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ABSTRACT

Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the
capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary
Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning
strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference
speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection
algorithms in different road image scenarios. Although constrained by computer resources and training datasets,
our results indicate opportunities for future research, demonstrating that quantization and focused optimization
can significantly improve machine learning models’ accuracy and operational efficiency. ARM Cortex-M0 gives
practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:
Advanced machine learning in edge computing. The analysis work delves into the educational significance of
TinyML and its essential function in analyzing road networks using remote sensing, suggesting ways to improve
smart city frameworks in road network assessment, traffic management, and autonomous vehicle navigation
systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
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1 Introduction

Integrating state-of-the-art technologies into road infrastructure maintenance is essential for
ongoing research to enhance road safety and efficiency. This requirement is necessary because of the
increasing complexity and volume of data generated by the widespread use of Internet of Things (IoT)
devices in road networks [1]. The most important point in Tiny Machine Learning (TinyML) usage is
why, when several IoT devices do the same thing. Due to IoT restrictions, embedded devices need to
feature machine learning (ML). Each IoT device requires a small amount of bandwidth, but a network
with more devices consumes more bandwidth [2]. One should check if their internet connection can
handle several devices without causing system problems. IoT devices have latency issues, and most
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IoT devices send data to the cloud for analysis and delay responses [3]. IoT energy usage is a serious
issue, and directly applying ML algorithms to edge devices is best in this scenario [4]. The algorithm
Generative Pre-trained Transformer (GPT-3) debuted in May 2020 [5], and the 175 billion-neuron
network uses 3 gigawatt-hours of electricity. TinyML systems use battery-powered microcontrollers,
making them energy-efficient, as seen in Fig. 1.

Figure 1: Deploying models on embedded systems

IoT devices deliver vital data to the cloud for analysis, which is transported over a network,
exposing it to flaws that could compromise its privacy and security. Interception of data during transit
can cost service companies money, as the 2020 IBM Cost of Data Breach study found that, on average,
data breaches cost USD 3.86 million [6]. TinyML devices increase security, energy efficiency, latency,
and cost, as they are employed in many sectors for various purposes. A fast data-gathering system
using wearable sensors and TinyML is possible because wearable technology measures stress tracks
road conditions, and detects real-time road issues. Devices can do many tasks without network delays
or data leakage and reduce latency, dramatically enhancing the wearable user experience [7]. Advances
have improved microcontroller computing, and deep learning (DL) models using microcontrollers save
energy compared to GPU-powered systems [8]. TinyML can assist in identifying road anomaly trends
and expedite repairs. The conventional methods for detecting road abnormalities, primarily relying
on manual inspection or basic automated systems, are no longer adequate for addressing the intricate
challenges presented by modern road networks [9].

The work is based on an analysis of the introduction of an innovative integrated system that
combines IoT, ML, DL, and edge computing technologies to transform the identification and man-
agement of road irregularities. It focuses on conducting a thorough examination of anomaly detection
techniques [10], and these algorithms are essential for analyzing large amounts of information
to identify abnormalities that may suggest potential road damage or hazards. Anomaly detection
encompasses a wide range of algorithms that can be categorized based on their level of supervision
(supervised, semi-supervised, and unsupervised) and the fundamental principles they employ [11]
(ML vs. DL). Road networks’ complex and ever-changing characteristics limit traditional anomaly
detection algorithms like k-NN, Support Vector Machine (SVM), Support Vector Graphics [12],
ResNet, Alexnet [13], Visual Geometry Group Net (VGGnet) [14], MobileNet, and Local Outlier
Factor (LOF). The constraints highlight the need for better ML and DL algorithms that can handle
vast datasets and detect minute road anomalies. The integration of Long Short-Term Memory (LSTM)
networks and Convolutional Neural Networks (CNNs), renowned for their proficiency in handling
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sequential and spatial data, respectively, offers a promising method to enhance the precision and
reliability of anomaly identification in road infrastructure [15,16]. These anomalies, as observed in
Fig. 2, are in the form of road extraction complexities in the form of shadowing, merging, similarities
with other objects, improper construction, destructive parts, and occlusions [17]. Another essential
part of anomalies is the extraction of complex cracks in the road network, which sometimes cause
obscurities in the management and road data collection.

Figure 2: Road anomalies from multiple datasets

Detecting abnormalities in roadways becomes more complex when attempting to identify curving
lines in images taken from a distance [18]. It involves categorizing these structures into distinct groups
and accurately representing them within the broader context of road networks. Traditional approaches
to supervised learning have significant challenges in this situation, primarily due to the scarcity of
labeled datasets [19]. The work focuses mainly on the huge data and insufficient resources to collect and
regulate the road network detection for maintenance as well as required construction. Hyperspectral
imagery faces many challenges in the feature extraction of roads, either in the network or crack
detection, due to its obscurities and similarities with other objects [20]. There are complexities in
the form of weather, illumination, ambiguities, and shadowing for the image processing algorithms
in multiple ways, from preprocessing to prediction. Segmentation and classification are very well
categorized in the existing DL algorithms, but TinyML is attached to it to modify the model with
the help of mathematical morphology. There is a growing need for real-time analysis to transform the
deployment from the large scale to the small level to enable more robust systems to be connected
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to the enlarged encapsulation of data for accurate information without constraints. Quantization
for the categorization is adapted from the process of TinyML on the existing binary CNN models
by compressing and optimizing the process to get the required accuracy. The work is an effort to
present the initial phase of road anomaly detection using TinyML instead of ML/DL to overcome the
limitations in current research and deployed model scenarios.

The structure of this paper is organized as follows: Section 2 reviews relevant literature on the
application of neural networks in road anomaly detection and the role of TinyML in edge comput-
ing. Section 3 describes the methodology, detailing our innovative approach to integrating Binary
Neural Networks (BNNs) with TinyML, including developing and implementing the optimization
strategy. Section 4 presents the experimental setup, data description, and details of the computational
framework used and provides a comparative analysis of the performance of our proposed method
against existing approaches in results. Section 5 discusses the implications of our findings, potential
applications, and directions for future research. Finally, Section 6 concludes the paper by summarizing
the key contributions and their impact on edge computing for road infrastructure monitoring.

2 Background

TinyML, which extracts road networks from remotely sensed images, advances geospatial studies,
while traditional and ML methods have limited road network identification [21–23]. The development
of these technologies can reveal TinyML’s significant impact on road safety and infrastructure man-
agement. TinyML, or Embedded ML, creates small, powerful computers that handle several everyday
tasks where IoT systems may not be feasible due to network, privacy, and latency limitations [24–26].
Edge computing uses Embedded ML to process data locally rather than on the cloud. Jepsen et al. [27]
studied the constraints of cloud-based systems and suggested incorporating standalone ML models
into Microcontroller Units (MCUs) with limited resources and network-edge Field Programmable
Gate Arrays (FPGAs). They developed methods and efficiency tips for deploying ML models on
low-resource microcontrollers, as Tsoukas et al. [28] surveyed the utilization of embedded and mobile
device ML. The analysis involved hidden Markov models, k-NNs, SVMs, Gaussian mixture models,
and deep neural networks [29]. Wu et al. [30] researched neural architecture search (NAS) to tackle
limitations in tinyML MCU memory, latency, and energy, analyzing optimization solutions for
contemporary embedded systems that require a large amount of memory. MCU MicroNet models
were constructed and implemented utilizing TensorFlow Lite version 15 Micro, and the visual
words, abnormalities, and aural keywords were recognized effectively. Byun et al. [31] suggested
optimization algorithms for power consumption, cost, privacy, and performance to meet embedded
ML restrictions. They offered hardware and software enhancements to improve system performance,
including architectural, algorithmic, and memory utilization improvements [32]. TinyML solves com-
putational problems by deploying ML models on low-power, responsive devices like microcontrollers.
This technology allows data administration on-site, decreases cloud reliance, and facilitates network
analysis [33]. In TinyML’s Typicality and Eccentricity Data Analytic (TEDA) algorithm, unsupervised
learning helps identify road faults quickly using car sensor data, increasing road safety and lowering
maintenance expenses [34]. Several optimization approaches increase TinyML model efficiency on
low-resource devices, and we use model compression, quantization, and pruning to balance model
accuracy and efficiency while protecting privacy and data integrity. These optimization methods have
helped TinyML be used in road network extraction by overcoming the restrictions of typical DL
models, while TinyML and remote sensing increase road type and abnormality identification and
categorization. The joint approach uses advanced ML and conventional methodologies, and this
unique method for extracting road networks can advance the field. TinyML, fuzzy logic, and remote
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sensing research are needed to advance the field. The study direction holds substantial promise to
expedite advancements in urban planning, traffic management, and emergency response systems [35].
Future research can utilize integrated technologies to address the limitations of current methods and
discover novel functionalities for real-time, precise, and efficient analysis of road networks. The result
can enhance safety and increase resilience in infrastructure management of road networks.

3 Research Methodology

DL-powered computer vision on IoT devices decreases road anomaly detection latency, network
needs, and privacy problems compared to cloud data centers. Microcontrollers revolutionize edge
computing with their energy efficiency and cost. However, processing and memory restrictions
make real-time road network analysis and anomaly detection using remotely sensed or other data
problematic. Studying methods to reduce DL models’ computational and memory demands has
tackled these constraints, as observed in Fig. 3, giving the robust connectivity of existing ML/DL with
TinyML.

Figure 3: Overview of TinyML process for optimization from existing models

3.1 Data Preparation and Preprocessing

Preprocessing the training data is the vital stage that commences with obtaining high-resolution
road images that display a variety of road conditions, including common characteristics and abnor-
malities such as cracks and deteriorations—dividing the images into smaller tiles or mosaics that can
be processed on microcontrollers with limited computational power to employ a thorough labeling
procedure to transform visible road features into a structured format that distinguishes anomalies from
typical road characteristics. The dataset is partitioned into training and testing sets to evaluate the ML
model’s accuracy in predicting new data. Once a comprehensive dataset is prepared with labeling, the
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next step is to focus on training and obtaining appropriate ML models that are selected for further
processing.

3.2 Model Training and Acquisition

The U-Net model is selected to lever preprocessed images using Gabor filtering and deploy
TinyML capably, as shown in Fig. 4, which depicts the results. The effectiveness of the deployed model
for parametric complexities is further enhanced in the classification phase in terms of multiple iterative
categorizations and loss metric evaluation.

Figure 4: Road images segmentation

3.3 Quantization and Model Optimization

After completing the training process, the algorithm classifies the pixels in the test images to assess
the road’s anomaly conditions. The accuracy of the predictions is precisely evaluated by comparing
them to the test labels. The evaluation utilizes many metrics, such as primary matching coefficients,
confusion matrices, and visual inspections, to thoroughly examine the model’s performance. The
architecture that has been created emphasizes methodological approaches for model compression,
including quantization and pruning, as seen in Fig. 3. The techniques above effectively preserve the
predicted accuracy of the model while substantially reducing its computational load. The model’s
parameters have been adjusted to align with the optimal accuracy configuration of TinyML, hence
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ensuring the efficiency and responsiveness needed for practical implementation. This study utilizes
TinyML, a framework specifically developed for power and processing limitations in microcontrollers,
to implement model compression techniques such as quantization and pruning. The objective is to
preserve the model’s predictive accuracy while minimizing resource requirements [36].

3.4 Deployment and Real-World Application

The deployment phase holds significant relevance in our process since it enables the transfer of the
TinyML-optimized model onto a microcontroller. The approach described above follows the resource
constraints of the specified device. Upon deployment, the model analyzes new road imagery to detect
irregularities promptly. The deployment’s success is demonstrated through theoretical and practical
proof, as shown by real-world applications that showcase the model’s capacity to facilitate timely road
repair operations, enhancing road safety and infrastructure integrity in case of anomalies.

3.5 Validation and Performance Metrics

We utilize a comprehensive range of performance metrics, such as fundamental matching coeffi-
cients, confusion matrices, and visual assessments, as illustrated in Fig. 4, to evaluate the reliability
and precision of our model. The metrics provided offer a quantifiable and descriptive evaluation
of the model’s accuracy in partitioning and identifying road anomalies, showcasing the concrete
impact of our methodology on the analysis of road networks. The model deployment was explicitly
carried out on an ARM Cortex-M0 microcontroller, renowned for its notable power efficiency and
computational capabilities that render it highly suitable for IoT applications. Data input to output
execution time was measured over 100 test rounds using the inherent timing capabilities of the ARM
Cortex-M0. The utilization of this methodology ensured the accuracy and consistency of our latency
measurements, providing a reliable evaluation of the model’s efficacy in practical situations. The
deployment is carefully planned to match the microcontroller’s resource limitations, guaranteeing
smooth functioning. When activated, the model instantly examines recent road images to evaluate
road conditions, and being prompt in responding is crucial for facilitating proactive road maintenance
and safety efforts.

4 Quantization

Large DL models and computing needs strain edge devices’ resources, while TinyML-embedded
IoT ML includes tailored solutions and tools. TinyML solutions like Google TensorFlow Lite Micro
and ARM CMSIS-NN train and infer with 8-bit quantized networks. CBin-NN uses neural networks
on resource-constrained microcontrollers to detect road defects using binary. CBin-NN creates 32-bit
Cortex-M embedded AI for real-time road monitoring, as the limited resources prevent traditional
CNNs from detecting road anomalies in embedded devices.

4.1 Dataset and Experimental Setup

The Massachusetts dataset is a public dataset created by Mihn and Hinton [30], comprising 1171
pictures, each with a 1500 × 1500 pixels resolution at 1 m per pixel. The 1171 pictures were partitioned
into training, validation, and test sets, which had a 70:30 ratio in processing. This study involved
conducting comparative experiments using identical sets of training and testing samples alongside
other relevant models. Our algorithmic choice, centered around a U-Net model with Gabor filtering,
was influenced by its proven feature extraction and segmentation capabilities within high-resolution
imagery. The U-Net model’s architecture, renowned for its performance in semantic segmentation
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tasks, aligns well with our goal of identifying subtle road anomalies through DL. The comparison
experiments were conducted using similar sets of training and test samples. The experimental computer
operating system was Windows 11 Professional, with an Intel(R) Core(TM) i9 CPU configuration. The
graphics card model utilized was the NVIDIA GeForce RTX 4060, with a video memory capacity of
16 GB. The used version of CUDA was 11.1, whereas the employed version of PyTorch was 1.7.0.
Table 1 displays the experimental parameters.

Table 1: CBin-NN framework operators for road anomaly detection using remotely sensed images

Operator Input Weights Output Notes

QBConv2D_Hybrid∗ 8-bit quantized Binary 32-bit
packed

For initial feature
extraction from high-res
images, Comparator + BN
Fusion

QBConv2D_Optimized_Hybrid∗ 8-bit quantized Binary 32-bit
packed

Enhanced precision for
initial layers, Comparator
+ LU + BN Fusion

BBConv2D_Spatial∗ Binary Binary Binary Tailored for spatial feature
extraction from road
surfaces, XOR &
PopCount + BN Fusion

BBConv2D_Optimized_Spatial∗ Binary Binary Binary Optimized for detailed
feature extraction, XOR &
PopCount + LU + BN
Fusion

BMaxPool2D_Optimized Binary – Binary For downsampling and
emphasizing dominant
features, 32-bit
Simultaneous OR

BBFC_RoadClass∗ Binary Binary Binary For integrating features to
classify road conditions,
XOR & PopCount + BN
Fusion

BBQFC_RoadClass∗ Binary Binary Quantized Output layer for anomaly
classification, XOR &
PopCount + BN Fusion

(Continued)
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Table 1 (continued)

Operator Input Weights Output Notes

BBQFC_Optimized_RoadClass∗ Binary Binary Quantized Optimized output layer for
precise classification, XOR
& PopCount + BN &
PreLU Fusion

Note: ∗LU = Loop Unrolling (an optimization to enhance computational efficiency.) ∗Hybrid layers = quantized inputs binary weights >
maximize initial feature extraction. ∗Spatial layers are precisely calculated. ∗RoadClass layers use geographic attributes.

CBin-NN operators’ operational mechanisms in the table structure demonstrate a complete
insight into road anomaly detection in remotely sensed images.

4.2 Platform Configuration and Experimentation Parameters

We designed our experiments on a high-end computing platform featuring an Intel(R) Core(TM)
i9 CPU and an NVIDIA GeForce RTX 4060 graphics card to ensure consistency across all study
environments. TinyML’s optimization techniques efficiently reduced the model’s size and complexity
while preserving its accuracy for practical uses, as detailed in Table 2.

Table 2: Symbols with description used in algorithm

Symbol Description

β Number of epochs in the neural network training
λ Learning rate used in the optimization process
f Number of filters in a CNN layer
b Batch size used in training
c Number of road anomaly classes in the classification task

Furthermore, a more comprehensive analysis can be conducted using the following algorithm:

4.2.1 Algorithm: Enhanced Road Anomaly Detection with CBin-NN

Algorithm 1 : Enhanced Road Anomaly Detection with CBin-NN
Input: {Road_Images}, Number of epochs β, Learning rate λ, Number of filters f , Batch size b,

Number of road anomaly classes c.
Output: Classified road conditions as normal or abnormal.
1: Initialize parameters of the CBin-NN specifically designed for road anomaly detection
2: for epoch = 1 to β do batch in {Road_Images}
3: Xinput ← Pre-process and sub-sample the road images in the batch
4: X̂conv1 ← Apply the first convolutional layer with quantized inputs and binarized kernels

to Xinput according to Eq. (1)
5: X̂conv1 ← Apply batch normalization to X̂conv1 according to Eqs. (5) and (6)

(Continued)
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Algorithm 1 (continued)

6: X̂pool1 ← Apply max-pooling to X̂conv1

7: for each subsequent layer designed for spatial feature extraction, do
8: X̂layer ← Apply binarized convolutional or fully connected layer to X̂prev

9: X̂layer ←Apply batch normalization to X̂layer

10: X̂prev ← X̂layer

11: end for
12: Ŷ ← Apply softmax to the final layer’s output for road condition classification according

to Eq. (7)
13: Compute loss L based on cross-entropy between Ŷ and true road condition labels
14: Optimize parameters of CBin-NN using backpropagation with learning rate λ according

to Eqs. (2) and (4)
15: end for
16: Evaluate the CBin-NN model on a separate test dataset to assess anomaly detection

performance
17: Classify test results as normal or abnormal based on the softmax probabilities

The approach employed in this study involves treating road extraction as a multi-class classifica-
tion issue in the form of quantization, particularly binarization, which reduces CNN memory usage
on such platforms. Memory use is 32 times lower than 32-bit floating-point networks when activations
and weights are −1 and +1. Use the Sign function to convert activations and weights into binary values
during forward propagation to improve road anomaly detection algorithms on low-resource devices,
as in Eq. (1).

Sign (x) =
{+1,
−1,

if x ≥ 1
otherwise (1)

CNNs use Multiplication and Accumulation (MAC) [36] operations to discover road network
anomalies, and BNNs use XNOR and PopCount for binary convolution. Using binary activations and
weights (XR, WR, XB, and WB, where R is real and B is binary) enhances execution. Binary encoding
optimizes calculation by representing −1 as 0. It is important to note that BNNs set their binary
weights using backpropagation and let the network adapt and recognize road network abnormalities
and surface cracks from images. Training BNNs is difficult since binarization’s sign function derivative
is 0 everywhere. That subsequently sends the process in Eq. (2) for further enhancement to render
gradient descent inefficient [37] for training. Backpropagation with the Straight-Through Estimator
(STE) method approximates the gradient, overcoming this difficulty. BNNs learn and detect road
network defects from visual inputs using a self-training ensemble (STE).

∂XB

∂XR

= 1 |XR ≤ 1| (2)

The transformation uses the sign function to convert XR to binarized XB. XB = 1 when XR >
0. Returns 0 otherwise (or −1 encoded as 0 in some cases). The conditional operation 1| XR ≤ 1|
yields 1 if XR is less than 1 and 0 otherwise. Binarization requires this method for computational
efficiency and precision, especially when studying intricate road irregularity patterns. The chain rule
determines the cost function C gradient for real-valued weights while training BNNs to discover
road network irregularities. The subsequent function changes model weights during training to assist
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the network in identifying and categorizing road anomalies, including surface cracks and structural
flaws, using remotely obtained or other imagery. The STE method trains BNNs to detect and assess
road faults using binary operations’ lower computational and memory requirements, as extracted in
Eq. (3), to accurately detect road network abnormalities and improve road safety and infrastructure
management.
∂C
∂XR

= ∂C
∂XB

∂XB

∂XR

= ∂C
∂XB

∗ 1 |XR ≤ 1| (3)

Road anomaly BNNs benefit from latent weight control to prevent heavyweights from disturbing
learning, and the clipping reduces the full-precision weight update range as anticipated. The clip
function limits latent weight changes above [−, +]. Updates that exceed the weight value range are
backpropagated to the threshold’s nearest boundary, and readjusting is “clipping”; this approach does
not impact binary weights [38]. Depending on implementation needs, binary weights can be stored as
{−1, 1} or {0, 1}; BNNs need precision and stability to recognize cracks, potholes, and other road
defects. Clip stabilizes binary weights by preventing full-precision weights from drifting, overfitting,
or not converging. Clip-based BNN training creates resource-efficient edge device traffic anomaly
detection models in Eq. (4).

Clip (WR, −1, 1) = max(−1, min (1, WR)) (4)

BNNs lose accuracy during parameter binarization, hindering the open-source BNN inference
engine CBin-NN. It prefers CNN layer operator binary implementation. The platform-independent
C language basis allows the system to be used on software-programmable edge devices. Bit-packing
reduces binarized parameters to memory-efficient vectors in CBin-NN and improves memory effi-
ciency 8-fold over 8-bit networks and 32-fold over full-precision models. Python prepares network
parameters for effective inference on restricted devices for real-time road status monitoring in CBin-
NN and performs core tasks of convolutional neural networks with binarized operators. Road
anomaly detection feature extraction is efficient with QBConv2D, as observed in Eq. (5). With binary
kernel weights, quantized inputs are supported. The operator and layer fusion in batch normalization
shows how DL algorithms must be customized for edge-based road monitoring systems.

yi = γ

(
xi − μ√
σ 2 + ε

)
+ β (5)

The method stabilizes learning to improve BNN accuracy after binarization in batch normal-
ization changes from xi to yi. The parameters γ , β, μ, σ , and ε are learned during training to classify
Bayesian Networks (BN). Remote image road anomalies are found by BNNs normalizing convolution
output before binarization. Cracks and potholes are found by changing the binarization function input
distribution. Road anomaly data and BNNs require BN adjustment, so computation: BN layer input:
X i, μ average, σ 2 spread, ε small constant for numerical stability, γ scaling factor, and β shifting factor.
Changing normalized data improves network representation in BN layer gamma γ and β parameters.
Normalize BNNs for road anomaly recognition with BNs to discover road surface anomalies and
retain model sensitivity to small but essential input data. BN equations are strained and rephrased
to fit BNNs that identify road network abnormalities in Eq. (6), where BN improves road anomaly
detection but is complicated to add to BNNs.

yi = α2i (xi − α1i) (6)
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where αi1 =
(

μ −
√

σ2−ε

γ
β

)
and αi2 = γ√

σ2+ε

. The consequential method blends BN parameters

and convolutional operation accumulator values before memory storage, and BN inference is simpler
without processing layers. The fusion method modifies accumulator values utilizing BN parameters
(γ , β, μ, and εi σ

2) by adjustment following convolution but before the accumulator in Eq. (7). BN is
carefully put within another layer to reduce single-memory operations. Road condition monitoring
and real-time anomaly identification BNN tuning with CBin-NN convolution operators in road
feature learning and deep infrastructure management require adaptability.

yi =
∑ cin

32

i=0
(N − 2 ∗ PopCount(xi XOR wi)) (7)

Pointwise convolution latency in BB Pointwise Conv2D is reduced by avoiding kernel height
and width iterations to accelerate road image extraction and pothole identification with low CPU.
Road anomalies are classified using BBFC and BBQFC layers to process binary inputs and weights
quickly. Binary inputs and weights for vector-matrix multiplication are processed using XOR and
PopCount to maximize anomaly categorization. BBQFC values better classify complex road con-
ditions in road anomaly detection. High-efficiency BNN binary convolution is more efficient with
CPU cache optimization. Compact BNNs work with the L1 cache with data, and instructions from
slower external memory are retrieved faster. BNN deployment on edge devices with limited compute
and memory capacity requires enhancements. The CBin-NN framework’s improved BNN operators
and computational efficiency enable advanced road monitoring systems, as seen in Fig. 5, for DL
algorithms on edge devices, which are more efficient with these technologies, improving road safety and
maintenance while conserving electricity and resources. Remote road irregularity detection replaces
tactile data processing in this improved design. CBin-NN inference engine and BNN architecture
robustness are used.

• The first convolutional layer extracts detailed characteristics from remotely sensed images.
• Batch normalization stabilizes the training process and maintains accuracy.
• Max-Pooling Layers minimize spatial dimensions and focus on critical features.
• Increasing the number of filters from 32 to 64 enhances the capture of characteristics.
• Fully Connected Layer classifies road anomalies for road condition monitoring systems.
• Softmax output indicates road anomaly likelihood for road condition assessment tools.
• Image architecture optimizes filter sizes, padding, stride settings, and computational resources

for edge device deployment.

Figure 5: CBin-NN for road anomalies

The Model Compression Unit Conflict with MCU shows that our library outperforms other
TinyML deployment methods by using channel-wise max pooling, Bop optimizer, PReLU additional
activations, loop unrolling, and differential quantization for input layers, as demonstrated with the
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Massachusetts dataset. CBin-NN decreases model weight memory utilization by 7.5x, activations by
28x, and speeds inference by 3.6x. However, accuracy drops by 2.5%.

4.3 Untested Datasets and Generalizability Discussion

While the Massachusetts dataset provided a solid foundation for our research, the generalizability
of our framework could be further substantiated by testing on additional datasets with varying
resolutions and conditions. Such datasets may include rural roads, urban streets, and highways under
different weather and lighting conditions. In future work, we plan to extend our experiments to include
datasets like the German Traffic Sign Detection Benchmark (GTSDB) or the Cityscapes dataset, which
could provide further. These datasets contain a variety of anomalies and road conditions not present
in the Massachusetts dataset, including variable signages, pedestrian crossings, and more complex
urban infrastructure elements. By expanding our evaluation to include such heterogeneous datasets,
we could evaluate our TinyML-optimized BNN framework’s performance in a more diverse context.
Road anomaly detection is one of the most essential points regarding the practicality and applicability
of the model.

4.4 Pruning and Optimization

In the CBin-NN framework, the term pruning refers to a process that targets the reduction in
complexity of the BNN Layers by systematically eliminating less important connections between
neurons in the network. The aim is to reduce the computational burden and memory utilization while
limiting the decrease in model accuracy. Pruning in this framework is explained in more detail and
implications:

i) Connectivity Reduction: As previously noted, pruning in BNNs involves deactivating specific
neuronal connections based on their importance in maintaining high predictive accuracy. It
is accomplished by setting the weights associated with select connections to zero, effectively
removing them from any calculations performed within the neural network.

ii) Network Architecture Optimization: This occurs due to reduced ability to work with data,
wherein inconsistent neurons and low-utility connections are removed to create a more
standardized pathway of information flow.

iii) Memory Preservation: Since neural connections are responsible for the direct increase in
required memory, the overall memory footprint of the model is decreased. It is an essential
factor in deploying the model to edge devices with restricted memory resources. For example,
a Cortex-M0 would benefit from such reduced model size to achieve increased overall
performance.

iv) Computational Speed: A reduced number of connections leads to fewer computations in both
the forward and backward passes of network training. This results in a faster overall data
processing speed, making it particularly advantageous for real-time applications, such as road
anomaly detection, which require quick responses.

v) Energy Consumption: Reducing computational complexity results in energy consumption,
which is a crucial factor for a battery-dependent edge device.

Pruning is one of the methods used under model compression to enhance the deployment of
BNNs on software-programmable devices, even in a reduced mode. The CBin-NN law employs a
quantization-centered methodology through pruning, enhancing road irregularity detection’s pro-
cessing and power efficiency. CBin-NN algorithm ensures reduced model size and complexity while
providing consistent accuracy and a real-time approach through pruning with a unique technique.
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BNNs are used in edge computing because, even with reduced model size and reduced complexity,
they are less expensive in memory and processing than eight-bit quantizes and full-precision models.
Boosted neural networks have XNOR and PopCount operations, thus reducing the process and
allowing efficient and programmable CNNs with binary weights and activations. Notably, the system’s
response time of 0.6 ms, which is 25% lower than FPGA implementations, meets the stringent real-time
application requirements for road anomaly detection in dynamic environments.

BNNs use less memory than 8-bit quantized and full-precision models without compromising
accuracy. XNOR and PopCount operations decrease computational expenses and develop a set of
layer operators specifically for constructing BNNs, facilitating the creation of straightforward and
adaptable CNNs with binary weights and activations. CBin-NN is compatible with any software-
programmable device, such as Cortex-M0, due to its platform-independent C language and minimal
memory requirements. The library underwent testing by categorizing road irregularities with a 6-
layer Bayesian neural network on the MCU, as the applied and already existing engines in Table 3
can be observed. The leading technology had a 2% increase in accuracy and a 15% reduction in
memory consumption. The delay is 0.6 ms, 25% lower than FPGA implementation that meets real-
time application requirements.

Table 3: Comparison of different engines algorithms for road anomaly detection

Engine and algorithm Accuracy Model size Latency

TF-LiteMicro, H-CNN [34,35] 77% 2.7 KB 0.8 ms
MicroTVM], SVM [36,37] 72.8% 52.2 KB 3.3 × 103 ms
CMSIS-NN, SVM [38,39] 70.9% 1.7 KB 28 ms
TinyEngine, CNN [40,41] 70% 1.9 KB 21 ms
CBin-NN / BNN_Micro 78.8% 2.3 KB 0.6 ms
Note: ∗For the CBin-NN engine, the first layer weights are binarized, and QBConv2D is used to extract
detailed features from road images. ± For enhanced precision in the first layer, 8-bit quantized weights and
QQConv2D are employed, which is suitable for processing high-resolution imagery.

The toolkit has problems processing large datasets and experiences significant accuracy reduction
when binarizing them, so the architectures designed for mobile and embedded devices, such as
MobileNet, have decreased performance when binary weights are employed because they use depth-
wise convolutional layers. Future research should focus on creating a specific optimizer for BNNs
to tackle the performance decrease resulting from the gradient mismatch problem. It will allow a
design optimized for mobile or edge devices to achieve comparable accuracy to its 8-bit, full-precision
counterparts. We aim to include Single Instruction Multiple Data (SIMD) into QQConv2D to improve
the current operators’ efficiency in making inferences. This will be achieved by encoding the inputs and
weights using 8-bit quantization, as shown in Fig. 6a,b. Road network detection anomalies that were
detected by implementing TinyML on the existing DL model can be viewed in the graph and heat map.
It not only shows the compactness but also the accuracy is not affected to a greater extent.

The CBin-NN framework’s ability to detect road imperfections was validated through visual
inspections. Fig. 6a displays the anomaly severity scores throughout the latitude and longitude indices
of the road network in a heat map. Severity levels are color-coded based on anomaly scores, with
warmer hues indicating higher severity, providing a clear view of the network’s state. This heat map
enables a quick assessment of road conditions and aids in establishing maintenance priorities. Fig. 6b
depicts the model’s learning progress over 500 training epochs, enhancing the spatial analysis. The
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line shows the increasing training accuracy of the CBin-NN model, suggesting its capacity to adapt
and learn from road surface data complexities. Although decreased, the validation accuracy accurately
evaluates the model’s predictive capability on fresh data, confirming the model’s ability to generalize.
The disparity between training and validation accuracy suggests problems such as model overfitting
and more tuning.

(a) Anomaly Severity                                                                (b) Model Accuracy 

Figure 6: Road anomalies detection visualization

BNN_RoadSense demonstrates great efficiency and sustained detection accuracy by utilizing
information from the heat map and accuracy trend. The findings demonstrate the feasibility of
employing BNNs on edge devices, offering a scalable approach while maintaining accuracy. This
finding signifies substantial progress in applying DL technology for prompt road anomaly detection,
bridging the gap between theory and practical application. Fig. 7a,b thoroughly examines the CBin-
NN framework’s road anomaly detection performance. The graph shows a gain in training accuracy
above 90%, indicating the model’s ability to understand road anomalies from training data. The
model’s validation accuracy fluctuates but usually rises to 80%, proving its ability to generalize new
data. Fig. 7b, ‘Model Loss Over Epochs,’ shows training and validation loss development to show
model enhancement, where both measures initially drop significantly, then gradually decline during
the treatment. The CBin-NN model’s rapid convergence shows that it can optimize its learning process
using road image data to alter its parameters.

The numbers show that the CBin-NN’s optimization strategies help the model detect road
anomalies. The accuracy and loss graphs statistically demonstrate the model’s reliability and durability.
The model has high accuracy, efficient learning, and generalization potential and shows that CBin-NN
can be easily installed on edge devices, making it a versatile road infrastructure management solution.
The research concludes that BNNs can match the high accuracy and processing efficiency criteria
of road condition monitoring by using TinyML. Integrating CBin-NN with TinyML technologies
demonstrates the model’s compactness and robust accuracy, which is minimally affected even when
processing large datasets. Real-time edge device applications require these qualities for efficiency and
fast data processing. QQConv2D integrates SIMD procedures to improve inference efficiency, focusing
on continuing advances in this discipline.
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(a) Accuracy                                                                      (b) Model   Loss 

Figure 7: Model accuracy and loss applying CBin-NN and TinyML engine

Visual inspections have shown the accuracy of the CBin-NN framework’s road defect detection.
Fig. 6a,b shows the severity of anomalies and CBin-NN model learning across epochs. The data shows
how the CBin-NN model adapts and learns from complex road surface data. These discoveries show
a move toward using more efficient models like Boosted Neural Networks in situations where CNNs
may struggle due to hardware constraints. Future research should improve BNNs to address gradient
mismatch in binary weights-induced performance loss. Optimizing these networks for mobile or edge
devices will allow for accuracy comparable to 8-bit and full-precision models, thus broadening their
applicability in smart city infrastructure and road safety management.

5 Ablation Study

The CBin-NN road anomaly detection research involved an ablation study to assess the impact of
component and optimization effects on model accuracy and efficiency. The study found that removing
quantized inputs from the initial layer reduced detection accuracy by 5%. Quantized inputs improved
identification accuracy by 3%. Batch normalization optimization and loop unrolling increased infer-
ence latency but reduced accuracy. Avoiding PReLU activation functions decreased accuracy by 2%.
Compressed models used 28x less memory but cost 2.5% accuracy. The study concluded that CBin-
NN can efficiently detect road anomalies for real-time road infrastructure management monitoring in
constrained resources. The following are the components and results of the survey:

• Baseline Model: This model is simple and the base version of the study or the model. It does not
have the advanced processing layers and improvements that follow, and it is used as a benchmark
to test if the following stages bring any improvement.

• Without TinyML Optimization: This variant excludes the TinyML optimization steps to gauge
their impact on computational efficiency and model accuracy.

• Without Fuzzy Logic Layer: By removing the fuzzy logic layer, we evaluate how much this layer
contributes to handling uncertainties in data interpretation.

• Performance: This study also introduces accuracy, precision, recall, and F1-score metrics
between several models to compare. This section proves the contribution of TinyML improve-
ments in the model’s efficiency, and a reduction of the same means that no other modifications
affected the model’s performance.
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• Efficiency: The efficiency of the TinyML layer lowering resource usage is an operation such that
the difference in changes made is significant. Operationally, the results are related to the layer’s
performance regarding computational requirements and the time to compute the results.

• Embedded Devices: Employing the BNN model at the ARM Cortex-M0 improved the process-
ing velocity and lowered resource consumption. Hence, the performance feature is beneficial
for real-time applications to discover road anomalies.

• Latency: The latency outcomes revealed successful edge device operation of the scene, hence
processing data in real-time. The inference rate improved by 25%, and memory consumption
was less than half.

Finally, we inherently proved each integrated component’s critical significance in the current
ablation study. First, it should be mentioned that TinyML optimizations have provided the model
with efficiency and scalability, allowing it to be deployed on edge devices. Second, the fuzzy logic layer
has shown its importance for the model being resistant to noisy data; the latter has presented a vital
part of real-world settings.

6 Conclusion

Thus, the results of the current study have shown that BNNs are effective in the selected niche
of identifying traffic hazards with limited resources for microcontrollers. Therefore, the networks
we utilized maintain high accuracy and ensure memory-efficient performance. Consequently, the
model balances compactness and precision without critical compromise. Hence, our models, despite
the built-in limitations associated with fewer resources employed, present good performance and
represent the basis for employing compact models to monitor road conditions on edge devices,
just as in our study. In general, the findings of our study have far-reaching implications beyond
the capture-recapture smoke detector substitution as well. For example, they can be extended to
other uses in intelligent city infrastructure. Thus, deploying the optimized version of the BNN
model on low-power devices such as the ARM Cortex-M0 is practical. It is practically viable, as the
improved latencies and computational efficiency make using advanced ML even in the edge computing
deployment scenario. They further complement in-depth investigation and deployment opportunities
in other applications, including the traffic management system, and contribute to the innovative
transformation underlying urban mobility infrastructure’s future. As demonstrated, our models can
meet stringent computational efficiency and accuracy demands, pointing towards broader adoption of
DL technologies for road safety and infrastructure management. This study contributes to the field by
advancing the understanding and application of TinyML in real-world settings. It suggests significant
improvements for future iterations of ML models on edge devices.

There are limitations and future perspectives with every existing and innovative methodology
implementation found in this proposed innovative methodology. The selected data for the roads, as in
our case, the Massachussets dataset, is enormous, and the pixels are highly resoluted. Implementing
TinyML in the preprocessing requires dividing the tested images into tiles for conversion to the
specified size of TinyML engines. Although it is achieved, it needs more work for the better option
to process the highly resoluted images, specifically hyperspectral imagery. It initially looks quite
intricate but can bring more innovative changes in the DL models from macro to micro level and
then integration for the edge computing deployment. It increases the applicability that DL cannot
capture or partially neglect. Although not much work has been done on TinyML due to its emerging
topic, specifically in road anomaly detection, the proposed study gives ways to explore more besides
the intricacies and gradually find the optimum solutions.
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