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ABSTRACT

Transformer models have emerged as dominant networks for various tasks in computer vision compared to Con-
volutional Neural Networks (CNNs). The transformers demonstrate the ability to model long-range dependencies
by utilizing a self-attention mechanism. This study aims to provide a comprehensive survey of recent transformer-
based approaches in image and video applications, as well as diffusion models. We begin by discussing existing
surveys of vision transformers and comparing them to this work. Then, we review the main components of a
vanilla transformer network, including the self-attention mechanism, feed-forward network, position encoding,
etc. In the main part of this survey, we review recent transformer-based models in three categories: Transformer
for downstream tasks, Vision Transformer for Generation, and Vision Transformer for Segmentation. We also
provide a comprehensive overview of recent transformer models for video tasks and diffusion models. We compare
the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.
Finally, we explore some future research directions to further improve the field.
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1 Introduction

Transformer was designed for Natural Language Processing (NLP) tasks. Vaswani et al. [1]
marked a milestone in the history of the transformer. Subsequently, BERT [2] achieved state-of-the-
art performance across various tasks. The transformer has demonstrated its dominance in the field of
NLP. Various versions of Generative Pre-trained Transformers (GPTs) [3,4] have been introduced for
numerous NLP tasks. Moreover, articles generated by GPT-3 are often indistinguishable from those
written by humans.

For many years, CNNs have been instrumental in solving a wide range of tasks in computer vision.
AlexNet [5] is considered at the forefront of the CNNs when it outperformed the traditional handcraft
methods on the ImageNet dataset. To further enhance CNN performance, numerous approaches have
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incorporated self-attention in spatial [6], channel [7,8] or both spatial and channel [9]. However, self-
attention is typically integrated as an additional layer within the convolutional network architecture.

The success of transformer-based approaches in NLP has sparked interest in applying similar
techniques to computer vision. Many pure transformers have been proposed and utilized to replace
the traditional CNNs since the transformers have achieved state-of-the-art performance across various
computer vision tasks. In NLP, the original transformer model takes a 1D sequence of words as input.
The Vision Transformer (ViT) [10] adapted the transformer architecture to handle 2D images by
dividing them into a grid of patches, with each patch being flattened into a single vector. This work is
known as the pioneer of using the transformer with visual data.

1.1 Review of Related Survey Articles

Recently, a multitude of transformer variants have been proposed, demonstrating that transformer-
based models achieve state-of-the-art results across diverse tasks. To keep pace with the increase of
transformer-based approaches, numerous surveys have been introduced to provide comprehensive
overviews of the transformer landscape. Table 1 provides a comparison of recent survey works focusing
on vision transformer models.

Table 1: Comparison of recent survey articles on vision transformer models

Survey Year Image Video Diffusion Comparison

Khan et al. [11] 2020 � � �
Liu et al. [12] 2021 � �
Hafiz et al. [13] 2021 � �
Lin et al. [14] 2021 �
Liu et al. [15] 2022 � �
Selva et al. [16] 2022 � �
Min et al. [17] 2022 �
Ruan et al. [18] 2022 �
Han et al. [19] 2022 � �
Yang et al. [20] 2022 � � �
Islam [21] 2022 �
Ours 2023 � � � �

Lin et al. [14] focused on the attention mechanism in their survey. They divided the improvement
on attention into six categories including spare attention, linearized attention, prototype and memory
compression, low-rank self-attention, attention with prior and improved multi-head mechanism.
Then, they discussed position representations, layer normalization and position-wise feed-forward
network which are three important parts of the transformer network. They also reviewed the
transformer-based approach which modifies from the vanilla transformer to improve the computation
of transformer networks.

Khan et al. [11] provided a survey of the transformer approaches in computer vision. Firstly,
the methods using single-head self-attention are discussed. These methods are based on convolution
operation and add a self-attention layer to exploit the long-range dependencies. In the second part,
transformer (multi-head self-attention) methods are reviewed. In addition, the survey also discusses



CMC, 2024, vol.80, no.1 39

six fields of computer vision that transformer have been applied, including object detection, segmen-
tation, image and scene generation, low-level vision, multi-modal tasks, and video understanding.
Han et al. [19] categorized the transformer-based methods into four main parts in their survey,
including backbone network, high/mid-level vision, low-level vision, and video processing. In addition,
they also discussed multi-modal tasks and the efficient transformer. Two kinds of backbone network
were discussed, containing pure transformer and transformer with convolution. Yang et al. [20]
reviewed methods using the transformer in image and video applications. In image tasks, the survey
first reviews transformer networks as backbones. Then, they provide a detailed discussion about
image classification, object detection, and image segmentation tasks in images. In the second part
of the survey, the authors provide two aspects of video tasks, including object tracking and video
classification.

Hafiz et al. [13] reviewed attention-based deep architectures for machine vision. A detailed
discussion of five architectures which are based on attention is provided. Then, they discussed three
combinations of CNNs and the transformer. The first kind is a convolutional neural network with
extra attention layers [7,9]. CNNs are used to extract features that are input to the transformer. The
third kind is the combination of CNN and transformer.

Liu et al. [12] reviewed three popular tasks of computer vision, containing classification, detection,
and segmentation. The authors split classification methods into various categories, such as pure
transformer, the combination of CNN and transformer, and deep transformer. Islam [21] reviewed
recent transformer-based methods for image classification, segmentation, 3D point clouds, and person
re-identification. This survey discussed semantic segmentation and medical image segmentation.
Xu et al. [22] focused on transformer-based methods in low-level vision and generation in their survey.
The authors also reviewed transformer methods for the backbone which are used for classification
tasks. In addition, high-level vision and multi-model learning were discussed in this survey.

CNNs have obtained state-of-the-art performance in many fields of computer vision. Transformer
has recently introduced and outperformed CNN-based methods in many tasks, such as classification,
object detection, and segmentation. Liu et al. [15] reviewed recent deep Multi-layer Perceptron
(MLP) approaches. The pioneering MLP methods [23–25] were discussed which obtained comparable
performance to CNNs and the transformer. In the main part of the survey, they discuss three categories
of MLP block variants. They also provide different architectures of MLP variants, such as single and
pyramid architectures. A comparison of MLP, CNN, and transformer-based methods were provided
on image classification, object detection, semantic segmentation, low-level vision, video analysis and
point cloud.

In contrast, Selva et al. [16] focused on video transformers in their work. In the first main part, the
survey discusses some pre-processing methods of video before feeding into the transformer network,
such as embedding, tokenization, and positional embedding. Then, two main efficient designs were
discussed for long sequences of video. The review provided three different approaches for multi-
modality including multi-model fusion, multi-model translation, and multi-model alignment. Training
a transformer and the performance of video classification using the transformer were compared in the
last section of the survey.

Graphs have been used to represent structural information in many fields. In a graph, objects
are represented by nodes/vertices while the relationships between objects are represented by the
edges. Min et al. [17] provided an overview of transformers for graphs. The survey discussed three
incorporations of transformer and graph, including Graph Neural Networks as auxiliary modules in
the transformer, improved positional embedding from graphs, and improved attention matrices from
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graphs. Moreover, the authors conducted an experiment to compare the effectiveness of methods in
the three groups.

On the other hand, Ruan et al. [18] focused on transformer-based methods for video-language
learning. A pre-training and fine-tuning strategy for video-language processing is discussed. Then,
two types of model structures using the transformer are reviewed, including single-stream and multi-
stream structures.

1.2 Contributions of this Survey Article

Recently, numerous methods based on transformers have been proposed for various tasks in
computer vision. This review provides a comprehensive discussion of transformer-based approaches
across different computer vision tasks. In summary, our main contributions are listed below:

• This paper comprehensively reviews recent visual transformers for image tasks, covering three
fundamental areas: downstream, generation and segmentation.

• In addition, we delve into the state-of-the-art transformers for video tasks. Specifically, we
comprehensively examine the success of transformers as backbones in a wide range of diffusion
models.

• We present a detailed comparison of recent methods that utilize transformers as backbones.

1.3 Roadmap of the Survey

The rest of the survey is organized as follows. Firstly, a discussion of the components of an original
transformer network in Section 2. In Section 3, we discuss a wide range of vision transformers for
image data. Next, we discuss recent transformers for video data in Section 4. Section 5 discusses recent
transformer-based diffusion models. Then, Section 6 compares the performance of the recent methods
based on the transformer network. Finally, we discuss some open research problems and give the
conclusion of this survey in Sections 7 and 8, respectively.

2 Revisiting the Components of Transformer Network

Transformer was introduced by Vaswani et al. [1] for NLP. The transformer includes an encoder
and a decoder which are used to encode the input and generate the output, respectively. Both the
encoder and decoder have several transformer blocks. Each block contains a multi-head attention
layer, a feed-forward neural network, and layer normalization as illustrated in Fig. 1.

2.1 Self-Attention Mechanism

The input vector x is transformed into query q, key k and value v vectors with dimension dq =
dk = dv = dmodel:

k = xWk, v = xW v, q = xW q (1)

where Wk, Wv, Wq are three matrices that are trained during the training phase. In practice, the queries,
keys, and values are packed together into matrices Q, K , and V , respectively. Thus, the attention is
computed with these matrices:

Attention (Q, K , V) = softmax
(

QKT

√
dk

)
V (2)
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where the score is calculated by a dot product of the query and the key, and the score is normalized by
a softmax operation softmax().

Figure 1: The vanilla transformer block, including an encoder (left) and a decoder (right). The encoder
and decoder consist of several layers. Each layer of the encoder and the decoder contains multi-head
self-attention mechanism and a multi-layer perceptron. In addition, the decoder has a masked multi-
head self-attention

2.2 Multi-Head Attention

Multi-head attention is used to improve the performance of the attention mechanism by projecting
the queries, keys and values into multiple subspaces. These projected outputs are processed parallel by
attention heads. Then, the output matrices are concatenated and projected to the final output:

headi = Attention
(
Qi, K i, V i

)
MultiHead (Q′, K ′, V ′) = Concat(headi, . . . headh)W

O (3)

where Q′, K ′, V ′ are the concatenation of
{
Qi

}h

i=1
, {Ki}h

i=1, {Vi}h
i=1, respectively. W 0 is the projection

weight.

2.3 Feed-Forward Network

The second layer of a transformer block is a feed-forward network that contains two linear
transformations and a nonlinear activation function in between:

FFN (X) = W 2σ (W 1X) (4)

where W 1 and W 2 are the two weight matrices of the two linear layers, σ is a nonlinear activation
function, and X is used as the input of the feed-forward network.

2.4 Residual Connection and Layer Normalization

A residual connection [26] is added into each sub-layer, for example, the multi-head attention
and the feed-forward network layer. In addition, a layer normalization [27] is followed each residual
connection.
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2.5 Positional Encoding

The positional information of words in a sentence is not encoded by the self-attention layer. To
model the sequential information, the relative or absolute position of the tokens is added to the inputs.
Sine and cosine functions are used for positional encoding.

PE (pos, i) =
{

sin (pos · wk) if i = 2k
cos (pos · wk) if i = 2k + 1

(5)

where wk = 1(
10000

2k
d

) , pos denotes the position of the word, i denotes the current dimension of the

positional encoding, and d denotes the dimension. Each positional encoding corresponds to a sinusoid.
The transformer can learn the relative positions.

3 Vision Transformer for Image Data
3.1 Vision Transformer for Downstream Tasks

DINO [28] is a self-supervised approach, including student and teacher networks. Both student
and teacher networks receive two transformations of input. Their outputs are normalized, and a
cross-entropy loss is used to measure the similarity of them. To exchange visual information between
regions, Fang et al. [29] introduced MSG-Transformer for image classification and object detection.
Information in a local window is abstracted by a messenger token and is exchanged with other
messenger tokens. Therefore, the information of local regions is exchanged by messenger tokens. To
exchange information, groups of channels are obtained by splitting the channels of each messenger
token. Then, obtained groups are shuffled with all other messenger tokens to exchange information.
However, these transformers produce feature maps limited to a single scale while the CNN can output
multi-scale feature maps suitable for various computer vision tasks.

A hierarchical transformer often includes four transformer stages in which different scales of fea-
ture maps are generated, as illustrated in Fig. 2. Each stage contains multiple transformer blocks which
are composed of a multi-head attention layer and a feed-forward layer. The input is hierarchically
reduced spatial size and expanded channel capacity through four stages of the transformer. PVT1 [30]
introduced a pure transformer backbone that can be used as backbone for many downstream tasks.
The output of the network is multi-scale feature maps which have a resolution of H

4
× W

4
, H

8
× W

8
, H

16
× W

16

and H
32

× W
32

. The multi-scale feature maps are obtained by dividing the input features at each beginning
stage. Moreover, a traditional multi-head attention is replaced by a Spatial-Reduction Attention
(SRA) to reduce computational cost. In the SRA layer, the attention receives a key and a value
which are reduced by the spatial scale. PVT2 [31] is improved from the previous version to address
the computational complexity and arbitrary size of the input image. In PVT2, the spatial dimension
is reduced by using average pooling instead of convolution and an overlapping patch embedding is
introduced to capture the local continuity information. In addition, a zero-padding position encoding
is introduced with a depth-wise convolution in feed-forward networks. Swin transformer [32] is one of
the most novel transformer-based backbones that reduces the complexity of attention computation by
proposing Shifted windows. To generate hierarchical features, a patch merging layer is applied at each
stage of the network. Shift windows are proposed to compute self-attention within non-overlapping
windows. Moreover, a shifted window partitioning was introduced to exploit the connection of the
non-overlapping windows. Swin transformer 2 [33] is an improved version of Swin transformer 1.
Swin transformer 2 introduced a residual post normalization approach by placing layer norm after
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self-attention and MLP layers to resolve the increase of activation values at deeper layers. To solve
the dominance of the attention map by a few pixel pairs, scaled cosine attention was introduced to
compute the attention. In addition, a position bias method was proposed to transfer across windows.
Given that these transformers generate multi-scale feature maps and possess a global receptive field,
they can serve as a backbone for a variety of computer vision tasks, such as object detection, semantic
segmentation, and video anomaly detection [34]. Furthermore, these hierarchical transformers can
replace a CNN backbone and can be integrated into other networks.

Figure 2: The architecture of a hierarchical transformer includes four stages for generating feature
maps of different scales

Uformer [35] is a hierarchical transformer for image restoration. The network contains K encoder
stages and K decoder stages. Each encoder stage includes a stack of locally enhanced window
transformer blocks and one down-sampling layer. On the opposite stages, each has a stack of locally
enhanced window transformer blocks and an up-sampling layer. A 2 × 2 transposed convolution
with stride 2 is used to up-sample the features. The locally-enhanced window transformer block
is introduced to capture long-range dependencies and local context by using convolution in the
transformer as in [36,37]. Restormer [38] is a hierarchical transformer model for image restoration.
Restormer replaces multi-head self-attention with a multi-Dconv head transposed attention to obtain
linear complexity. Moreover, the proposed attention aims to compute the attention across channels
instead of the channel dimension. A 1 × 1 convolution and a 3 × 3 depth-wise convolution are used
to compute attention. In addition, two parallel paths of 1 × 1 and depth-wise convolutions are used
in feed-forward network to improve representation.

Chu et al. [39] proposed Twins-PCPVT which is based on PVT [30] and Twins-SVT which
is based on spatially separable self-attention. In Twins-PCPVT, conditional position encoding is
used to replace absolute positional encoding. The spatially separable self-attention contains locally-
grouped self-attention which is computed in each sub-window. To exchange the information between
local windows, a global self-attention was proposed to communicate between sub-windows. Cswin
transformer [40] computes self-attention in two directions by proposing cross-shaped window self-
attention. The proposed attention obtains attention of a large area and global attention. In addition,
locally-enhanced positional encoding was introduced for the downstream transformer network.
Window-based transformers [32] have achieved promising results on multiple tasks of computer vision.
Shuffle transformer [41] was proposed to improve the connection between non-overlapping local
windows. A shuffle transformer block contains a shuffle multi-head self-attention to enhance the
connection between the windows and neighbor-window connection to strengthen the information
between windows by inserting a depth-wise convolution before the MLP module. Glance-and-Gaze
Transformer [42] proposed Glance attention which computes self-attention with a global reception
field. Since the feature maps are split into different dilated partitions, a partition contains information
of the whole input feature instead of a local window. To capture the local connection between
partitions, a Gaze branch was introduced using the depth-wise convolution.
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Hassani et al. [43] introduced a Neighborhood Attention Transformer (NAT) which computes
attention using proposed neighborhood attention. This attention has lower computational complexity
and local inductive biases. Each point in features attends to its neighboring points. The NAT outputs
pyramid features that are used for different downstream tasks in computer vision. DaViT [44] proposed
a dual attention vision transformer that computes self-attention using both spatial tokens and channel
tokens. Each stage of the transformer has dual attention blocks which include a spatial window
attention block, a channel group attention block, and a feed-forward network. To obtain global
information, self-attention is computed on the transpose of patch-level tokens instead of patch-level.
Moreover, channels are grouped and compute attention to reduce the complexity. Zhang et al. [45]
proposed a Multi-Scale Vision Longformer which is used for high-resolution image encoding. An
efficient ViT was proposed by modifying the vanilla transformer. Multiple proposed ViT is stacked
to construct a multi-scale vision transformer that generates different feature maps. In addition, the
attention mechanism of vision longer is used to reduce the complexity. Both global and local tokens
are used to access global and local information.

Convolutional Vision Transformer [46] is a hierarchical transformer that leverages convolution
to the transformer. The convolution is applied to the Convolutional Token Embedding layer and
convolutional transformer block to encode local spatial contexts. In the transformer block, a depth-
wise convolution is used instead of the position-wise linear projection in the vanilla transformer.
Li et al. [47] proposed a Multiscale Vision Transformer (MViTv2) for image and video classification.
Moreover, the proposed method was evaluated with object detection and video recognition tasks.
The relative positional embedding is used in the pooled self-attention to model the relative distance
across tokens. A residual pooling connection is applied to enhance the representation. The Vitae [48]
is a transformer network that contains two main cells, including a reduction cell and a normal cell.
Reduction cells use convolutional layers with different dilation rates. The spatial dimension of features
is reduced by using stride convolution. The normal cells have the same architecture as the reduction
cell. However, the pyramid reduction module extracted multi-scale features are used only in the
reduction cell. Chen et al. [49] transited a transformer-based model into a convolution-based model.
There are eight steps, including replacing the token, replacing patch embedding, splitting the network
into stages, replacing layer-norm, introducing 3 × 3 convolutions, removing position embedding, and
adjusting the architecture of the network. The proposed network obtains better performance while
having the same computational cost.

Tang et al. [50] proposed QuadTree Attention is computed from a rough to fine manner with
lower computational complexity. Self-attention is computed with L-level pyramids. At the fine level,
attention is calculated from subset tokens that are selected from the coarse level using attention score.
Ding et al. [51] proposed a lightweight transformer that consists of a projector to reduce the size of
the input feature, an encoder, and a decoder. Moreover, a multi-branch search space was proposed
for dense prediction tasks. The search space models features with different scales and global contexts.
Inception transformer [52] proposed a transformer-based network that captures both high and low-
frequency features. The image tokens are passed through an inception token mixer which is composed
of three branches to extract high and low frequency information. To extract high-frequency features, a
combination of max-pooling and convolution operation is used while a self-attention is used to extract
low-frequency features.

ConvMAE [53] is a hybrid convolution-transformer network that includes an encoder and a
decoder. The encoder outputs multi-scale features of the input image. The self-attention of the
transformer block is replaced by a 5 × 5 depthwise convolution. The random mask for stage-3
is generated by masking out p%. Then, the mask of stage-2 and stage-1 are up-sampled from the
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mask of the third stage. Li et al. [54] proposed masked auto-encoder pre-training for the hierarchical
transformer. The proposed method contains uniform sampling and secondary masking stages. The
input image with 25% visible image patches uses uniform constraint to ensure these patches as a
compact image. A secondary masking was introduced to solve the degradation problem which is made
by the uniform sampling. The secondary masking makes it more challenging for the recovery task to
obtain a better representation of the network. Chen et al. [55] proposed an adapter that fine-tunes a
transformer-based backbone on vision-specific tasks without changing the backbone network. The
proposed network contains two parts, including the backbone network and the proposed adapter.
The backbone network is an original transformer network that includes L transformer layers. The
adapter has N blocks which composed of a spatial feature injector and a multi-scale feature extractor.
A feature pyramid of the input is generated after passing through N blocks. VOLO [56] introduced
an outlook attention mechanism which can encode fine-level features and contexts. The model is
composed of a stack of Out-lookers and a stack of transformer blocks. The Out-looker has an outlook
attention layer and a MLP layer. The former is used to extract fine-level features and the latter is
used to aggregate global information. Although the performance of these transformers has improved
significantly compared to previous transformers, the model sizes of these models have become bigger.

3.2 Vision Transformer for Generation

UNet [57] is a popular convolutional network architecture that was introduced for biomedical
image segmentation. The network contains two branches. The left branch is a down-sampling of the
feature map while the output features are up-sampled by the other branch. In this section, we discuss
transformer networks that have a U-shaped architecture.

TransUNet [58] combines a Transformer and a CNN to extract both local and global context
information. CNN is used to extract features of the input. Stacked transformer layers are applied to
the extracted features and output the hidden features. A decoder up-samples the output features to
the final segmentation mask using a 2 × 2 up-sampling operator. The input of each up-sampled stage
includes the features of the previous stage and the corresponding features from the encoder. UNETR
[59] was proposed for medical image segmentation. The network contains a transformer as the encoder
and a CNN as the decoder. The encoder contains a stack of transformers to encode the features of a 3D
input image. In the decoder, the combination of de-convolutional, convolutional, and normalization
layers is applied to reshape the extracted features obtained from the encoder. Then, the reshaped
features are concatenated with the previous feature stage. U-Net transformer [60] was proposed
for image segmentation which has a U-shaped architecture. The network contained a self-attention
module and a cross-attention module. The first module is used to exploit the global interactions
of features while the second one keeps important information and discards irrelevant information
from the skip connection features. UTNet [61] is a hybrid transformer network for medical image
segmentation. This combination aims to capture local features by convolutional layer and long-range
information by self-attention. The transformer block is applied after a residual convolutional block
at each stage of the encoder except for the first resolution. To reduce the computational complexity,
two projections are applied to the key and values. In addition, the relative position encoding is added
to maintain the position information. UTNetV2 [62] is improved from UTNet [61] for medical image
segmentation. A bidirectional multi-head attention was proposed to reduce the computational cost.
The proposed attention maintains a semantic map through network stages. At each layer, the output
from the previous layer and a semantic map projected by a depth-wise separable convolution and 1×1
convolution are used as input. The proposed attention encodes global context information with small
computation. Mixed Transformer U-Net [63] introduced a mixed transformer module that includes
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two types of attention. The first self-attention captures the short and long range dependencies by
proposing a local-global strategy and Gaussian mask. The second attention captures inter-sample
correlations. UCTransNet [64] introduced a transformer in U-Net architecture. The skip connections
of U-Net are replaced by a channel transformer which includes a channel cross fusion module and
channel wise cross-attention. Channel-wise cross fusion transformer fuses the multi-scale features that
are extracted by the encoder. In addition, the channels-wise cross attention module fuses the output of
the channel-wise cross fusion transformer module and the features of the previous decoder. Transfuse
[65] combines CNN and transformer to capture both global and local information. The input image
is processed by two parallel networks. The extracted features of the transformer and CNN are fused
by a proposed BiFusion module which is composed of various mechanisms such as channel attention
[7], spatial attention [9], and residual block. These models try to integrate the transformer model into
an autoencoder. However, the main components of these models are still convolutional layers. For
example, in models such as TransUNet and UNETR, a transformer functions as an encoder while a
CNN serves as a decoder.

Swin-Unet [66] proposed a pure transformer that has a shape like UNet for medical image
segmentation. Both the encoder and decoder are composed of Swin transformer blocks [32]. Patch
merging layer is used to down-sample and increase dimension while the patch expanding layer up-
samples and restores the resolution. The extracted features from the encoder are fused with the features
from the previous decoder layer via skip connections. Swin UNETR [67] combines Swin transformer
[32] and CNN for 3D brain tumor semantic segmentation. A sequence of 3D tokens of the input is
generated by a patch partition. The embedding tokens are extracted features by a Swin transformer-
based encoder. A decoder is used to predict the final segmentation outputs. VT-UNet [68] proposed
a transformer which has U-shaped architecture. The encoder includes three main stages including
encoder block and patch merging. The encoder block is composed of two types of windows like a Swin
transformer [32]. The decoder contains various decoder blocks, patch expanding and a classifier. Each
decoder block has two self-attention encoders as regular and shifted window attentions. These models
offer the advantage of proposing a pure transformer network, comprising both a transformer-based
encoder and a transformer-based decoder.

3.3 Vision Transformer for Segmentation

Segmenter [69] is a transformer network for semantic segmentation. To exploit the global infor-
mation, Segmenter is based on the vision transformer which does not use convolutions in the network.
The network includes an encoder and decoder. The former is used to exploit the contextualized
information while the latter up-samples the output of the encoder to pixel-level scores. In addition,
two types of decoder were introduced, including a linear decoder and a mask transformer. In the
mask transformer, a set of class embeddings was used to generate a class mask. This work was one
of the pioneers in applying transformers to semantic segmentation. By introducing transformers into
this domain, the study opened avenues for capturing a global receptive field in segmentation tasks.
TopFormer [70] was proposed for semantic segmentation on mobile devices. The network uses stacked
MobileNetV2 blocks [71] to create tokens at different scales. Semantic information is extracted by
stacked transformer blocks with the generated tokens as input. The transformer block has the same
architecture as the original transformer. However, linear layers are replaced by a 1 × 1 convolution
layer, GELU is replaced by ReLU6, and a depth-wise convolution layer is used in the feed-forward
network. Gu et al. [72] proposed a multi-scale transformer for semantic segmentation. The network
contains four stages which include many parallel multi-scale transformer branches. An efficient
self-attention was introduced to balance between efficiency and performance. Lawin Transformer
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[73] solved the lack of contextual information by proposing a large window attention. To capture
multi-scale representations, five parallel branches composed of three window attention branches, one
shortcut connection, and one pooling branch were used. The proposed attention is inserted into a
hierarchical vision transformer to exploit multi-scale representations.

4 Vision Transformer for Video

Space-Time Attention Model (STAM) [74] contains a spatial and temporal transformer that is
used to extract both spatial and temporal information from video frames. The spatial attention is
applied on patches of each frame while the temporal attention is applied on the output of the spatial
attention to capture the temporal information of frames. Bain et al. [75] proposed a transformer-
based model that includes two encoders for encoding image/video and a sequence of words. To process
video input, the divided space-time attention is used with a modification of the residual connection of
the temporal self-attention and spatial self-attention blocks. TimeSformer [76] is a transformer-based
model for video classification. The model exploits both spatial and temporal information by obtaining
temporal attention and spatial attention separately at each block of the transformer. The reduced
computational complexity due to the temporal attention and spatial attention are computed once
after the other. Zhang et al. [77] proposed a token shift module for modeling temporal information
in the transformer. Several shift variants were introduced, including token shift, temporal shift, and
patch shift. The token shift module can be inserted into various positions in a transformer-based
encoder. Each position of the token shift will determine the degree of motion information. The shift
module can be insert before the layer-norm layer, before the multi-head attention and feed-forward
network, or post multi-head attention and feed-forward network. VidTr [78] is a video transformer for
video classification. To reduce memory consumption, VidTr exploits spatiotemporal features by using
spatial and temporal attention separately. In addition, a topK-based pooling was proposed to down-
sample temporal since the video contains redundant information. Many works [76–79] have tried to
reduce the complexity of the space-time attention. Multiple transformer-based architectures [79] were
introduced for video classification. The interactions of all spatiotemporal tokens lead to quadratic
complexity while computing multi-head self-attention. Model 2 solves the above limitation using two
separate transformer encoders. However, this model increases transformer layers. Model 3 solves this
disadvantage by computing temporal self-attention after spatial self-attention in a transformer block
as in [76]. In model 4, the keys and values for each query are separated into spatial and temporal
dimensions. XViT [80] tries to encode space-time attention which has linear complexity O(TS2) with
the number of frames. The time attention is computed from a local temporal window and the temporal
of the whole video is obtained through the depth of the transformer. To reduce the complexity, the
computation of space-time attention has been used shift module [81]. The complexity of a model that
computes both space and time attention is O(T 2S2). Since the space-time transformers require high
computational cost, devided attention computes spatial attention and temporal attention separately.
This approach not only proves to be more efficient but also improves accuracy.

ConvTransformer [82] was introduced for video frame synthesis. The input frames are extracted
features by a feature embedding module. The extracted features with positional maps are used as
the input of an encoder-decoder. The generated frames are decoded by a synthesis feed-forward
network. Both the encoder and decoder contain a multi-head convolutional self-attention layer and
a 2D convolutional feed-forward network. VisTR [83] is an end-to-end transformer-based model
for video instance segmentation. The extracted features of a backbone network are passed through
an encoder-decoder transformer to output a sequence of object prediction. The instance sequence
matching strategy and instance sequence segmentation module are proposed to match the same
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instance in different images and predict the mask sequence for each instance. TeViT [84] proposed a
transformer backbone that exploits temporal features efficiently. To exploit the temporal information,
messenger tokens leaned embedding are shifted along the temporal axis. The temporal information is
exploited at each stage of the network and the shift mechanism has no extra parameter. In addition,
a spatiotemporal query interaction head network is introduced to exploit the temporal information
at the instance level. Hwang et al. [85] introduced a transformer-based model for video instance
segmentation. The proposed model reduces the cost of the space-time attention by proposing an Inter-
Frame Communication transformer (IFC) that solves the heavy computation and memory usage of
previous per-frame methods. The information between frames is exchanged when the feature maps of
input video are passed through an inter-frame communication encoder. The encoder is composed of
transformer-based encoder-receive and gather-communicate.

Yan et al. [86] introduced a multi-view transformer for video recognition. A multi-view trans-
former contains separate transformer encoders which are used to process tokens of different views.
To fuse information from different views, three fusion methods were introduced, including cross-
view attention, bottleneck tokens, and MLP fusion. The output is produced by a global encoder.
Neimark et al. [87] proposed a video transformer network for video recognition. The entire video
is processed using Longformer [88] which has a linear computation complexity. Girdhar et al. [89]
proposed an anticipative architecture instead of aggregation of features over the temporal axis. Vision
transformer [10] is used as a backbone network to extract features of individual video frames. Then,
the extracted features are processed by a causal transformer decoder to predict future features.
Fan et al. [90] proposed a multi-scale vision transformer that generates a multi-scale pyramid of
features of the input. To generate multi-scale features, a multi-head pooling attention was proposed.
The queries Q, keys K, and values V are pooled before computing attention. The network contains
multi-stages. At each stage, the channel dimension is increased while the spatiotemporal resolution
is reduced. Weng et al. [91] proposed a combination of CNN and transformer network for video
reconstruction. A multi-scale feature pyramid is generated by a recurrent convolution backbone
including several ConvLSTM layers. The generated features are used as input for token pyramid
aggregation which models the internal and intersected dependency of the input features. An up-
sampler is used to reconstruct the intensity image.

Zhang et al. [92] proposed a cross-frame transformer for video super-resolution network. The
similarity and similarity coefficient matrixes of the input frames are obtained using self-attention
computation. The obtained matrixes are used to reconstruct the super resolution frame using a multi-
level reconstruction. Geng et al. [93] proposed a transformer network that has UNet architecture for
video super resolution tasks. The proposed network contains an encoder to extract features and a
decoder to reconstruct output frames. Both the encoder and decoder have four stages that include
many Swin transformer blocks [32]. In addition, the extracted features of each stage of the encoder
and a single frame query are used as input for the corresponding decoder. Liu et al. [94] proposed a
transformer-based network that aims to exploit both object movements and background textures for
video in-painting. A sequence of input frames is down-sampled and up-sampled by a CNN encoder
and decoder, respectively. In addition, a decoupled spatial-temporal transformer is placed between
the encoder and decoder to exploit spatial and temporal information effectively. By disentangling the
spatial and temporal attention computation, the computational complexity is reduced significantly.
VDTR [95] is a transformer-based model for video de-blurring. The features of the input frames are
extracted by a transformer-based auto-encoder. The extracted spatial features are used as the input of
a temporal transformer to exploit information from neighboring frames. The attention between the
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frames is computed by using a temporal cross-attention module which the queries are calculated from
the reference feature maps. The output frame is reconstructed by several transformer blocks.

5 Transformer for Diffusion Models
5.1 Diffusion Models

The forward process of the Gaussian diffusion models [96] gradually injects noise into real data:

q (xt|xt−1) = N
(

xt;
√

1 − βtxt−1, βtI
)

(6)

We can sample xt at any timestep t by using:

q (xt|x0) = N
(

xt;
√

αtx0, (1 − αt) I
)

, (7)

where αt = 1 − βt and αt = ∏t

s=1 αs.

The reverse process inverts the forward process:

pθ (xt−1|xt) = N
(

xt−1; μθ(xt, t),
∑

θ

(xt, t)

)
(8)

The reverse process model is trained to optimize the ELBO on the log-likelihood:

L = E [−logpθ (x0)] ≤ Eq

[
−log

pθ (x0: T)

q (x1: T |x0)

]
(9)

Reparameterizing μθ with a model to predict the noise ε:

μθ (xt, t) = 1√
αt

(
xt − βt√

1 − αt

εt (xt, t)
)

, (10)

where εθ is a learned function.

5.2 Transformer-Based Diffusion Models

Diffusion models often leverage a convolutional U-Net to learn the reverse process to construct the
output from the noise. DiTs [97] replace the U-Net with a transformer for operating on latent patches
and achieve state-of-the-art performance on the class conditional generation tasks. Swinv2-Imagen
[98] introduces a diffusion model for text-to-image task, which is based on the Swinv2 transformer
and Scene Graph generator. The scene graph generator enhances the text understanding by generating
a scene graph and extracting the relational embeddings for generating image. UniDiffuser [99] uses a
transformer to process all input types of various modalities, which performs text-to-image, image-
to-text, and image-text pair generation. To generate high-quality and realistic outputs from textual
descriptions, ET-DM [100] combines the advantages of the diffusion model and transformer model
for text-to-image generation. The transformer model exploits the mapping relationship between
textual descriptions and image representation. However, the text-to-image (T2I) models require high
training costs. PIXART-α [101] solves this issue by introducing three advance designs, including
training strategy decomposition, efficient T2I transformer, and high-informative data. PIXART-δ
[102] achieves a 7 × improvement over the previous version PIXART-α by combining the Latent
Consistency Model and ControlNet. The ControlNet is integrated with the transformer, which
achieves effectiveness in controlling information and generating high-quality output.



50 CMC, 2024, vol.80, no.1

Diffusion models have been applied to various fields. LayoutDM [103] uses a pure transformer
to generate a layout, which captures relationship information between elements effectively. DiffiT
[104] proposes a diffusion vision transformer with a hierarchical encoder and decoder, consisting
of novel time-dependent self-attention modules. To speed up the learning process of the diffusion
probabilistic model, Gao et al. [105] introduced a Masked Diffusion Transformer (MDT), which
masks the input image in the latent space and generates images from masked input by an asymmetric
masking diffusion transformer. MDT [106] introduces a multimodal diffusion transformer, which
encodes the image observation using two vision-language models. In addition, a CLIP model is used
to encode the goal images or language annotations. For medical image segmentation, a diffusion
transformer U-Net [107] introduces a transformer-based U-Net for extracting various scales of
contextual information. Moreover, a cross-attention module fuses the embeddings of the source
image and noise map to enhance the relationship from source images. Zhao et al. [108] proposed a
spatio-temporal transformer-based diffusion model for realistic precipitation nowcasting. The past
observations are used as a condition for the diffusion model to generate the target image sequence
from noise. Sora [109] is a large-scale training of generative models, which generates a minute of
high-fidelity video or images. A raw input video is compressed into a latent spacetime representation.
Then, a sequence of latent spacetime patches is extracted to capture both the appearance and motion
information. A diffusion transformer model is used to construct videos from these patches and work
tokens.

6 A Comparison of Methods

Table 2 summarizes the popular transformer-based architectures on the ImageNet-1K classifica-
tion task. This dataset consists of 1.28 M training images and 50 K validation images for 1000 classes.
In addition, different configurations are compared to evaluate the efficiency of proposed methods,
including model size, number of parameters, FLOPs, and Top-1 accuracy with a single 224 × 224
pixels.

Table 2: Comparison of different transformer models on ImageNet-1K classification

Method Size Year # Params FLOPs Top-1 acc

Glance-and-gaze [42] Tiny 2021 28 M 4.5 G 82.0
Small 2021 50 M 8.7 G 83.4

Shuffle transformer [41]
Tiny 2021 29M 4.6 G 82.5
Small 2021 50 M 8.9 G 83.5
Base 2021 88 M 15.6 84.0

HR-NAS [51] HR-NAS-A 2021 5.5 M 267 M 76.6
HR-NAS-B 2021 6.4 M 325 M 77.3

CVT [46] CvT-13 2021 20 M 4.5 G 81.6
CvT-21 2021 30 M 7.1 G 82.5

Vision longformer [45]

Tiny 2021 6.7 M 1.3 G 76.7
Small 2021 24.6 M 4.9 G 82.4
Medium 2021 39.7 M 8.7 G 83.5
Base 2021 55.7 M 13.4 G 83.7

(Continued)
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Table 2 (continued)

Method Size Year # Params FLOPs Top-1 acc

MViTv2 [47]

Tiny 2021 24 M 1.3 G 82.3
Small 2021 35 M 7 G 83.6
Base 2021 52 M 10.2 G 84.4
Large 2021 218 M 42.1 G 85.3

ViTAE [48]

ViTAE-T 2022 4.5 M 1.5 G 75.3
ViTAE-6M 2022 6.5 M 2 G 77.9
ViTAE-13M 2022 13.2 M 3.4 G 81.0
ViTAE-S 2022 23.6 M 5.6 G 82.0

Visformer [49] Tiny 2021 10.3 M 1.3 G 78.6
Small 2021 40.2 M 4.9 G 82.2

Swin transformer 1 [32]
Tiny 2021 29 M 4.5 G 81.3
Small 2021 50 M 8.7 G 83.0
Base 2021 88 M 15.4 G 83.5

Swin transformer 2 [33]
SwinV2-B 2022 88 M – 78.08
SwinV2-L 2022 197 M – 78.31
SwinV2-G 2022 3.0 B – 84.0

PVTv1 [30]

Tiny 2021 13.2 M 1.9 G 75.1
Small 2021 24.5 M 3.8 G 79.8
Medium 2021 44.2 M 6.7 G 81.2
Large 2021 61.4 M 9.8 G 81.7

PVTv2 [31]

PVTv2-B1 2022 13.1 M 2.1 G 78.7
PVTv2-B2 2022 25.4 M 4 G 82.0
PVTv2-B3 2022 45.2 M 6.9 G 83.2
PVTv2-B4 2022 62.6 M 10.1 G 83.6
PVTv2-B5 2022 82.0 M 11.8 G 83.8

Neighborhood attention [43]

Mini 2022 20 M 20 G 81.8
Tiny 2022 28 M 4.3 G 83.2
Small 2022 51 M 7.8 G 83.7
Base 2022 90 M 13.7 G 84.3

QuadTree [50]

QuadTree-B-b0 2022 3.5 M 0.7 G 72.0
QuadTree-B-b1 2022 13.6 M 2.3 G 80.0
QuadTree-B-b2 2022 24.2 M 4.5 G 82.7
QuadTree-B-b3 2022 46.3 M 7.8 G 83.7
QuadTree-B-b4 2022 64.2 M 11.5 G 84.0

CSWin transformer [40]
Tiny 2022 23 M 4.3 G 82.7
Small 2022 35 M 6.9 G 83.6
Base 2022 78 M 47 G 84.2

(Continued)
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Table 2 (continued)

Method Size Year # Params FLOPs Top-1 acc

VOLO [56]

VOLO-D1 2021 27 M 6.8 B 84.2
VOLO-D2 2021 59 M 14.1 G 85.2
VOLO-D3 2021 86 M 20.6 G 85.2
VOLO-D4 2021 193 M 43.8 G 85.7
VOLO-D5 2021 296 M 69 G 86.1

Twins [39]
Small 2022 24 M 2.9 G 81.7
Base 2022 56 M 8.6 G 83.2
Large 2022 99.2 M 15.1 G 83.7

Cswin transformer [40]
Tiny 2022 23 M 4.3 G 82.7
Small 2022 35 M 6.9 G 83.6
Base 2022 78 M 15 G 84.2

Inception transformer [52]
Small 2022 20 M 4.8 G 83.4
Base 2022 48 M 9.4 G 84.6
Large 2022 87 M 14 G 84.8

Dual AVT [44]
Tiny 2022 28.3 M 4.5 G 82.8
Small 2022 49.7 M 8.8 G 84.2
Base 2022 87.9 M 15.5 G 84.6

ADE20K is a challenging dataset, including 20 K images for training and 2 K images for
validation. Table 3 compares mIoU results on the ADE20K dataset with different transformer models.

Table 3: Performance comparison of different transformers on ADE20K

Method Size Setting # Params mIoU

VOLO [56]
VOLO-D1 VOLO ImgNet-1k 50.5
VOLO-D3 VOLO ImgNet-1k 52.9
VOLO-D5 VOLO ImgNet-1k 54.3

Twins [39]
Small PVT ImgNet-1k 43.2
Base PVT ImgNet-1k 45.3
Large PVT ImgNet-1k 46.7

Cswin transformer [40]
Tiny FPN ImgNet-1k 48.2
Small FPN ImgNet-1k 49.2
Base FPN ImgNet-1k 49.9

Inception transformer [52] Small FPN ImgNet-1k 48.6

Dual AVT [44]
Tiny UperNet ImgNet-1k 46.3
Small UperNet ImgNet-1k 48.8
Base UperNet ImgNet-1k 49.4
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Swin transformer 1 [32] and Swin transformer 2 [33] are two popular window-based transformers.
Pyramid Vision Transformer (PVT) 1 [30] and Pyramid Vision Transformer 2 [31] are two transformer
architectures that are motion for other hierarchical transformers.

7 Open Research Problems

Transformer-based methods have achieved remarkable successes in natural language processing as
well as computer vision. Transformers have a strong capability of capturing global context information
(long-range dependencies). However, self-attention requires a huge computation cost to compute
the attention map. In addition, convolutional neural networks can capture local context that is not
modeled well by the transformer.

7.1 Decreasing the Computational Cost

The transformer shows the capability of modeling the long-range dependencies using self-
attention mechanism. However, the computation of the full-attention mechanism [10,46–110] is
inefficient because the complexity is quadratic to the size of the image. Many proposed methods
have been introduced to solve the issues. For example, window-based methods [32,33–40] have linear
complexity with the image size. To reduce the computational complexity to linear, many works
proposed spatial reduction attention [30,31] by reducing the spatial scale of the key K and value V
before the computation of self-attention. To reduce spatial dimension, the key K and value V are
applied by a convolution operator or average pooling.

Recently, many studies [43,52] still try to decrease the computational cost of self-attention and
compute attention more efficiently. This is an open research direction that many researchers aim to
solve.

7.2 Capturing Both Local and Global Contexts

Transformers can capture the global context however it shows limitations in modeling the local
context. Many studies try to capture local information by proposing a conv-attention mechanism [111]
which introduces convolution in attention mechanism. Reference [46] introduced convolution to token
embedding and convolutional projection for attention.

On the other hand, TransUNet [58] extracts local features by using a CNN and a transformer
to aggregate global features from extracted local features. TransFuse [65] used two parallel networks
including a CNN and a transformer network to capture both local and global features. STransFuse
[112] combines transformer and CNN to exploit the benefits of both networks.

Transformer-based models can model global information using the self-attention mechanism.
However, recent approaches combine CNN and transformer to exploit local features for the trans-
former. A pure transformer network that can model both local and global information is an open
research direction.

8 Conclusion

Transformers have demonstrated remarkable performance across various computer vision tasks.
In this survey, we have comprehensively reviewed recent transformer-based methods for image, video
tasks, and diffusion models. We first categorize the methods for image tasks into three fundamental
categories, including downstream, segmentation, and generation tasks. We discuss state-of-the-art
transformer-based methods for video tasks and the complexity of these models. Specifically, we
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provide an overview of the diffusion model and discuss recent diffusion models using a transformer
as a backbone network. In addition, we provide a detailed comparison of recent transformer-based
models on ImageNet and ADE20K datasets.
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