
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050913

ARTICLE

Contemporary Study for Detection of COVID-19 Using Machine Learning
with Explainable AI

Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4 and
Aliya Aleryani4

1Department of Computer Science, University of Karachi, Karachi, 75270, Pakistan
2Department of Computing, Faculty of Engineering Science and Technology, Hamdard University, Karachi, 75540, Pakistan
3Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Qassim, 51452, Saudi Arabia
4Department of Computer Science, College of Computer Science, King Khalid University, Abha, 61421, Saudi Arabia

*Corresponding Author: Sulaiman Sulmi Almutairi. Email: ssmtiery@qu.edu.sa

Received: 22 February 2024 Accepted: 23 May 2024 Published: 18 July 2024

ABSTRACT

The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this
article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored
dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest
X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages
less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the
task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed
Stochastic Neighbor Embedding) technique for visualizing the extracted image features and Contrast Limited
Adaptive Histogram Equalization (CLAHE) to improve images before extraction of features. Additionally, an
Attention Mechanism is utilized, which helps clarify how the model makes decisions, which builds trust in artificial
intelligence (AI) systems. To evaluate the effectiveness of the proposed approach, both benchmark datasets and a
private dataset obtained with permissions from Jinnah Postgraduate Medical Center (JPMC) in Karachi, Pakistan,
are utilized. In 12 experiments, VGG19 showcased remarkable performance in the hybrid dataset approach,
achieving 100% accuracy in COVID-19 vs. pneumonia classification and 97% in distinguishing normal cases.
Overall, across all classes, the approach achieved 98% accuracy, demonstrating its efficiency in detecting COVID-
19 and differentiating it from other chest disorders (Pneumonia and healthy) while also providing insights into the
decision-making process of the models.
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1 Introduction

Coronavirus disease also recognized as COVID-19 is a very transmissible respiratory disease/in-
fection caused by the SARS-CoV-2 virus. The World Health Organization (WHO) has received reports
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of 774,593,066 confirmed COVID-19 cases, with 7,028,881 resulting in death, by 04 February 2024, the
cumulative number of administered vaccine doses reached 13,195,832,385 [1]. The worldwide COVID-
19 problem has affected many people and economies everywhere [2]. The virus has caused lots of deaths
and made millions of people sick. Also, many businesses and industries are having big problems and
losing money, and the situation is getting worse. People with COVID-19 usually have common signs
like fever, feeling tired, and a dry cough [3]. They might also feel like they cannot breathe well and
have body aches, a sore throat, and sometimes even diarrhea, nausea, or a runny nose [4]. The social
and psychological impact of the pandemic has also been significant, with many people experiencing
stress, anxiety, and loneliness due to social distancing measures and other restrictions. The COVID-
19 pandemic had a widespread and unprecedented impact on the world, and efforts are ongoing to
address the various challenges it has created [5]. In general, COVID-19 diagnosis is possible through
PCR tests, however, these types of tests can be time-consuming and require specialized laboratory
equipment. There has been growing interest in using deep learning (DL) to examine X-ray images
especially CXIs to find various diseases related to the lungs, including COVID-19, Tuberculosis, or
pneumonia [6–10]. One of the primary drawbacks of CT imaging is that it generally requires more time
compared to X-ray imaging. Additionally, the availability of CT scanners is limited in many regions,
which can hinder timely screening for COVID-19. In contrast, X-rays are the most commonly used
and widely available diagnostic imaging technique [10] and are portable. CXIs are often thought to be
better than CT scans for finding COVID-19 because they are easy to get and the pictures are made
quickly. COVID-19 can make the lungs look different, and X-rays can show if someone has it by
looking at their lungs.

In recent years, AI has made remarkable strides, but its inner workings often remain opaque,
hindering trust and understanding. XAI is a new growing field focused on making AI systems
transparent and interpretable. This article explores the significance of XAI in the detection of COVID-
19, fostering accountability, and enhancing user confidence in AI technologies, especially in the field
of medical systems. Reference [11] proposed an AI model, enhanced with XAI, to detect and interpret
COVID-19-positive CXIs, aiming to aid clinical decisions. Another technique proposed [12] is a novel
methodology integrating copy number alteration, DNA methylation, and gene expression data to
predict Gleason’s score in prostate cancer. By providing a visual representation of the integrated data,
researchers can gain insights into how different omics features contribute to the predictive model’s
outcomes, thereby enhancing interpretability and transparency in the predictive process.

2 Objectives and Contributions

In this section, the proposed methodology for the experiment is shown in Fig. 1 below. In
this study, CNN is used for feature extraction by the removal of the fully connected layers from
the CNN, a t-SNE embedding is also utilized to visualize the extracted features of the diseases.
In the end, the attention mechanism, which is associated with XAI techniques, is employed to improve
the transparency and interpretability of the model’s predictions. However, this approach is very helpful
and novel for viewing the features, and SVM is used for classification tasks.

3 Related Work

In recent times, there has been a notable surge in interest surrounding the application of DL
techniques to analyze medical images. Different state-of-the-art studies use cutting-edge technologies
to utilize the images for diagnosis purposes [13–15]. Limited studies have been identified that leverage
XAI techniques in the domain of medical imaging analysis. Gamage et al. [16] utilized recently
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the XAI technique to identify skin cancer. This surge stems from their capability to enhance the
precision and proficiency of disease identification. Sarkar et al. [17] proposed a novel Multi-Scale
CNN architecture coupled with SHAP and Grad-CAM explainable AI techniques enhances accuracy
in multi-class lung disease classification from CXIs. In [18] reseracher with his team introduces
a framework for classifying XAI methods in this field, categorizes existing papers based on this
framework and anatomical location, and discuss future prospects for XAI in medical image analysis.
Wang et al. [19] proposed a Particle Swarm Optimization guided Self-Tuning CNN (PSTCNN) for
COVID-19 diagnosis, combining automated hyperparameter optimization with XAI for enhanced
accuracy, efficiency, and interpretability. Overall, it offers valuable insights into the current state and
future directions of XAI in healthcare.

Figure 1: Comprehensive experimental process overview

Specifically in relation to COVID-19, CXIs have emerged as a prevalent diagnostic tool, valued
for their ease of access and non-intrusive characteristics. This section dedicated to a review of existing
literature aims to investigate into the current forefront of implementation. Also, delve into diverse
methodologies and architectures employed, the datasets coupled for training and assessment, as well
as the varied performance outcomes documented across multiple studies as mentioned in Table 1.
CXIs are classic approach and broadly used for the detection of lung illnesses, including COVID-
19. However, understanding CXIs can be difficult, especially when there are a lot of images to look
at during a pandemic, and radiologists have many pictures to review. Lately, deep neural networks
(DNNs) have been used a lot to understand pictures better. They have been helpful in telling what’s
in the pictures, especially in medical pictures. However, these studies have provided a comprehensive
summary of their findings, including relevant details, also not utlizaing the XAI approach in relation
to COVID-19 detection from CXIs as discussed in Table 1.
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Table 1: Approaches and performance summary for COVID-19 detection using CXIs

Ref. Preprocess XAI t-SNE Contrast
algorithm

Classification Findings

FCL SVM

[20] Yes No No Yes No Yes The study achieved an
accuracy of 99.38%.

[21] Yes No No No No Yes The method attained an
impressive overall
classification rate of
99.27%.

[22] No No No No Yes No This model showed very
good results in finding
COVID-19, with
99.53% accuracy overall
and 95.35% accuracy
for identifying two
different groups in the
classification.

[7] Yes No No No Yes No Accuracy rates exceeded
90% in all scenarios
except one, and it also
achieved a remarkable
99% accuracy.

[23] Yes No No No Yes No The research shows
good scores for a
measure called
F1-score. The normal
case result is 0.89 and
the result of COVID-19
is 0.91, 0.00 and 0.67
are the worst scores.

[24] Yes No No No Yes No Average levels of
specificity, sensitivity,
accuracy, and ROC are
achieved at 99.18%,
95.7%, 98.50%, and
96.51%, respectively.

[25] No No No No Yes No In the proposed
methodology, a
sensitivity of 90%,
accuracy of 95%, and
AUC of 0.97 were
achieved.

(Continued)
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Table 1 (continued)

Ref. Preprocess XAI t-SNE Contrast
algorithm

Classification Findings

FCL SVM

[26] No No No No Yes No The model attained a
classification accuracy
of 96.78% with 98.66%
sensitivity and
specificity rates of
96.46%.

[27] No No No No Yes No Accuracy is 98.08%, and
87.02% for binary and
multi-class, respectively.

[28] No No No No Yes No The average accuracy is
0.97.

[29] Yes No No No Yes No Overall accuracy of
94.5% achieved using
CNN-based CAD
scheme.

[30] No No No Yes Yes Yes Model exhibited
impressive classification
metrics, including,
94.81% recall, 94.94%
precision, 97.41%
accuracy, 98.27%
specificity, and a
94.86% F1-score.

Table 1 summarizes several implementations on COVID-19 classification using different models
of DL, detailing their preprocessing steps, baseline models, contrast amplification, classification
methods, and findings in terms of accuracy and other metrics, where FCL stands for Fully Connected
Layer and SVM for support vector machine. The model proposed in [31] presents an automated
approach for designing to classify COVID-19 from CXIs, approach uses DCNN architecture with
a minimum number of convolutional layers, also approach involves an iterative process that optimizes
the hyper parameters until no further improvement in accuracy is achieved. This approach starts
with a simple CNN and gradually enhances the model by adding up to two additional layers. A
practical solution utilizes cutting-edge Machine Learning (ML) techniques, particularly EfficientNet
and MixNet, for detecting COVID-19 from CXIs and lung computed tomography images [32].
Through rigorous validation across multiple datasets, the approach consistently achieves high accuracy
rates exceeding 95%, demonstrating significant performance gains compared to existing studies. Also
in [33] survey assesses the role of DL in combating the COVID-19 pandemic across various domains,
highlighting its applications in Natural Language Processing (NLP), Computer Vision, Life Sciences,
and Epidemiology, while addressing key challenges and potential directions for future research.
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Wu et al. [22] proposed a novel approach for detection of COVID-19 using CXIs. They combined a
CNN with UL-Net, a modified version of U-Net, to create their proposed structure. The modified
structure included a new down sampling side and omitted the connections among the FCL. This
adaptation was inspired by the structure of UL. By leveraging this architecture, the main purpose of the
researchers is to escalate the detection accuracy of COVID-19. Sheykhivand with his team [7] utilized
CXIs to classify two to four classes, which included healthy, viral, bacterial, and COVID-19 classes,
based on seven distinct and meaningful scenarios. To improve the classification performance within
the CXIs dataset, the authors proposed an architecture that incorporated LSTM and transfer learning
with Generative Adversarial Networks (GANs). This combination of techniques aimed to enhance
the accuracy of classifying the given classes. Canayaz [20] investigated the diagnosis of COVID-19
utilizing CXIs. In the research, they made a dataset with different types of images: normal ones, ones
with COVID-19, and ones with pneumonia. They wanted to see how well certain methods could tell
these three types apart in the CXIs dataset. Ying et al. [34] created a special way to make pictures
look clearer. Their method was really useful for making pictures better, and it made datasets used
for different things much better too. Hemdan et al. [23] used primarily concentrated on COVIDX-
Net, a novel model that integrates seven different methods of DCNN. Among these methods are
advanced models such as VGG19, as well as an additional variant of Google MobileNet. Each DCNN
model within COVIDX-Net is specifically designed to analyze the normalized intensities of CXIs and
diagnose whether a patient’s condition is negative or positive for COVID-19. The research aimed to
assess the efficacy of the different DCNN models in accurately classifying COVID-19 cases through
the analysis of CXIs. Togaçar et al. [21] worked with datasets that included three classification classes:
COVID-19, healthy and pneumonia cases. To enhance the image quality in the preprocessing stage,
the datasets the Fuzzy Color method was applied, and the images were stacked with the original
images for organization after preprocessing feature extraction was performed by applying SqueezeNet
and MobileNetV2 models, aided by the Social Mimic Optimization (SMO) technique and, a SVM
was used as the classifier in the final step of the detection process. This integrated approach aimed
to achieve accurate classification of COVID-19 cases based on the CXIs dataset by incorporating
preprocessing, feature extraction, and classification techniques. In [24], the researchers pro a CNN-
based approach for identifying COVID-19 diseases with the help of CXIs. They utilized of previous
training models, which are considered state-of-the-art, for transfer learning. The design they suggested,
named COVID-CAPS, used a special kind of network called Capsule Network. This network had
four layers that understand shapes in images and three layers that understand features. They aimed
to be very good at finding COVID-19, while using as few settings as possible. Their main goal was
to help doctors and patients quickly know if someone had COVID-19. They tried their design and
it worked-it could find COVID-19 in the medical images. The combination of a Capsule Network
architecture proved to be effective in achieving accurate and efficient COVID-19 diagnosis from CXIs.
Apostolopoulos et al. [26] employed transfer learning for detection of COVID-19 from CXIs in which
system utilized well known CNN architectures that have been proposed in recent years. By including
transfer learning, the goal of the study was to leverage the knowledge acquired from available previous
training models on huge datasets. References [35,36] also used DL technique to detect COVID-19
from CXIs. Ozturk et al. [27] also utilized CXIs and introduced a model for the detection of COVID-
19, the model they proposed employed an end-to-end framework, eliminating the need for separate
feature extraction. For both multi-class and binary-class classification tasks, the DarkNet model was
utilized. Through experimental testing conducted on recovered patients between 5 to 13 days after
recovery, the model demonstrated its capability to identify positive symptoms [37]. Brunese et al. [28]
proposed a model designed to discern between CXIs depicting COVID-19, pneumonia, and healthy
cases. The approach proposed by the researchers consisted of three distinct stages, each fulfilling a
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specific objective. Heidari et al. [29] utilized CAD for the detection of COVID-19, while Azad et al. [30]
employed different techniques for classifying CXIs. On the other hand, Azad et al. directed their efforts
towards CXIs classification by utilizing pre-trained CNN models alongside Local Binary Pattern
(LBP) for extracting features. These captured characteristics were subsequently utilized as input for
various classifiers, such as the PIN, SVM, CT, RT, and KCN. Although the specific classes are not
mentioned, their aim was to classify CXIs into four classes. By leveraging pre-trained CNN models
and utilizing LBP for feature extraction, they aimed to capture relevant patterns and information from
the images and improve the classification task. In a recent study [38], a hybridized approach combining
manual and deep spatial features, along with traditional transfer learning techniques using CNN-based
deep learning models, achieved a diagnostic accuracy of 95.57% for COVID-19 detection from CXIs.
Zhang et al. [39] used the FECNet model, utilizing a varying-distance GLCM-based feature extraction
and ELMclassifier, and achieved an accuracy of 92.70% for COVID-19 recognition on one dataset and
92.53% on another, outperforming five other state-of-the-art models.

4 Research Gap

In the field of diagnosing COVID-19 through medical imaging, there is a notable research gap
that needs attention. Currently, many studies have focused on using CXIs together with advanced deep
neural networks or state-of-the-art CNN architectures to detect COVID-19 features. However, XAI
remains underutilized in the detection and visualization of COVID-19, and other medical imaging
tasks. Also, CXIs have been extensively studied, CT scans offer a different perspective and can
potentially provide valuable insights for a more accurate and comprehensive diagnosis of COVID-
19 with XAI techniques. Investigating the application of these state-of-the-art DL learning models,
alongside other cutting-edge pre-trained models, on CT scans may reveal new possibilities and improve
the accuracy of COVID-19 detection with XAI to find the unexplored areas in the image. In this regard,
the survey of additional preprocessing techniques may improve the performance of these models,
making them more effective in addressing this research gap in the field of medical diagnosis using
images.

5 Datasets

This research study involved the use of chest X-ray images from real-time patient data collected
between November 2020 and November 2021. Data for the experiments were sourced from Jinnah
Postgraduate Medical Center, Karachi. The data collection received ethical approval from the Ethics
Committee of Jinnah Postgraduate Medical Center, Karachi (MXR(G)-39/21/JPMC).

The experiments conducted in this study utilized four distinct datasets for COVID-19 detection
from CXIs. One dataset is collected from JPMC hospital, which is the private dataset. For ensuring
worth and suitability of dataset for our experiments, data preprocessing steps were performed. Firstly,
a data cleaning process was conducted to remove any corrupt or unusable images from the datasets.
Additionally, resizing operations were applied to standardize the images to a uniform size of 128 × 128
pixels, which is a commonly used resolution for CXIs. Fig. 2 below shows the process before training
the model and cleaning the datasets.

The first dataset, obtained from Kermany et al. [40], consists of normal and pneumonia cases. It
encompasses CXIs of individuals without respiratory abnormalities as well as those diagnosed with
pneumonia, including both bacterial and viral cases. The second dataset is a private dataset obtained
from JPMC, for which proper permission was obtained which contains COVID-19 cases. This dataset
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contains CXIs of patients diagnosed with COVID-19, confirmed through RT-PCR tests. In Fig. 3,
JPMC dataset example is given.

Figure 2: Data collection and preprocessing flow before performing the experiment

Figure 3: Example of COVID-19 dataset obtained from JPMC
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Lastly, the JP Cohen dataset was utilized, which specifically focuses on the CXIs of patients
diagnosed with COVID-19 [41]. The inclusion of these datasets, representing normal, pneumonia,
and COVID-19 cases, allows for a comprehensive evaluation of our DL approach effectiveness in
differentiating between these conditions accurately.

In this experiment, a balanced number of images were used to ensure equal representation and
minimize potential biases. The use of a balanced dataset is important for obtaining accurate and
reliable results, as it helps to mitigate any potential confusing factors that may arise due to an unequal
distribution of images with dimensions of 128 × 128 pixels after resizing the images from higher
dimensions. Fig. 4 shows the summary and distribution of the CXIs used to perform the experiments.

Figure 4: Ratio of images used to perform the experiment

This study was conducted with an additional 500 (after cleaning the data) COVID-19 patients who
had been confirmed positive and discharged from the hospital between November 2020 and November
2021. Most of those patients are not younger than 50 years old. Images are in the DICOM format and
before training cleaning, preprocessing, and image enhancements were applied.

6 Methods
6.1 CLAHE

Several studies [42–45] have shown how important it is to make DL models work better for this
task they do this by using the right techniques or methods to process the pictures that are put into the
models. The CLAHE algorithm is a commonly used technique in image processing that improves the
contrast and details in an image by redistributing the pixel intensities. Fig. 5 shows the steps which are
in Algorithm 1 applied to enhance the visibility of an image.

In this regard, the CLAHE algorithm is implemented to increase visibility of images before train-
ing. Fig. 6 illustrates an instance demonstrating the unaltered image alongside the image improved
through the implementation of the CLAHE method.

Histogram Equalization is applied to the grayscale image denoted as x, where the variable i
represents a grayscale intensity ranging up to a maximum value of 256. To determine the probabilities
associated with a pixel in the image at intensity level j, the calculation is performed mathematically as
follows in Eq. (1):

Px (j) = P(x = l) = nl

n
, 0 ≤ j < L (1)
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where L denotes the total count of gray levels present in the image, n corresponds to the total number
of pixels and Px (j) signifies a portrayal of the image histogram, associating the pixel intensity with an
index j.

Algorithm 1: Histograms Equalization Function
Input: Grayscale image IInput

Output: Histogram equalized image IOutput

1. Read the input grayscale image: IInput

2. Compute the histogram equalization transformation:
Let n be the pixels in IInput image.
Let pi be the normalized histogram of pixel intensity i in IInput, where i ranges from 0 to 255.
Compute the cumulative distribution function (CDF) Ci for each pi:
Ci = ∑i

j=0 Pj

Compute the transformation function Ti for each pi:
Ti = round(255.Ci)

Apply the transformation function to each pixel in IInput to obtain the histogram equalized image
IOutput:

IOutput (x, y) = IInput (x, y), where (x, y) are the pixel coordinates.
3. Display images for comparison:

Display IInput and IOutput side by side for visual comparison.
4. End.

Figure 5: Process of CLAHE algorithm to perform the enhancement

6.2 XAI–Attention Mechanism

Attention mechanism help models pay attention to the right things when they are working on
tasks of recognizing objects in pictures or patterns and also on NLP [46]. The technique works like a
spotlight that shines on the important parts of the data, making it easier for the model to do its job
well. They are inspired by how humans pay attention to things, and they help the models perform
better and make their decisions more understandable. Attention mechanisms have not been widely
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utilized as an approach for explainability in medical imaging, particularly in the context of COVID-
19 diagnosis so far. In [16], authors employed XAI techniques for medical imaging in their study on
classifying melanoma skin cancer images.

Figure 6: Example of CLAHE, before and after applied in an image

The attention mechanism is like a spotlight for a transformer model. It helps the model focus on
important parts of the input while ignoring less relevant ones. Here is how it works: First, the input is
broken down into pieces, like words in a sentence or patches in an image. Then, the model learns three
things for each piece: what to look for (query), what to compare it to (key), and what information
to gather (value). The model calculates how similar each piece is to the query. This similarity score
determines how much attention the model gives to each piece. After that, the model uses these scores
to decide how much importance each piece gets. Finally, it combines all the information from the
pieces, giving more weight to the ones that are most relevant to the query. So, the attention mechanism
helps the model focus on what matters most for the task it is doing [47,48].

6.3 t-SNE

To gain insights into the extracted features and explore the clustering patterns within the extracted
features, we employed t-SNE, a widespread dimensionality reduction technique. t-SNE is suitable for
visualizing high-dimensional data by mapping them into a lower-dimensional space while preserving
their local relationships [49]. In this experiment, t-SNE was utilized to the extracted features obtained
from the models used in the experiment to visualize the features. This visualization allowed us to assess
the separability of different classes and identify any inherent clustering patterns within the dataset. The
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t-SNE embedding served as a valuable tool for understanding the relationships and distributions of
the extracted features.

6.4 SVM

A linear kernel and SVM are used for the classification problem, and the utilization of hyper-
plane performs well for linearly separable data [50,51]. SVM employs a technique known as the kernel
trick to handle the classification of linearly inseparable data as mentioned in Table 2 below. The
linear kernel computes the dot product between the feature vectors, which measures the similarity or
dissimilarity between them. It establishes a linear decision boundary within the feature space, rendering
it appropriate for datasets that are linearly separable mathematically in Eq. (2).

wTx + b = b +
∑m

i=1
αixTx(i) (2)

Table 2: Hyperparameter settings utilized in SVM for classification throughout the experiments

Hyperparameter Value Description

Kernel Linear Type of kernel function used in SVM
C 1 Regularization parameter (trade-off

between margin and error)
Random state 42 Seed for random number generation

6.5 CNNs

6.5.1 InceptionV3

In 2015, Szegedy and his team introduced InceptionV3 [52]. The Inception Module is the key
component of this network, characterized by its distinct features. It incorporates convolutions of
different sizes, such as 1 × 1, 3 × 3, and 5 × 5.

6.5.2 VGG16

To extract informative features from the preprocessed CXIs, the VGG16 model was applied, a
widely used CNN architecture known for its excellent performance in image classification tasks. The
VGG16 model, pre-trained on large-scale image datasets, has shown remarkable capability in learning
hierarchical representations of images [53]. By utilizing transfer learning, the pre-trained weights of
the VGG16 model removed the fully connected layers, transforming them into a feature extractor.

6.5.3 VGG19

The VGG19 model is a DCNN that builds upon the architecture of VGG16 with 16 and 3,
convolutional layers and FCL, respectively. The pre-trained VGG19 model is utilized for extracting the
features from the preprocessed images of the hybrid dataset. During training, the pre-trained weights of
the VGG19 model were frozen, and only the newly added layer was trained to extract features from the
CXIs. The extracted high-level features from the model were then used as inputs to train and evaluate
the subsequent DL model also used to train the COVID-19 [54]. This utilization of the VGG19 model
allowed us to explore its potential for feature extraction and its impact on the performance of our
classification task using SVM.
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7 Experiment and Performance Evaluation
7.1 Experiment Setup

Colab (Google Colaboratory) is a free feature, it uses with the help of Jupyter for ML imple-
mentation in research [35,36]. Python 3 is embedded in Jupiter Notebook, along with important ML
libraries. This eliminates the requirement for local installation ensures a hassle-free environment, and
supports full flash implementation of DL, including GPU acceleration.

7.2 Performance Evaluation Method

This section presents a comprehensive analysis of the evolving performance metrics, encompassing
accuracy (Acc), recall (Rec), F1-score (F1), and precision (Prec), to assess the efficacy of the proposed
methodology which is given in Eqs. (3)–(6), respectively. These metrics serve as essential benchmarks
in evaluating the model’s ability to accurately classify and characterize the underlying data patterns.

Acc = TN + TP
TP + FP + TN + FN

(3)

Rec = TP
TP + FN

(4)

F1 = TP

TP + 1
2
(FP + FN)

(5)

Prec = TP
TP + FP

(6)

7.3 Confusion Matrix

To further assess the effectiveness of our DL models, a confusion matrix was employed. A
confusion matrix is a tabular representation that summarizes the predicted and actual class labels of a
classification model which provides valuable insights into the model’s performance by quantifying the
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This
analysis provided a more comprehensive understanding of the model’s strengths and weaknesses in
correctly classifying Normal, Pneumonia, and COVID-19 cases. By visualizing the confusion matrices,
valuable insights into the models’ performance and identified any specific patterns or challenges
in their predictions, enabling us to make informed decisions for further model improvement and
optimization.

7.4 Results

Four different target approaches were used to evaluate the three DL pre-trained models as shown
in Table 3 below.

In all experiments mentioned in Table 3 image data are divided into two parts: 80% was used to
teach the model how to recognize patterns, and the remaining 20% was saved to check how well it
learned. However, this same split every time to run the experiments. You can find the code we used to
do this by clicking the provided link in the end of the article.

In first step features was extracted using the state-of-art previously trained models and extracted
features was visualized using the t-SNE embedding techniques as discussed earlier in the for better
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understanding of the extracted features. Fig. 7 shows the t-SNE embedding using extracted features
from InceptionV3, Fig. 8 shows the results of VGG16 and Fig. 9 shows the results of VGG19.

Table 3: Classification approaches and classes

Approach Classification classes

1 Normal v/s COVID-19
2 Normal v/s Pneumonia
3 COVID-19 v/s Pneumonia
4 Normal v/s Pneumonia v/s COVID-19

Figure 7: t-SNE visualizing the high-dimensional features extracted by the InceptionV3

Figure 8: t-SNE embedding visualizing the high-dimensional features extracted by the VGG16

Figure 9: t-SNE embedding visualizing the high-dimensional features extracted by the VGG19
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7.5 Model Performance Evaluation with State-of-the-Art Pre-Trained Models

InceptionV3, VGG16, and VGG19 were evaluated on four classification tasks on different
approaches mentioned in Table 3. The highlighted results in the table show the tasks where the models
achieved the highest accuracy. Tables 4–6 show the performance evaluation results of the InceptionV3,
VGG16, and VGG19 architecture with a linear SVM kernel, respectively. The model’s effectiveness is
evaluated across four distinct classification tasks.

Table 4: Performance metrics of the InceptionV3-SVM for various classification tasks

Model: InceptionV3-SVM kernel type = Linear

Approach Prec Rec F1 Acc

Normal v/s COVID-19 0.96 0.96 0.96 0.96
Normal v/s Pneumonia 0.95 0.95 0.95 0.95
COVID-19 v/s Pneumonia 0.99 0.99 0.99 0.99
Pneumonia v/s normal v/s COVID-19 0.93 0.93 0.93 0.93

Table 5: Performance metrics of the VGG16-SVM for various classification tasks

Model: Inception VGG16-SVM kernel type = Linear

Approach Prec Rec F1 Acc

Normal v/s COVID-19 0.99 0.99 0.99 0.99
Normal v/s pneumonia 0.97 0.97 0.97 0.97
COVID-19 v/s pneumonia 1.00 1.00 1.00 1.00
Pneumonia v/s normal v/s COVID-19 0.98 0.98 0.98 0.98

Table 6: Performance metrics of the VGG19-SVM for various classification tasks

Model: Inception VGG19-SVM kernel type = Linear

Approach Prec Rec F1 Acc

Normal v/s COVID-19 0.99 0.99 0.99 0.99
Normal v/s pneumonia 0.97 0.97 0.97 0.97
COVID-19 v/s pneumonia 1.00 1.00 1.00 1.00
Pneumonia v/s normal v/s COVID-19 0.98 0.98 0.98 0.98

Figs. 10–12 illustrate the performance of the InceptionV3, VGG16, and VGG19 models, respec-
tively, in classifying various medical conditions. Curves that closely approach the top-left corner
indicate the superior ability of the model to distinguish between positive and negative cases.
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Figure 10: InceptionV3 model’s ROCAUC of all medical condition experiments

Figure 11: (Continued)
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Figure 11: VGG16 model’s ROCAUC of all medical condition experiments

Figure 12: VGG19 model’s ROCAUC of all medical condition experiments
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In the first approach, all three models achieved high accuracies, with InceptionV3 and VGG16 at
96% and VGG19 at 99%, demonstrating excellent performance in identifying Normal and COVID-
19 cases. In the second approach, accuracies ranged from 95% (InceptionV3) to 97% (VGG16 and
VGG19), effectively distinguishing Normal and Pneumonia cases. For classifying COVID-19 vs. Pneu-
monia, all models achieved perfect accuracy (100%). In the last approach, accuracies ranged from 93%
(InceptionV3) to 98% (VGG16 and VGG19), showcasing effectiveness in multi-class classification.
The precision, recall, and F1-scores were consistently high across all approaches. Figs. 13–15 show the
confusion matrices for the various runs, detailing the models’ classification performance.

Figure 13: Confusion matrix obtained using InceptionV3 and SVM using linear kernel

The findings in the experiments demonstrate that these models exhibit robust performance
without showing signs of overfitting. This can be attributed to several technical factors.

1. The CNN architectures provide effective feature representation, capturing relevant patterns in
the input data while avoiding noise.
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2. The use of a linear kernel promotes simplicity in decision boundaries, preventing excessive
complexity that could lead to overfitting.

3. The incorporation of regularization mechanisms within the SVM framework further aids in
preventing overfitting by penalizing overly complex models.

4. Also, the balanced representation of classes ensures that the models learn effectively from all
categories, contributing to their generalization ability.

5. The models underwent thorough cross-validation and hyperparameter tuning of SVM, ensur-
ing their performance consistency across different subsets of the data and mitigating the risk of
overfitting. These technical factors collectively contribute to the robustness of the SVM models
and their ability to generalize well to unseen data.

Figure 14: Confusion matrix obtained using VGG16 and SVM using linear kernel
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Figure 15: Confusion matrix obtained using VGG19 and SVM using linear kernel

7.6 XAI-Visualization

In this section, we present our methodology for enhancing the interpretability and trustworthiness
of the AI system utilized in this study. Initially as mentioned in earlier section, a state-of-the-art
pre-trained DL model, leveraging its powerful feature extraction capabilities. To gain insight into
the underlying structure of these features. To sustain confidence in the AI model’s decision-making
process, we integrated an Attention Mechanism typically utilized in NLP tasks, but this study’s
innovation lies in the application of Attention Mechanism to CXIs, shedding light on how the AI
system identifies various chest disorders.

Experiment was performed by selecting four CXIs and presenting their corresponding attention
weight distribution graphs. These graphs represent the relationship between pixel indices along the
x-axis and attention weights along the y-axis, offering insights into which regions of the images the
AI model focuses on during its analysis. In the attention mechanism in figures below from Figs. 16 to
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27 red color indicates regions of the CXIs that the model considers to be most important or in other
words consider relevant for making predictions according to the mentioned classes.

Figure 16: Attention mechanism to visualize the InceptionV3 (COVID-19 vs. pneumonia)

Figure 17: Attention mechanism to visualize the InceptionV3 (Normal vs. COVID-19)
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Figure 18: Attention mechanism to visualize the InceptionV3 (Normal vs. pneumonia)

Figure 19: Attention mechanism to visualize the InceptionV3 (Multi class)

Figure 20: Attention mechanism to visualize the VGG16 (COVID-19 vs. pneumonia)
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Figure 21: Attention mechanism to visualize the VGG16 (Normal vs. COVID-19)

Figure 22: Attention mechanism to visualize the VGG16 (Normal vs. pneumonia)

Figure 23: Attention mechanism to visualize the VGG16 (Multi class)
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Figure 24: Attention mechanism to visualize the VGG19 (COVID-19 vs. pneumonia)

Figure 25: Attention mechanism to visualize the VGG19 (Normal vs. COVID-19)

Figure 26: Attention mechanism to visualize the VGG19 (Normal vs. pneumonia)
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Figure 27: Attention mechanism to visualize the VGG19 (Multi class)

The high attention values suggest that the model focuses its processing resources on specific
image parts. These regions are likely to strongly influence the model’s predictions. On the other hand,
blue areas in the attention heat map suggest that the model is paying less attention to those regions.
These regions are likely to have a weaker influence on the model’s predictions compared to regions
highlighted in other colors (e.g., red, yellow).

8 Comparison of Dataset Utilized for the Experiment

In this section, comparisons of performance studies of both classifications (multi-class and binary)
using CXIs. Table 7 shows some recent studies that did not report accuracy due to their datasets being
heavily imbalanced. While many of the related studies reported high accuracy values, a prevailing trend
among them is the scarcity of a substantial number of COVID-19 cases.

Table 7: Number of CXIs used by the different studies

Ref. COVID-19 Healthy Other disease Total Benchmark dataset Unseen new dataset

[20] 420 2000 N/A 2420 Yes No
[21] 219 1314 1345 2878 Yes No
[31] 371 2923 2778 6072 Yes No
[22] 364 364 364 1092 Yes No
[7] 25 25 N/A 50 Yes No
[23] 295 68 98 461 Yes No
[24] 225 1583 4292 6100 Yes No
[25] – – 94323 – Yes No
[26] 224 504 700 1428 Yes No
[27] 250 1000 500 1750 Yes No
[28] 250 3520 2753 6523 Yes No
[29] 445 2880 5179 8504 Yes No
This study 1136 1136 1136 3408 Yes Yes
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The field of DL for medical diagnosis, especially in COVID-19 classification, has seen significant
growth with an extensive body of literature. However, to ensure the reliability and generalizability of
models, it is crucial to have access the large and unexplored datasets.

9 Future Scope

With more and more people getting affected by COVID-19 in some regions now, there is a need
to test a lot of cases quickly. In this study, we tried to use different state-of-the-art models to figure
out if someone has COVID-19 by looking at their CXIs with the XAI technique to model dynamically
weigh the importance of different input features or parts of the input data when making predictions
or generating outputs. However, XAI is still underutilized in the medical and healthcare sector due
to regulatory, technical, privacy, integration, and awareness challenges. It is also important to talk to
doctors and experts if we want to use this in real life. Also, more experiments will be beneficial to
perform with more state-of-the-art architectures.

10 Conclusions

This study presented a novel approach by utilizing the XAI technique, specifically the attention
mechanism, to visualize the decision-making areas crucial for CNNs in feature extraction, as well as to
assign importance scores to each input feature, providing explanations for predictions. While applied
this technique in image analysis, it has also been extensively employed in NLP. Also, the attention
mechanism was able to evaluate how well our suggested solution performed in a real-world clinical
setting, thereby enhancing the generalizability and practicality of findings. By incorporating data
from a private hospital, our study contributes to the growing body of research on DL applications
in healthcare and demonstrates the adaptability of our system in diverse medical environments. This
system has the potential to significantly improve the efficiency of diagnosis, isolation, and treatment of
COVID-19 patients, relieve the workload of radiologists, and help control the spread of the epidemic.
The best results were achieved in the classification of COVID-19 and pneumonia, where an accuracy
of 100% was obtained.
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