combination of SFZNs, the author gathered the experts’
views of the concerned topic and the reliability level of their rate using the linguistic scales in
Tables 2 and 3.

Table 2: The linguistic scale for restriction components

Linguistic terms Code
(
σXz , ςXz , τXz

)
Absolutely more importance AMI (0.9, 0.1, 0.1)
Very high importance VHI (0.8, 0.2, 0.2)
High importance HI (0.7, 0.3, 0.3)
Slightly more important SMI (0.6, 0.4, 0.4)
Equally important EI (0.5, 0.5, 0.5)
Slightly low importance SLI (0.4, 0.6, 0.4)
Low importance LI (0.3, 0.7, 0.3)
Very low importance VLI (0.2, 0.8, 0.2)
Absolutely low importance ALI (0.1, 0.9, 0.1)

Table 3: The linguistic scale for reliability components

Linguistic terms Code
(
	Xz , ρXz , ηXz

)
Very sure VS (0.9, 0.1, 0)
Sure SU (0.8, 0.2, 0.1)
Possible PO (0.7, 0.3, 0.2)
Uncertain UN (0.6, 0.4, 0.3)

Step 1: Experts Ei = (1, 2, . . . , n) declare their evaluations, giving SFZ numbers using Eq. (14):

Xzi = ((
σXzi

, ςXzi
, τXzi

)
,
(
	Xzi

, ρXzi
, ηXzi

))
(14)

where the
(
σXz , ςXz , τXz

)
component is the rank of the criteria using the linguistic terms listed in Table 2,

while
(
	Xz , ρXz , ηXz

)
component is the level of reliability using the linguistic terms listed in Table 3.

Step 2: The SFZNWA Eq. (11) or SFZNWG operator Eq. (12) is used to obtain the significance
level of each indicator, which is displayed in Eq. (15):

Uagg
z =

⎡⎢⎢⎢⎣
((

σXz11
, ςXz11

, τXz11

)
,
(
	Xz11

, ρXz11
, ηXz11

)) · · ·
((

σXz1m
, ςXz1m

, τXz1m

)
,
(
	Xz1m

, ρXz1m
, ηXz1m

))
...

...
...((

σXzn1
, ςXzn1

, τXzn1

)
,
(
	Xzn1

, ρXzn1
, ηXzn1

))
· · · ((

σXznm
, ςXznm

, τXznm

)
,
(
	Xznm

, ρXznm
, ηXznm

))
⎤⎥⎥⎥⎦

(15)
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Step 3: Transform SFZNs into SFSs numbers using Eqs. (13) and (16).

Uagg
S =

⎡⎢⎣(μ11, ν11, π11) · · · (μ1m, ν1m, π1m)
...

. . .
...

(μn1, νn1, πn1) · · · (μnm, νnm, πnm)

⎤⎥⎦ (16)

Step 4: Transforming SFSs numbers into crisp numbers by using Eq. (17):

Score (di) = (
2μij − πij

)2 − (
νij − πij

)2
(17)

Step 5: Calculate the threshold by Eq. (18) and validate the criteria.

D =
n∑

i=1

di

m
(18)

If di < D, criterion Ci is removed, and if di > D, criterion Ci is valid.

3.2 PHI-Based Z-Number Approach

Step 1: This step is the same as Step 1 of the PHI-Based SFSs Approach.

Step 2: The Z-numbers are converted into SFSs numbers by Eqs. (2)–(4). The resulting fuzzy
numbers take the following form:

X ′
zi =

(
μX ′zi

, νX ′zi
, πX ′zi

)
(19)

Step 3: Eq. (16) presents the SFZ decision matrix.

Step 4: The utilization of either the SFZNWA Eq. (11) or the SFZNWG operator Eq. (12) is
applied to determine the significance level of the criterion, as illustrated in Eq. (20):
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Step 5: Transforming Spherical fuzzy numbers into crisp numbers by using Eq. (17).

Step 6: Calculate the threshold by Eq. (18) and validate the criteria. If di < D, criterion Ci is
removed, and if di > D, criterion Ci is valid.

4 Case Study

Adopting logistics Supply Chain Management (SCM) simulation software in Vietnamese univer-
sities has encountered various barriers, hindering its widespread implementation. Many universities in
Vietnam may not fully comprehend how these software solutions can enhance the learning experience
for students in logistics and supply chain management programs. Financial constraints pose a
significant challenge, as investing in advanced simulation software requires a substantial upfront cost.
Moreover, there is a shortage of skilled professionals who can effectively integrate and utilize SCM
simulation software in educational settings. Overcoming these barriers will necessitate targeted efforts
to raise awareness, secure funding, and provide adequate training to educators, thereby fostering a
conducive environment for integrating logistics SCM simulation software in Vietnamese universities.
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Through a comprehensive literature review, Table 4 highlights various challenges organizations face
when trying to adopt simulation software, such as EPR (Enterprise Resource Planning) or logistics
Supply Chain Management.

Table 4: Barriers related to the adoption of logistics scm simulation platforms

Code Barriers Code Barriers

C1 High upfront costs C11 Limited computational power
C2 Lack of expertise C12 Lack of industry-specific templates
C3 Integration challenges C13 Inability to adapt to business changes
C4 Cultural resistance C14 Opportunity cost
C5 Complexity C15 Uncertain ROI
C6 Integration challenges with analytics tools C16 Lack of trust
C7 Data security concerns C17 Resistance to change
C8 Theoretical results C18 Vendor expertise mismatch
C9 Long sales cycles C19 Customization complexity
C10 Implementation time C20 Automation concerns

4.1 Demographic of Experts

A questionnaire comprising 20 barriers associated with adopting the logistic SCM simulation
platform was distributed to 13 experts within the educational domain. Responses were received from
10 experts, and Table 5 provides an overview of their demographics.

Table 5: Experts’ demographic information

EP’s information EP1 EP2 EP3 EP4 EP5

Years of experience 15 14 10 12 12
Education level Doctor Master Master Master Master
Positions Policymaker Lecturer University

adminis-
trator

Lecturer Lecturer

Linguistic evaluation AMI HI EI SMI HI
EP’s weights 0.114 0.104 0.086 0.096 0.104
EP’s information EP6 EP7 EP8 EP9 EP10
Years of experience 18 15 11 12 11
Education level Doctor Doctor Doctor Master Master
Positions Lecturer Lecturer University

adminis-
trator

University
administra-
tor

Policymaker

Linguistic evaluation AMI HI EI HI EI
EP’s weights 0.114 0.104 0.086 0.104 0.086
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Based on the information provided in Table 5, it can be affirmed that the selected experts possess
diverse experiences, educational backgrounds, and professional positions within the educational
domain. This diversity contributes to a well-rounded and comprehensive evaluation of the barriers
to adopting the logistic SCM simulation platform. The linguistic evaluations and weights assigned by
each expert further underscore the suitability of this expert panel in offering valuable insights for this
study.

4.1.1 Results of PHI-Based SFSs Approach

After collecting experts’ evaluations, the author transforms this information into SFZNs numbers
based on Tables 2 and 3. The SFZNWA–Eqs. (11) and (15) are used to obtain the significance vector
for each barrier. The SFZN significance vectors are transformed into SFSs numbers by Eq. (16), and
SFSs numbers are continually transformed into crisp numbers using Eq. (17). Finally, the threshold
is calculated by Eq. (18) to validate the barriers. The results are displayed in Table 6. Similarly, the
SFZNWG results are shown in Table 7.

Table 6: Results of PHI-based SFSs approach with SFZNWA

Barriers SFZNWA SF numbers Crisp
numbers

Valid Rank

(σ , ς , τ) (	 , ρ, η) (μ, ν, π)

C1 (0.774, 0.232, 0.255) (0.878, 0.122, 0.043) (0.68, 0.26, 0.256) 1.217 Consent 10
C2 (0.626, 0.389, 0.366) (0.884, 0.116, 0.037) (0.553, 0.403, 0.365) 0.548 Reject 17
C3 (0.758, 0.247, 0.266) (0.886, 0.115, 0.035) (0.671, 0.271, 0.266) 1.158 Consent 14
C4 (0.6, 0.412, 0.356) (0.876, 0.124, 0.045) (0.526, 0.427, 0.355) 0.480 Reject 19
C5 (0.767, 0.239, 0.265) (0.886, 0.114, 0.034) (0.68, 0.264, 0.265) 1.199 Consent 12
C6 (0.613, 0.394, 0.39) (0.87, 0.13, 0.051) (0.533, 0.412, 0.389) 0.459 Reject 20
C7 (0.806, 0.197, 0.214) (0.848, 0.152, 0.069) (0.684, 0.247, 0.222) 1.314 Consent 6
C8 (0.805, 0.199, 0.221) (0.851, 0.15, 0.067) (0.685, 0.247, 0.227) 1.305 Consent 7
C9 (0.797, 0.208, 0.228) (0.839, 0.162, 0.076) (0.668, 0.261, 0.236) 1.210 Consent 11
C10 (0.787, 0.215, 0.227) (0.84, 0.161, 0.075) (0.661, 0.267, 0.235) 1.182 Consent 13
C11 (0.773, 0.229, 0.236) (0.85, 0.151, 0.068) (0.657, 0.272, 0.242) 1.149 Consent 15
C12 (0.817, 0.188, 0.212) (0.858, 0.143, 0.062) (0.701, 0.234, 0.218) 1.400 Consent 2
C13 (0.787, 0.22, 0.251) (0.885, 0.116, 0.036) (0.696, 0.247, 0.251) 1.301 Consent 8
C14 (0.799, 0.205, 0.225) (0.87, 0.13, 0.051) (0.696, 0.241, 0.228) 1.354 Consent 5
C15 (0.805, 0.199, 0.216) (0.842, 0.159, 0.074) (0.677, 0.253, 0.224) 1.277 Consent 9
C16 (0.82, 0.184, 0.211) (0.849, 0.151, 0.068) (0.697, 0.237, 0.218) 1.380 Consent 3
C17 (0.809, 0.196, 0.218) (0.86, 0.141, 0.06) (0.695, 0.24, 0.224) 1.362 Consent 4
C18 (0.704, 0.305, 0.313) (0.851, 0.15, 0.067) (0.6, 0.336, 0.315) 0.782 Reject 16
C19 (0.825, 0.18, 0.208) (0.849, 0.151, 0.068) (0.701, 0.233, 0.216) 1.406 Consent 1
C20 (0.66, 0.354, 0.342) (0.812, 0.188, 0.093) (0.536, 0.395, 0.345) 0.524 Reject 18

Threshold 1.100
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Table 7: Results of PHI-based SFSs approach with SFZNWG

Barriers SFZNWG SF numbers Crisp
numbers

Valid Rank

(σ , ς , τ) (	 , ρ, η) (μ, ν, π)

C1 (0.726, 0.296, 0.31) (0.87, 0.137, 0.054) (0.631, 0.324, 0.311) 0.906 Consent 13
C2 (0.552, 0.466, 0.408) (0.877, 0.129, 0.047) (0.485, 0.48, 0.406) 0.311 Reject 18
C3 (0.718, 0.298, 0.31) (0.879, 0.127, 0.045) (0.631, 0.322, 0.311) 0.906 Consent 12
C4 (0.543, 0.472, 0.377) (0.867, 0.14, 0.057) (0.471, 0.488, 0.376) 0.307 Reject 20
C5 (0.713, 0.307, 0.315) (0.88, 0.126, 0.044) (0.627, 0.33, 0.315) 0.882 Consent 15
C6 (0.581, 0.429, 0.412) (0.86, 0.147, 0.062) (0.5, 0.449, 0.41) 0.345 Reject 17
C7 (0.771, 0.246, 0.253) (0.838, 0.168, 0.079) (0.646, 0.296, 0.26) 1.066 Consent 1
C8 (0.762, 0.262, 0.277) (0.84, 0.166, 0.077) (0.64, 0.307, 0.282) 0.996 Consent 9
C9 (0.755, 0.264, 0.271) (0.829, 0.176, 0.084) (0.626, 0.314, 0.278) 0.948 Consent 11
C10 (0.764, 0.246, 0.249) (0.83, 0.175, 0.083) (0.634, 0.299, 0.257) 1.020 Consent 7
C11 (0.757, 0.25, 0.252) (0.839, 0.167, 0.077) (0.636, 0.297, 0.258) 1.025 Consent 6
C12 (0.767, 0.262, 0.279) (0.847, 0.16, 0.072) (0.65, 0.304, 0.283) 1.033 Consent 5
C13 (0.723, 0.305, 0.323) (0.878, 0.128, 0.046) (0.635, 0.329, 0.323) 0.898 Consent 14
C14 (0.758, 0.262, 0.27) (0.86, 0.147, 0.062) (0.653, 0.298, 0.273) 1.064 Consent 2
C15 (0.769, 0.248, 0.253) (0.832, 0.174, 0.082) (0.64, 0.299, 0.261) 1.038 Consent 4
C16 (0.768, 0.264, 0.284) (0.839, 0.168, 0.078) (0.644, 0.31, 0.289) 0.997 Consent 8
C17 (0.762, 0.261, 0.269) (0.849, 0.158, 0.071) (0.647, 0.302, 0.274) 1.039 Consent 3
C18 (0.642, 0.379, 0.361) (0.84, 0.166, 0.077) (0.54, 0.409, 0.362) 0.513 Reject 16
C19 (0.767, 0.266, 0.285) (0.839, 0.168, 0.078) (0.643, 0.311, 0.29) 0.993 Consent 10
C20 (0.585, 0.434, 0.382) (0.808, 0.194, 0.096) (0.473, 0.468, 0.383) 0.310 Reject 19

Threshold 0.830

The Spearman correlation (Eq. (21)) is applied to investigate the relationship between two
operators, SFZNWA and SFZNWG, rs = 0.727 (higher than 0.7). Therefore, the ranking results of
SFZN-Delphi Using the SFs Approach by two operators have a high level of consistency. Furthermore,
according to Tables 5 and 6, both SFZN-Delphi of SFZNWA and SFZNWG indicated that there are
15 barriers appropriate to the research scope, and five are eliminated. Specifically, the barriers C2, C4,
C6, C18, and C20 were not suitable for adopting SCM simulation platforms for logistics in universities
in the context of Vietnam.

rs = 1 − 6
∑(

Rxi − Ryi

)2

n (n2 − 1)
(21)

4.1.2 Results of PHI-Based Z-Numbers Approach

Unlike SFZN-Delphi, using the SFs approach, the reliability components were presented through
Eq. (19) after collecting expert evaluation. Then, the author took the square of ξ to multiply with
restriction components by Eq. (16). Then, the SFZNWA (Eq. (11)), SFZNWG operator (Eq. (12)),
and Eq. (20) obtain the significance vector for each barrier. The results are shown in Tables 8 and 9.
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Like SFZN-Delphi Using SFs Approach, The Spherical fuzzy numbers are transformed into crisp
numbers using Eq. (17). Finally, the threshold is calculated by Eq. (18) to validate the barriers.

Table 8: The results of ξ

Linguistic terms Code (� , ρ, η) ξ

Very sure VS (0.9, 0.1, 0.1) 0.333
Sure SU (0.8, 0.2, 0.2) 0.367
Possible PO (0.7, 0.3, 0.3) 0.400
Uncertain UN (0.6, 0.4, 0.4) 0.433

Table 9: Results of PHI-based Z-numbers approach

Barriers SWAM Crisp
numbers

Valid Rank SWGM Crisp
numbers

Valid Rank

(μ, ν, π) (μ, ν, π)

C1 (0.644, 0.424, 0.239) 1.067 Consent 13 (0.602, 0.474, 0.282) 0.812 Consent 12
C2 (0.501, 0.577, 0.319) 0.400 Reject 18 (0.442, 0.628, 0.351) 0.208 Reject 19
C3 (0.627, 0.442, 0.247) 0.977 Reject 15 (0.592, 0.481, 0.281) 0.775 Reject 14
C4 (0.481, 0.593, 0.305) 0.348 Reject 20 (0.434, 0.634, 0.321) 0.200 Reject 20
C5 (0.635, 0.436, 0.249) 1.006 Reject 14 (0.589, 0.486, 0.284) 0.757 Reject 15
C6 (0.491, 0.578, 0.339) 0.358 Reject 19 (0.466, 0.601, 0.356) 0.271 Reject 18
C7 (0.68, 0.382, 0.208) 1.297 Consent 5 (0.651, 0.418, 0.235) 1.103 Consent 1
C8 (0.679, 0.384, 0.213) 1.282 Consent 7 (0.641, 0.431, 0.257) 1.023 Consent 9
C9 (0.673, 0.39, 0.218) 1.243 Consent 8 (0.635, 0.437, 0.25) 1.006 Consent 11
C10 (0.662, 0.4, 0.216) 1.193 Consent 10 (0.641, 0.425, 0.231) 1.067 Consent 3
C11 (0.647, 0.416, 0.222) 1.111 Consent 12 (0.632, 0.433, 0.233) 1.024 Consent 8
C12 (0.691, 0.372, 0.208) 1.353 Consent 3 (0.648, 0.427, 0.259) 1.046 Consent 6
C13 (0.657, 0.413, 0.238) 1.128 Consent 11 (0.601, 0.479, 0.293) 0.791 Reject 13
C14 (0.671, 0.394, 0.216) 1.235 Consent 9 (0.635, 0.437, 0.249) 1.009 Consent 10
C15 (0.679, 0.383, 0.209) 1.291 Consent 6 (0.649, 0.42, 0.236) 1.096 Consent 2
C16 (0.696, 0.366, 0.206) 1.382 Consent 2 (0.65, 0.427, 0.264) 1.046 Consent 5
C17 (0.683, 0.381, 0.212) 1.303 Consent 4 (0.641, 0.433, 0.249) 1.035 Consent 7
C18 (0.577, 0.495, 0.284) 0.715 Reject 16 (0.526, 0.547, 0.32) 0.485 Reject 16
C19 (0.702, 0.361, 0.206) 1.412 Consent 1 (0.65, 0.427, 0.264) 1.046 Consent 4
C20 (0.54, 0.534, 0.303) 0.551 Reject 17 (0.478, 0.592, 0.334) 0.320 Reject 17
Threshold 1.032 0.806

The Spearman correlation in Eq. (21) is applied to investigate the relationship between two
operators, SFZNWA and SFZNWG, rs = 0.883 (higher than 0.7). Therefore, the ranking results of
SFZN-Delphi Using the Z-Numbers Approach by two operators have a high level of consistency.
However, based on Table 9, the results of the SFZN-Delphi-Based Z-Numbers Approach by the two
operators are slightly different. There are seven barriers eliminated by the SFZNWA operator (C2,
C3, C4, C5, C6, C18 and C20) and eight barriers eliminated by the SFZNWG operator (C2, C3, C4,
C5, C6, C13, C18 and C20).
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4.2 Comparative Analysis

To investigate the appropriateness of the newly proposed methods, the author used three spherical
Z-number approaches proposed by Alkan et al. [28] to assess the relationships between various Delphi
techniques.

4.2.1 The First Is Named SFZN-Delphi, and It Has Defuzzified Restriction and Reliability Functions

First, after collecting expert evaluations, we defuzzify the reliability components in each pairwise
comparison matrix using Eq. (22) and normalize the obtained values using Eq. (23). Then, we multiply
the SF restriction values in each pairwise comparison matrix by the square root of the normalized
reliability values using Eq. (24). Third, Eqs. (11) or (12) is used to aggregate the values in pairwise
comparison matrices obtained in the previous step. Finally, the score function is found using Eq. (22)
and compared with the threshold by Eq. (18) to validate the criteria.

S
(
w̃s

j

) =
√√√√∣∣∣∣∣100 ·

[(
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4.2.2 The Second Was Named SFZN-Delphi with Aggregated and Defuzzified Reliability Function

First, the components in each pairwise comparison matrix are aggregated and defuzzified using
Eqs. (11) or (12) and (22), respectively, and normalize the obtained values using Eq. (23). Secondly,
we multiply the aggregated restriction vector by the square root of the normalized reliability values
using Eq. (24). Finally, the score function is found using Eq. (22) and compared with the threshold by
Eq. (18) to validate the criteria.

4.2.3 The Third Is Named Fully Completed PHI-Based SFZNs Models

Firstly, we compute the square root of each SF number in the reliability matrix. Then, we multiply
the SF restriction values in pairwise comparison matrices by the values obtained before using Eq. (25).
Similarly to the previous methods, the score function is found using Eq. (22) and compared with the
threshold using Eq. (18) to validate the criteria.
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The results of the three approaches for using SWAM and SWGM operators are presented in
Tables 10 and 11, respectively. The results show that, from the perspective of the SWAM operator,
the first and second approaches have 14 appropriate and six inappropriate barriers (C2, C3, C4, C6,
C18 and C20). The third approach has 15 appropriate and five unacceptable barriers (C2, C4, C6, C18,
and C20). The results of the third approach are consistent with those of the SFZN-Delphi approach.
In SWGM, the three approaches have 15 appropriate and five inappropriate barriers (C2, C4, C6, C18,
and C20).
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Table 10: Results of three approaches by using the SWAM operator

Barriers The first approach The second approach The third approach

Crisp Valid Rank Crisp Valid Rank Crisp Valid Rank

C1 13.932 Consent 12 11.894 Consent 12 20.692 Consent 11
C2 10.112 Reject 18 8.457 Reject 18 16.652 Reject 17
C3 13.490 Reject 15 11.502 Reject 15 20.443 Consent 14
C4 9.542 Reject 20 7.974 Reject 20 15.638 Reject 20
C5 13.851 Consent 14 11.724 Consent 14 20.845 Consent 10
C6 9.728 Reject 19 8.147 Reject 19 16.009 Reject 19
C7 14.934 Consent 5 12.784 Consent 5 21.346 Consent 6
C8 14.821 Consent 7 12.724 Consent 6 21.207 Consent 7
C9 14.464 Consent 9 12.472 Consent 9 20.519 Consent 13
C10 14.269 Consent 11 12.240 Consent 10 20.543 Consent 12
C11 13.873 Consent 13 11.884 Consent 13 20.276 Consent 15
C12 15.244 Consent 3 13.086 Consent 3 21.664 Consent 2
C13 14.326 Consent 10 12.235 Consent 11 21.166 Consent 8
C14 14.771 Consent 8 12.610 Consent 8 21.495 Consent 4
C15 14.833 Consent 6 12.719 Consent 7 21.134 Consent 9
C16 15.287 Consent 2 13.164 Consent 2 21.566 Consent 3
C17 14.984 Consent 4 12.858 Consent 4 21.404 Consent 5
C18 11.964 Reject 16 10.132 Reject 16 18.295 Reject 16
C19 15.457 Consent 1 13.314 Consent 1 21.668 Consent 1
C20 10.667 Reject 17 9.077 Reject 17 16.111 Reject 18

Threshold 13.527 11.550 19.934

Table 11: Results of three approaches by using the SWGM operator

Barriers The first approach The second approach The third approach

Crisp Valid Rank Crisp Valid Rank Crisp Valid Rank

C1 12.832 Consent 13 10.637 Consent 12 19.591 Consent 13
C2 8.600 Reject 19 7.003 Reject 19 14.573 Reject 18
C3 12.580 Consent 14 10.486 Consent 14 19.520 Consent 14
C4 8.450 Reject 20 6.864 Reject 20 14.182 Reject 20
C5 12.542 Consent 15 10.355 Consent 15 19.253 Consent 15
C6 9.062 Reject 18 7.501 Reject 18 15.097 Reject 17
C7 14.023 Consent 1 11.784 Consent 1 20.209 Consent 3
C8 13.753 Consent 7 11.494 Consent 8 20.069 Consent 8
C9 13.538 Consent 10 11.341 Consent 11 19.705 Consent 11
C10 13.708 Consent 9 11.600 Consent 5 19.924 Consent 9

(Continued)
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Table 11 (continued)

Barriers The first approach The second approach The third approach

Crisp Valid Rank Crisp Valid Rank Crisp Valid Rank

C11 13.523 Consent 11 11.460 Consent 10 19.920 Consent 10
C12 13.978 Consent 3 11.619 Consent 3 20.257 Consent 2
C13 12.854 Consent 12 10.561 Consent 13 19.683 Consent 12
C14 13.751 Consent 8 11.468 Consent 9 20.302 Consent 1
C15 13.942 Consent 5 11.727 Consent 2 20.079 Consent 7
C16 13.970 Consent 4 11.607 Consent 4 20.208 Consent 4
C17 13.849 Consent 6 11.531 Consent 7 20.198 Consent 5
C18 10.589 Reject 16 8.746 Reject 16 16.555 Reject 16
C19 13.994 Consent 2 11.588 Consent 6 20.130 Consent 6
C20 9.190 Reject 17 7.569 Reject 17 14.432 Reject 19
Threshold 12.436 10.347 18.694

Figs. 1 and 2 compare the results obtained using these three methods. The comparison reveals
that the value of the crisp numbers of these barriers is similar across the approaches. However, there
are some slight differences in the ranking of these barriers. Specifically, the ranking of the SWAM
operator is more stable than that of the SWGM operator.

Figure 1: Comparative analysis based on rank



1670 CMC, 2024, vol.80, no.1

Figure 2: Comparative analysis based on crisp numbers

To comprehensively understand comparative analysis, we used the Spearman correlation to
compare the ranking of five approaches. Table 12 presents the correlation of the PHI-Based SFSs
Approach with the other approaches, and Table 13 demonstrates the correlation of SFZN-Delphi
Using the Z-numbers Approach with the different approaches. The results show that all correlation
values above 0.7 indicate a strong relationship among the five approaches. The smallest correlation
value of the PHI-Based SFSs Approach with the other approaches is 0.867 and 0.819 with the PHI-
Based Z-numbers Approach with the different approaches.

Table 12: The correlation of the PHI-based SFSs approach with the other approaches

PHI-based SFSs approach Spearman correlation

Using SWAM operator

PHI-based Z-numbers approach 0.938
SFZN-Delphi with Defuzzified restriction and reliability functions 0.962
SFZN-Delphi with aggregated and defuzzified reliability functions 0.958
Fully completed PHI-based SFZNs models 0.959

Using SWGM operator

PHI-based Z-numbers approach 0.878
SFZN-Delphi with defuzzified restriction and reliability functions 0.867
SFZN-Delphi with aggregated and defuzzified reliability function 0.896
Fully completed PHI-based SFZNs models 0.934
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Table 13: The correlation of PHI-based Z-numbers approach with the other approaches

PHI-based Z-numbers approach Spearman correlation

Using SWAM operator

SFZN-Delphi with defuzzified restriction and reliability functions 0.996
SFZN-Delphi with aggregated and defuzzified reliability function 0.996
Fully completed PHI-based SFZNs models 0.819

Using SWGM operator

SFZN-Delphi with defuzzified restriction and reliability functions 0.940
SFZN-Delphi with aggregated and defuzzified reliability function 0.982
Fully completed PHI-based SFZNs models 0.862

4.3 Discussions

This study combined the advantages of the Spherical Fuzzy Sets and Z-Numbers to develop the
new PHI model with two approaches. Based on the results in Section 4.2, the SFS approach indicated
15 appropriate and five rejected barriers in both SWAM and SWGM ways. However, the Z-numbers
approach revealed 13 appropriate barriers, seven left barriers in SWAM, and only 12 appropriate
barriers and eight rejected barriers to adopting logistics SCM simulation software in Vietnamese
universities. The PHI-based Z-numbers approach utilized Kang et al. [29] methodology, which
involves converting a Z-number into a fuzzy number. This method is advantageous due to its easy
computational and analytic complexity, which permits a broad scope of application. Unfortunately,
when Z-numbers are converted to imprecise numbers, a substantial amount of original information is
lost, which diminishes the utility of Z-number-based details in its initial situation [30,31]. Therefore,
the SFZN-Delphi using the Z-numbers app PHI-based Z-numbers approach roach eliminates more
factors than the other method.

In contrast, the PHI-based SFSs approach completely applies the properties of Spherical Fuzzy
Sets. Therefore, this method is more complicated than the PHI-based Z-numbers approach due to their
equations and operators. In this approach, the researcher utilizes more time and assets to address the
MCDM challenges. However, as previously declared regarding the advantages of SFS in Section 1, this
method will provide an expanded outcome compared to the app PHI-based Z-numbers approach with
a typical spherical observation angle. The data will be thoroughly analyzed to maximize the quality of
the information obtained. Depending on the resources and research purposes, researchers can apply
appropriate approaches.

Compared with Alkan’s methods, the PHI-based SFSs approach has results similar to all three.
The similarities between all four methods can be explained by their reliance on the SFS formula.
At the same time, their results provide additional evidence to eliminate 5 barriers unsuitable for
adopting the logistics SCM simulation software in universities in Vietnam. A set of 15 barriers is
confirmed to be the most critical barrier to preventing the process of adopting the logistics SCM
simulation software in universities in Vietnam. Each barrier represents a significant obstacle that must
be carefully addressed to facilitate successful adoption and integration. High upfront costs (C1) emerge
as a prominent barrier, highlighting the financial strain associated with implementing such software
solutions. Integration challenges (C3) further complicate matters, indicating the difficulty in seamlessly
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integrating the software with existing systems and processes. Complexity (C5) underscores the ins and
outs involved in navigating and utilizing the software effectively, while data security concerns (C7)
raise valid apprehensions regarding protecting sensitive information. Theoretical results (C8) signify
a gap between theoretical understanding and practical application, suggesting enhanced training
and support mechanisms are needed. Long sales cycles (C9) and implementation time (C10) reflect
the prolonged and resource-intensive nature of the adoption process, posing logistical challenges
for universities. Computational power (C11) emerges as a critical consideration, highlighting the
necessity of robust infrastructure to support the software’s functionalities. The lack of industry-specific
templates (C12) further exacerbates implementation challenges, necessitating customized solutions
tailored to the unique needs of the education sector. The inability to adapt to business changes
(C13) underscores the importance of software flexibility and scalability, while opportunity cost (C14)
underscores the trade-offs associated with investment in the software. Uncertain ROI (C15) raises
doubts regarding the software’s potential benefits, emphasizing the need for clear and quantifiable
outcomes. The lack of trust (C16) and resistance to change (C17) represent psychological barriers
that must be addressed through effective communication and stakeholder engagement. Customization
complexity (C19) and automation concerns (C20) highlight technical challenges that must be navigated
to ensure smooth adoption and utilization.

5 Conclusions, Implications, Limitations, and Future Research
5.1 Conclusions

The intricacies of information inherently challenge the decision-making process, encompassing
complexity, vagueness, and uncertainty. This study represents a pioneering effort in considering the
PHI method from dual perspectives, incorporating its restriction and reliability components. Through
the presentation of two distinct approaches—the PHI-based SFSs approach and the PHI-based
Z-numbers approach—the author adeptly delineates each methodology’s primary advantages and
limitations. Furthermore, a comprehensive comparative analysis is conducted against three alternative
approaches proposed by Alkan et al. [28], underscoring their appropriateness within the context of
the study. The outcomes of this comparison reveal noteworthy insights. The SFZN-Delphi, using
the Z-numbers approach, encounters 13 barriers when applying SWAM operators and 12 obstacles
with SWGM operators, constituting 20 identified barriers in total. Conversely, the PHI-based SFSs
approach, integrating both SWAM and SWGM operators, identifies 15 barriers, aligning closely
with the proposed research framework. Notably, these findings parallel those observed in SFZN-
Delphi with Defuzzified Restriction and Reliability Functions (SWGM operator), SFZN-Delphi with
Aggregated and Defuzzified Reliability Function (SWGM operator), and Fully Completed PHI-
based SFZNs models across both operator scenarios. This nuanced analysis contributes significantly
to understanding decision-making methodologies, offering valuable insights for future research and
practical applications.

5.2 Practical Implications

The study’s implications are far-reaching, offering valuable insights into enhancing decision-
making processes by introducing a new method based on SFSs and Z-numbers. By comparing these
approaches with existing methods, the study suggests they can improve decision quality, providing
decision-makers with additional tools to navigate complexity, vagueness, and uncertainty. Beyond
conventional domains, the interdisciplinary applications of these methodologies span a multitude of
fields, including economics, engineering, healthcare, and environmental management. Organizations
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stand to benefit immensely from leveraging these findings to optimize their strategic decision-making
processes, thereby gaining a competitive edge in volatile business environments. Moreover, policymak-
ers can harness the power of advanced decision methodologies to inform policy frameworks, effectively
addressing complex societal challenges and enhancing public governance structures. Educational
endeavors are crucial in disseminating knowledge and fostering proficiency in applying SFSs and Z-
numbers, ensuring their practical utilization in real-world decision-making scenarios.

5.3 Limitations and Future Research

While this study offers significant insights, it is essential to acknowledge its limitations, which
should be addressed in future research endeavors. Firstly, the study’s exclusive focus on compar-
ing two new PHI methods based on SFSs and Z-numbers may limit its broader applicability by
potentially overlooking other relevant decision-making methodologies. Moreover, methodological
biases in selecting and implementing comparison methods could impact the efficacy of the proposed
approaches. Additionally, the quality and quantity of available data for analysis may influence the
validity of the conclusions, emphasizing the necessity for robust data collection and analysis techniques
in future studies. Furthermore, the generalizability of the findings might be constrained by the
specific context or domain in which they were tested. To mitigate these limitations, future research
avenues could explore the integration of SFSs and Z-numbers with other MCDM methods such
as DEMATEL, VIKOR, and TOPSIS. Furthermore, applying the proposed approaches to diverse
decision-making problems across various industries and domains could enhance their applicability
and effectiveness. Refinement of the methodologies to address inherent limitations and biases is also
crucial for improving their efficacy. Longitudinal studies could be conducted to assess the long-term
impacts of implementing these methodologies in real-world scenarios. Lastly, involving stakeholders
in the development and validation process of these methodologies could provide valuable insights and
ensure their practical relevance and acceptance.

Acknowledgement: The author appreciates Thu-Hien Tran from the National Taipei University of
Technology, Taiwan, for her hard work and support.

Funding Statement: The author received no specific funding for this study.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Phi-Hung Nguyen, upon reasonable request.

Conflicts of Interest: The author declares that there are no conflicts of interest related to this study.

References
[1] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965. doi: 10.1016/S0019-9958(65)

90241-X.
[2] K. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986. doi:

10.1016/S0165-0114(86)80034-3.
[3] G. Büyüközkan and F. Göçer, “Application of a new combined intuitionistic fuzzy MCDM approach based

on axiomatic design methodology for the supplier selection problem,” Appl. Soft. Comput., vol. 52, no. 3,
pp. 1222–1238, 2017. doi: 10.1016/j.asoc.2016.08.051.

[4] M. G. A. Malik, Z. Bashir, T. Rashid, and J. Ali, “Probabilistic hesitant intuitionistic linguistic term sets in
multi-attribute group decision making,” Symmetry, vol. 10, no. 9, pp. 392, 2018. doi: 10.3390/sym10090392.

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/j.asoc.2016.08.051
https://doi.org/10.3390/sym10090392


1674 CMC, 2024, vol.80, no.1

[5] R. R. Yager and A. M. Abbasov, “Pythagorean membership grades, complex numbers, and decision
making,” Int. J. Intell. Syst., vol. 28, no. 5, pp. 436–452, 2013. doi: 10.1002/int.21584.

[6] K. Ullah, T. Mahmood, Z. Ali, and N. Jan, “On some distance measures of complex Pythagorean fuzzy
sets and their applications in pattern recognition,” Complex Intell. Syst., vol. 6, no. 1, pp. 15–27, 2020. doi:
10.1007/s40747-019-0103-6.

[7] J. Mahanta and S. Panda, “Distance measure for Pythagorean fuzzy sets with varied applications,” Neur.
Comput. Appl., vol. 33, no. 24, pp. 17161–17171, 2021. doi: 10.1007/s00521-021-06308-9.

[8] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1222–1230,
2016. doi: 10.1109/TFUZZ.2016.2604005.

[9] H. Garg, Z. Ali, and T. Mahmood, “Generalized dice similarity measures for complex q-rung
orthopair fuzzy sets and its application,” Complex Intell. Syst., vol. 7, no. 2, pp. 667–686, 2021. doi:
10.1007/s40747-020-00203-x.

[10] G. Tang, F. Chiclana, and P. Liu, “A decision-theoretic rough set model with q-rung orthopair fuzzy
information and its application in stock investment evaluation,” Appl. Soft. Comput., vol. 91, no. 1, pp.
106212, 2020. doi: 10.1016/j.asoc.2020.106212.

[11] B. C. Cuong and V. Kreinovich, “Picture fuzzy sets,” J. Comput. Sci. Cybern., vol. 30, no. 4, pp. 409–420,
2014.

[12] F. Göçer, “A novel interval value extension of picture fuzzy sets into group decision making: An approach
to support supply chain sustainability in catastrophic disruptions,” IEEE Access, vol. 9, pp. 117080–117096,
2021. doi: 10.1109/ACCESS.2021.3105734.
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