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ABSTRACT

To address the challenges of missed detections in water surface target detection using solely visual algorithms in
unmanned surface vehicle (USV) perception, this paper proposes a method based on the fusion of visual and LiDAR
point-cloud projection for water surface target detection. Firstly, the visual recognition component employs an
improved YOLOv7 algorithm based on a self-built dataset for the detection of water surface targets. This algorithm
modifies the original YOLOv7 architecture to a Slim-Neck structure, addressing the problem of excessive redundant
information during feature extraction in the original YOLOv7 network model. Simultaneously, this modification
simplifies the computational burden of the detector, reduces inference time, and maintains accuracy. Secondly, to
tackle the issue of sample imbalance in the self-built dataset, slide loss function is introduced. Finally, this paper
replaces the original Complete Intersection over Union (CIoU) loss function with the Minimum Point Distance
Intersection over Union (MPDIoU) loss function in the YOLOv7 algorithm, which accelerates model learning and
enhances robustness. To mitigate the problem of missed recognitions caused by complex water surface conditions
in purely visual algorithms, this paper further adopts the fusion of LiDAR and camera data, projecting the three-
dimensional point-cloud data from LiDAR onto a two-dimensional pixel plane. This significantly reduces the rate
of missed detections for water surface targets.
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1 Introduction

In recent years, with the rapid development of new technologies such as the Internet of Things
(IoT), big data, and artificial intelligence, along with their integrated applications in the shipping and
maritime sectors, USV technology has experienced significant growth [1]. As a maritime power, China
has placed significant emphasis on the development of USV technology. Compared to traditional
ships, USV can operate in areas inaccessible to humans, thus enhancing operational efficiency and
quality [2]. With the increasing importance of autonomous navigation for USV, environmental
perception technology plays a fundamental role in improving the ability of water surface target
detection for USV [3,4].
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The main methods used for water surface target detection include visual detection, LiDAR
detection, and multi-sensor fusion detection technology. Currently, visual detection methods are
predominantly based on Convolutional Neural Networks (CNNs) [5], utilized to train target datasets
and obtain the necessary detection models and feature information. Wu et al. [6] addressed irregular
shapes and varying sizes of ships by designing a multiscale fusion module and anchor box detection
suitable for their dataset, facilitating the detection of vessels of diverse sizes and types in complex
environments. Zhu et al. [7] proposed the YOLOv7-CSAW model based on YOLOv7 to address the
low detection rate and high false positive rate issues in maritime search and rescue operations due
to complex maritime environments and small target sizes. LiDAR sensors detect targets primarily by
scanning and obtaining the three-dimensional structure of objects. Target classification is achieved
through point-cloud segmentation and clustering methods. Stateczny et al. [8] verified that using
LiDAR alone can detect water surface targets, but there may be instances where inflatable objects
are not detected. LiDAR detection depends on both the size of the target and the material of which it
is made. Wang et al. [9] improved the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm by adopting adaptive parameters, enhancing the clustering effect for radar
point-clouds and achieving recognition of water surface obstacles. However, in complex scenarios
with multiple targets, LiDAR point-cloud segmentation may not be easily achieved. Furthermore,
most target detection methods rely on surface texture based LiDAR [10], and their accuracy may not
always meet the requirements. Existing purely visual detection algorithms for water surface target
detection have shown improved detection rates. However, relying solely on visual sensors for water
surface target detection can cause significant issues such as missed detections and high error rates due
to factors such as reflections and ripples on the water surface, as well as adverse weather conditions
such as heavy fog [11].

Multi-sensor fusion technology integrates multiple sensors, each with distinct advantages in
perceiving the same environment. This enables the acquisition of multi-layered information from dif-
ferent sensors for the same target. By merging information from multiple sensors, the comprehensive
awareness and robustness of the system’s environmental perception can be enhanced [12]. Lu et al. [13]
addressed technical challenges in USV environmental perception by constructing a comprehensive
USV perception system based on the fusion of LiDAR and image information. This system ensures
autonomous navigation and safe obstacle avoidance of the USV. Wang et al. [14] proposed a water
surface target detection and localization method based on the fusion of three-dimensional point-cloud
and image information, addressing the issue of visual recognition being susceptible to water surface
reflections and ripples. For visual and LiDAR sensor fusion technology, the challenges faced in real-
world applications primarily include precise sensor calibration and the fusion of information from
heterogeneous sensors.

Visual sensors utilize a CNNs model to detect targets, while the point-cloud data obtained from
LiDAR is fused with image data to reduce the missed detection rate of pure visual recognition. Based
on this, this paper proposes a method to identify and classify water surface targets using a fusion of
information from the binocular camera and LiDAR based on the improved YOLOv7 algorithm. This
method primarily achieves water surface target detection through three steps. Firstly, the YOLOv7
model is improved based on the original model, and a self-built dataset of images is input into the
modified YOLOv7 detection model for training. After convolution and pooling processing, the model
outputs detection bounding boxes for each target. Secondly, a joint calibration platform for the camera
and LiDAR is established. A calibration board is simultaneously captured by both sensors, and the
corner coordinates of the calibration board are used to obtain the calibration matrix between them
for subsequent point-cloud projection fusion. Finally, based on the calibration matrix obtained from
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joint calibration, the relationship between the coordinate systems of the two sensors is determined.
The collected LiDAR point-cloud data is projected onto the camera image to reduce false positives
and missed detections in pure visual detection caused by complex water surface environments. The
entire architecture diagram of the system is depicted in Fig. 1.

Figure 1: System architecture diagram

2 Related Work and Methods
2.1 Improved YOLOv7 Model for Water Surface Target Detection

2.1.1 YOLOv7 Module

The visual detection part utilizes the YOLOv7 model to achieve the classification and detection
of water surface targets. This model mainly consists of four parts: Input, backbone, neck, and head.
Based on CNNs, the detector comprises three components: Backbone, neck, and head. The backbone
is responsible for extracting features from the input, while the neck is used to allocate and fuse optimal
features into the head. The head utilizes the feature information provided by the neck to detect objects.
The overall YOLOv7 network architecture is illustrated in Fig. 2.

The YOLOv7 model is a network framework proposed by the team led by Alexey Bochkovskiy
in 2022 [15]. According to data provided in the literature, YOLOv7 has surpassed the detection
performance of other object detection models such as YOLOv5 [16], YOLOX [17], and YOLOR [18].
It exhibits superior detection speed and accuracy in the range of 5FPS to 160FPS, outperforming
previous detection networks. On a GPU V100, YOLOv7 achieves a real-time detection accuracy of
56.8% at 30FPS or higher. The main difference in the backbone network of the YOLOv7 model
compared to previous YOLO series network models lies in the adoption of the ELAN module, which
is an efficient network structure. This structure enhances the network’s ability to learn more features
by controlling the shortest and longest gradient paths, thereby improving its robustness.

In addition, in the neck network structure of the YOLOv7 model, the SPPCSPC module is
used to adapt to images with different resolutions, obtaining different receptive fields to enhance
the model accuracy while reducing computational complexity. Furthermore, the traditional PANet
structure is employed to strengthen feature fusion and improve the quality of output data. In the head
network structure, the RepVGG model’s reparameterization concept is introduced into the network
architecture to form the RepConv module [19]. This module corresponds to two interchangeable



470 CMC, 2024, vol.80, no.1

structures for training and inference, enhancing model accuracy and accelerating inference speed.
Finally, the YOLOv7 model introduces a new label assignment method that combines the cross-
network search of YOLOv5 and the matching strategy of YOLOX. This method utilizes the prediction
results of a leading head as guidance, generating a series of hierarchical labels ranging from coarse
to fine. These labels are utilized to assist in the learning process of both auxiliary heads and the
leading head.

Figure 2: Structure diagram of the YOLOv7

2.1.2 The Improved YOLOv7 Module

Although YOLOv7 has shown better detection results, its model network structure is more
complex compared to previous YOLO series models. Therefore, this paper makes the following
improvements for YOLOv7’s model based on the self-built dataset and application scenarios. The
Slim paradigm is introduced into the neck part of the YOLOv7 model. The Slim paradigm utilizes
GhostConv and VOV-GSCSP modules to simplify the computational burden and structural com-
plexity of the neural network model, while addressing the issue of excessive redundant information
during feature extraction. Additionally, this paper introduces the MPDIoU loss function to replace
the CIoU loss function, and incorporate the slide loss function to address the problems of identical
aspect ratios between predicted boxes and ground truth boxes in the CIoU loss function, as well as the
issue of sample imbalance in the self-built dataset. The overall improved YOLOv7 network structure
is depicted in Fig. 3.
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Figure 3: Improved YOLOv7 network structure

2.1.3 GhostConv Module

Stacking convolutional layers can capture rich feature information, including redundant details,
which is beneficial for the network to have a more comprehensive understanding of the data. However,
traditional convolutional feature extraction tends to have a significant amount of redundancy, leading
to a substantial increase in the number of parameters and computational burden. Although some
research has proposed methods for model compression and network structure optimization, such
as pruning [20], quantization [21], knowledge distillation [22], and other compression techniques,
effectively reducing the number of parameters, they face challenges related to complex model design
and training difficulty. Structural optimization methods like MobileNet [23], ShuffleNet [24], are
simple and effective, easy to implement, but 1 × 1 convolutional layers still consume a considerable
amount of memory and floating-point operations per second (FLOPs).

The GhostConv module addresses the issue of significant redundancy in traditional convolutional
feature extraction. It extracts rich feature information through regular convolutional operations.
For redundant features, it employs more economical linear transformation operations to generate
them. This not only effectively reduces the computational resources required by the model but also
simplifies the design, making it easy to implement and ready for immediate use. As shown in Fig. 4,
the GhostConv first extracts feature from the input feature map using a small number of convolutional
kernels [25]. Then, it processes these extracted feature map portions through more economical linear
transformation operations. Finally, it combines these processed feature maps through concatenation
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to form the final feature map. For a given data X ∈ Rc×h×w, where c is the number of input channels, h
and w are the height and width of the input data, the process can be described by the following Eqs. (1)
and (2):

Y ′ = X ∗ f ′ (1)

yi, j = φi,j (yi′) , ∀i = 1, . . . , m, ∀j = 1, . . . , s (2)

In the formulas, Y ′∈Rh′×w′×m′ , ∗ denotes the convolution operation, m is the number of channels
for regular convolution, and φi,j represents the economical linear transformation convolution opera-
tion. Here m < n, and if m = n, it is equivalent to regular convolution.

Figure 4: Traditional Conv (a) and GhostConv (b) processing procedure

This method reduces the learning cost of non-critical features by combining a small number
of convolutional kernels with more economical linear transformation operations, replacing the
conventional convolution approach. This effectively reduces the demand for computational resources
without compromising the performance of the YOLOv7 model. In this context, the Ghost module
employs depth-wise convolution as a more cost-effective linear transformation [26]. The grouped
convolution eliminates inter-channel correlations, ensuring that the current channel features are only
related to themselves. On the one hand, this simulates the generation of redundant features, and on the
other hand, it significantly reduces the number of parameters and computational load. The structural
diagram is illustrated in Fig. 5.

Figure 5: Ghostconv module

2.1.4 The Neck Structure Improvement-Slim Paradigm

In the field of autonomous driving, the Slim-Neck paradigm design has shown excellent perfor-
mance, and target detection in autonomous driving requires high recognition speed and accuracy of the
model [27]. Considering the focus of this paper on water surface target detection, which is intended for
real-time detection in maritime applications, there is a similar high requirement for recognition speed
and accuracy. Therefore, this paper incorporates the Slim-Neck paradigm design into the YOLOv7
network model.

Currently, lightweight designs primarily rely on Depthwise Separable Convolution (DSC) opera-
tions to reduce the number of parameters and FLOPs, mitigating high computational costs. However,
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when processing DSC input images, channel information is handled separately, leading to significantly
lower feature extraction and fusion capabilities compared to standard convolutions (SC). This results
in decreased detection accuracy. To address this issue, Li et al. [28] propose a new convolution-GSConv,
which employs dense convolution operations to reduce computational costs while maintaining accu-
racy. As shown in Fig. 6, GSConv better balances the model’s accuracy and speed, and a Slim-Neck
structure is designed to enhance CNN learning capabilities.

Figure 6: The structure of the GSConv module

However, using GSConv instead of the SC incurs a computational cost of approximately 60% to
70% of SC, with little difference in the model’s learning capabilities compared to the latter. Therefore,
based on GSConv, the GSbottleneck is introduced. Similarly, a one-shot aggregation method is used to
design the Cross-Stage Partial Network (GSCSP) module, referred to as VoV-GSCSP. The structural
diagram is illustrated in Fig. 7. It is worth noting that the VoV-GSCSP module, replaces the Cross
Stage Partial Network (CSP) layer in the Neck structure. The CSP layer is made up of standard
convolution, resulting in an average reduction of FLOPs by 15.72% compared to the latter. This
reduction in FLOPs decreases the complexity of computation and network structure while maintaining
sufficient accuracy. Therefore, in this paper, the modules in the original Slim-Neck paradigm structure
are replaced with GhostConv, GSbottleneck, and VoV-GSCSP to construct a Slim-Neck structure
suitable for this model.

Figure 7: The structure of GS bottleneck module (a) and VoV-GSCSP module (b)

2.1.5 MPDIoU Loss Function

The loss in object detection models is divided into three parts: target confidence loss, classification
loss, and coordinate loss. The YOLOv7 model uses binary cross-entropy loss functions for both
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classification and target confidence losses. The coordinate loss is based on the CIoU loss function,
which is founded on the Intersection over Union (IoU) function [29]. The principles of the CIoU loss
function are represented by the following formulas [30]:

V = 4
π 2

(
arctan

wgt

hgt
− arctan

W prd

hprd

)2

(3)

α =
⎧⎨
⎩

0 IoU < 0.5
V

(1 − IoU) + V
IoU ≥ 0.5

(4)

LOSSCloU = 1 − IoU + ρ2
(
Bgt, Bprd

)
c2

+ αv (5)

In the formulas, wgt, hgt represent the width and height of the ground truth bounding box, while
wprd, hprd represent the width and height of the predicted bounding box. V is primarily used to assess
whether the aspect ratio is consistent, α is a balancing parameter, Bprd denotes the predicted bounding
box, and Bgt denotes the ground truth bounding box. According to the formula, when the aspect
ratio of the ground truth box and the predicted box is equal, V = 0. In this case, the CIoU loss
function fails to effectively express stability. Although the CIoU loss considers the overlap area, center
point distance, and aspect ratio of the bounding box regression, its definition of aspect ratio is relative
rather than absolute. Additionally, when the predicted bounding box and the ground truth bounding
box have the same aspect ratio but different width and height values, the aforementioned bounding
box regression loss function loses effectiveness, which will limit convergence speed and accuracy. In
this paper, to further improve the robustness of the network, the coordinate loss function of the
YOLOv7 model is optimized. The proposed optimization involves replacing YOLOv7’s native CIoU
loss function with the MPDIoU loss function [31]. The principal formula of MPDIoU is as follows:

d1
2 = (

x1
prd − x1

gt
)2 + (

y1
prd − y1

gt
)2

d2
2 = (

x2
prd − x2

gt
)2 + (

y2
prd − y2

gt
)2

(6)

MPDIoU = IoU − d1
2

h2 + w2
− d2

2

h2 + w2
LMPDIoU = 1 − MPDIoU (7)

Based on the above formula and Fig. 8, it can be observed that the MPDIoU loss function is a
boundary box regression loss function based on the minimum point distance. Its purpose is to directly
minimize the distances between the upper-left and lower-right points of the predicted bounding box
and the ground truth bounding box. Compared to the CIoU loss function, the MPDIoU loss function
not only considers all factors of the CIoU loss function but also addresses the issue when the predicted
bounding box and the ground truth bounding box have the same aspect ratio. This leads to faster
convergence speed and more accurate regression results. Moreover, when the predicted bounding
box matches the aspect ratio of the ground truth bounding box, the LMPDIoU values of the predicted
bounding boxes within the ground truth bounding box are lower than those outside. This property
ensures the accuracy of bounding box regression and minimizes redundancy in predicted bounding
boxes.
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Figure 8: Factors of LMPDIoU

2.1.6 The Slide Loss Function

To address the issue of sample imbalance in our self-built dataset, where there is a large number of
soft samples and a small number of hard samples, we introduced the slide loss function [32]. The
distinction between simple samples and hard samples is based on the IoU between the predicted
bounding box and the ground truth box. We calculate the average IoU value for all bounding boxes
and use it as a threshold μ. Bounding boxes with an IoU less than μ are considered negative samples,
while those with an IoU greater than μ are considered positive samples. By assigning higher weights to
hard samples, the model can optimize and learn more effectively from these samples during training.
The slide loss function can be expressed by the following formula (8):

f (x) =
⎧⎨
⎩

1 x ≤ μ − 0.1
e1−μ μ < x < μ − 0.1
e1−x x ≥ μ

(8)

2.2 Fusion Detection of Camera and LiDAR

The fusion of data between camera and LiDAR sensors essentially involves projecting LiDAR
point cloud data onto image data. The entire fusion process requires pre-calibration of the camera’s
intrinsic parameters as well as the extrinsic parameters between the camera and LiDAR. This paper
employs the chessboard grid method for calibrating the camera’s intrinsic parameters and fulfills the
extrinsic calibration between the camera and LiDAR by capturing the coordinates of the four corners
of a solid-colored calibration board. The entire calibration model is depicted in the Fig. 9: The LiDAR
coordinate system describes the relative position of an object to the LiDAR, represented as [XL, YL, ZL];
the camera coordinate system describes the relative position of an object to the camera, represented
as [Xc, Yc, Zc]; and the coordinates of a point in the camera coordinate system on the pixel plane are
denoted as (u, v).

2.2.1 Calibration of Camera Intrinsic Parameters

The calibration process of the camera involves a mathematical transformation between a series of
three-dimensional camera coordinates [Xc, Yc, Zc] and their corresponding two-dimensional image
pixel points (u, v) to determine the camera’s intrinsic parameters [33]. Essentially, it is a process of
finding the transformation relationship from the camera coordinate system to the image coordinate
system. This refers to finding the transformation matrix in Eq. (9). dx and dy represent the physical size
of the pixels, that is the actual physical size represented by each pixel, and (u0, v0) are the translation
offsets between the pixel coordinate system and the physical imaging coordinate system’s origin.
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For the calibration of the camera’s intrinsic parameters in this paper, the image pipeline package
within the Robot Operating System (ROS) environment is utilized. Calibration is conducted by
launching the camera node, setting the number of corners and dimensions of the chessboard grid,
and configuring the camera topic and name before running the calibration command. The chessboard
calibration board has corner dimensions of 9 rows × 7 columns, with each square measuring 25 mm ×
25 mm. To obtain the best possible calibration result, the chessboard should be moved to various
positions and angles within the camera’s field of view. The calibration should continue until the
calibrate button becomes active, at which point it can be clicked to compute the intrinsic parameters.
The camera intrinsic calibration process is shown in Fig. 10.

Figure 9: Sensor fusion calibration model

Figure 10: Camera intrinsic parameter calibration process

2.2.2 Calibration of Camera and Lidar External Parameters

The extrinsic calibration between the camera and LiDAR is carried out to obtain the transforma-
tion relationship from the LiDAR coordinate system to the camera coordinate system, which involves
finding the transformation matrix in Eq. (10). Within this context, R and T represent the rotation
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matrix and translation matrix between the camera coordinate system and the LiDAR coordinate
system, respectively.⎡
⎢⎢⎣
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1

⎤
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The extrinsic calibration process involves keeping the positions of the LiDAR and camera static
while placing the calibration board at various distances and angles relative to both sensors to collect
multiple sets of images and LiDAR point cloud data of the calibration board. This enables the
determination of the coordinate relationship between the two sensors. Since the purpose of joint
calibration is to use the coordinates of the four corners of the calibration board to obtain the extrinsic
parameters, the calibration board should ideally be of a low reflectivity and uniform color [34]. This
makes it easier to locate the calibration board’s corners within the LiDAR point cloud data, facilitating
the subsequent acquisition of corner coordinates. Limited by experimental conditions, this paper
utilized a plain-colored cardboard box as the calibration board, and 16 sets of data were collected
from different directions and angles using both the camera and the LiDAR. The corner coordinates
of the image data were obtained using Labelimg, while the LiDAR point cloud data coordinates were
obtained using Point Cloud Library (PCL) viewer. The resulting images are depicted in the Fig. 11.

Figure 11: Extrinsic calibration process of camera and LiDAR ((a) Image data (b) LiDAR data)

2.2.3 Camera and LiDAR Data Fusion

Eqs. (9) and (10) provide the transformation relationships from the camera coordinate system to
the image coordinate system, and from the LiDAR coordinate system to the camera coordinate system,
respectively. To achieve the projection of LiDAR point cloud data onto image data as required by this
paper, the transformation relationship from the LiDAR coordinate system to the image coordinate
system can be derived by combining the above two coordinate transformation relationships, thereby
enabling the point cloud projection effect. The transformation relationship is given by Eq. (11), and
the result is depicted in the Fig. 12. The LiDAR used in this paper is a planar LiDAR employing
non-repetitive scanning technology, which significantly increases the field-of-view coverage with the
increase in integration time.
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Figure 12: Fusion results of camera and LiDAR data ((a) Ship image data (b) Ship LiDAR point cloud
data (c) Sensor data fusion effect)

3 Experiments
3.1 Experimental Environment and Dataset

The experimental operating system is Ubuntu 20.04, the programming language is Python 3.8.10,
and the hardware includes an NVIDIA GeForce RTX 3090 graphics card with 24 GB of memory. The
deep learning framework used is PyTorch 1.11.0, and the CUDA version is 11.3. The input image size
for the YOLOv7 network model is set to 640 × 640, trained for 150 epochs, with a batch size of 16,
and an initial learning rate of 0.01. The sensors used include the Livox Mid-70 LiDAR and the ZED
2i binocular camera. Fig. 13 shows the sensor joint calibration platform.

Figure 13: The sensor joint calibration platform

This dataset was collected by combining web crawling and self-collection methods, covering ten
classes of potential water surface targets: Sailboat, cruise ship, warship, yacht, cargo ship, other boats,
person, airplane, bird and fish, totaling 12316 images. These images were annotated using Labelimg
and then divided into training, validation, and test sets with a ratio of 0.7:0.15:0.15. This partition was
done to facilitate the training, validation, and testing of the algorithm. The dataset includes targets
of various sizes, making it significant for research on USV target detection and obstacle avoidance
techniques. Part of the dataset is shown in Fig. 14.
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Figure 14: Partial dataset images

3.2 Evaluation Metrics

The evaluation criteria utilized in this paper comprise precision, recall, Frames Per Second (FPS),
Giga Floating Point Operations Per Second (GFLOPs) and mean Average Precision (mAP). The
calculation formulas are as follows:

P = TP
TP + FP

× 100% (12)

R = TP
TP + FN

× 100% (13)

AP =
∫

P (R) dR (14)

mAP = 1
n

n∑
i=1

APi (15)

In the formulas, TP represents the number of samples that are actual positives and predicted as
positives by the model algorithm; FP represents the number of samples that are actual negatives and
predicted as positives by the model algorithm; FN represents the number of samples that are actual
positives and predicted as negatives by the model algorithm. P is precision; R is recall; AP is average
precision, and taking the average of AP values for all categories gives mAP. mAP@0.5 represents
the average detection accuracy at an IoU threshold of 0.5 for all target categories. mAP@0.5:0.95
represents the average detection accuracy across 10 IoU thresholds ranging from 0.5 to 0.95 with a
step size of 0.05.

3.3 Visual Results Analysis

3.3.1 Ablation Experiments and Data Analysis

In this paper, YOLOv7 is employed as the baseline for surface target detection. Various improve-
ment strategies are then added to this baseline for ablation experiments. Through these ablation



480 CMC, 2024, vol.80, no.1

experiments, the impact of each improvement component on the target detection model is evaluated
and analyzed. The results of the ablation experiments are presented in Table 1.

Table 1: Ablation comparison of model performance improvement

Model Slim-Neck MPDIoU Slide loss P R mAP@0.5 mAP@0.5:0.95 FPS GFLOPs

YOLOv7

× × × 87.7% 85.4% 90.1% 67.5% 48 105.3√ × × 89.8% 84.3% 91.0% 68.2% 53 95.5
× √ × 89.5% 84.7% 90.6% 68.0% 45 105.3
× × √ 89.0% 84.3% 90.4% 67.9% 47 107.2√ √ × 88.8% 84.7% 90.5% 67.8% 50 95.5√ √ √ 88.9% 85.3% 91.0% 67.9% 52 98.6

Note: P and R are precision and recall, respectively.

The comparative data presented in Table 1 were obtained from experiments conducted on a
proprietary dataset. As indicated by the table, the integration of the Slim-Neck structure into the
YOLOv7 model resulted in an increase of 0.9% in mAP@0.5 and 0.7% in mAP@0.5:0.95, while also
enhancing the detection speed as measured by FPS, and reducing the model’s computational demand
by 9.3% in terms of GFLOPs. A similar improvement in accuracy was observed when either MPDIoU
or slide loss was incorporated individually. The concurrent incorporation of the Slim-Neck structure
and MPDIoU loss function led to 0.5% decrease in mAP compared to the sole modification of the
neck section; however, as demonstrated in Fig. 15, the replacement of the CIoU loss function with
MPDIoU resulted in lower loss values during network convergence and a more rapid convergence rate,
effectively enhancing the robustness of the YOLOv7 model. Training the improved YOLOv7 model
with the dataset yielded results as depicted in Fig. 16, indicating an across-the-board improvement in
detection accuracy for various object categories, with the sailing boat category, in particular, achieving
an impressive AP of 97.3%. The model’s overall mAP was computed to be 91%.

Figure 15: Loss function comparison chart
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Figure 16: The precision-recall curve of the improved YOLOv7 model

3.3.2 Comparative Analysis with Mainstream Algorithms

In this paper, to verify the superiority of the proposed algorithm, a comparative experiment was
conducted by comparing the algorithm with various state-of-the-art algorithms, ensuring consistent
configuration environments and initial training parameters. The comparative experiment with main-
stream algorithms is presented in Table 2.

Table 2: Performance comparison of target detection model

Model P R mAP@0.5 mAP@0.5:0.95

SSD 74.0% 72.7% 77.0% 51.7%
YOLOV5 85.9% 82.6% 87.8% 62.5%
YOLOV7 87.7% 85.4% 90.1% 67.5%
YOLOV8 86.9% 80.1% 87.0% 66.4%
Ours 88.9% 85.5% 91.0% 67.9%
Note: P and R are precision and recall, respectively.

From Table 2, it is evident that the improved YOLOv7 model achieves the highest values for
mAP, Precision, and Recall compared to other mainstream algorithms. The mAP@0.5 reaches 91%,
representing a 0.9% improvement over the original YOLOv7 model and a significant enhancement
over SSD, YOLOv5, and YOLOv8 by 14%, 3.2%, and 4%, respectively. As depicted in Fig. 17, the
mAP values of the improved YOLOv7 algorithm consistently surpass those of other mainstream
algorithms, demonstrating superior performance in water surface target detection. The enhanced
YOLOv7 network model exhibits superior capabilities, enhancing both the speed and accuracy of
water surface target detection.



482 CMC, 2024, vol.80, no.1

Figure 17: The mAP comparison chart of different mainstream algorithms

3.4 Sensor Fusion Result Analysis

The sensor data fusion experiment involved calibrating the extrinsic parameters between the Livox
LiDAR and ZED camera using multiple sets of data based on the coordinates of black calibration
board corner points. The optimization process was conducted simultaneously. Additionally, the
experiment utilized the camera’s intrinsic parameters obtained through chessboard calibration to
achieve the projection of LiDAR point-clouds onto images. The specific parameters are outlined in
the Tables 3 and 4.

Table 3: Binocular camera intrinsic calibration results

Camera Left eye Right eye

Camera
intrinsic
matrix

⎡
⎢⎣

250.048 0.00000 324.163
0.00000 251.845 186.490
0.00000 0.000000 1.00000

⎤
⎥⎦

⎡
⎢⎣

245.215 0.00000 324.277
0.00000 246.747 191.795
0.00000 0.000000 1.00000

⎤
⎥⎦

Distortion
coefficients

[−0.049842 0.009032 0.001578 0.003116 0] [−0.043492 0.003094 0.001150 −0.001930 0]

Table 4: External calibration results of camera and LiDAR

Category Left camera-LiDAR joint calibration Right camera-LiDAR joint calibration

R ⎡
⎢⎣

0.0017062 −0.999987 −0.00470025
0.0186842 0.00473132 −0.999814
0.999824 0.00161806 0.0186921

⎤
⎥⎦

⎡
⎢⎣

0.0201942 −0.99979 −0.00361582
−0.00834492 0.00344788 −0.999959
0.999761 0.0202236 −0.00827354

⎤
⎥⎦

T
[
0.0631826 −0.164748 −0.175732

] [
−0.0671347 −0.167116 −0.168204

]
Note: R and T are the rotation matrix and the translation matrix, respectively.
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3.5 Analysis of Experimental Results

For a more intuitive and convenient comparison of the improved YOLOv7 network model,
incorporating LiDAR point-cloud fusion, with the original YOLOv7 network model in terms of
detection performance, real-time sensor data was collected within the school premises to detect vessels
and people. Fig. 18a displays the detection results of the original YOLOv7 model, while Fig. 18b
showcases the results of the fused LiDAR point-cloud and the improved YOLOv7 network model.
It is evident that the improved model achieves higher accuracy. Additionally, projecting the lidar
point-cloud onto the images allows for a clear indication of the target count, addressing issues of
omission in purely visual algorithms. Moreover, in the unique environment of the water surface, factors
such as target reflections and refractions may occur. Leveraging the LiDAR’s capability to avoid
returning data in transparent media, this method effortlessly resolves a range of challenges introduced
by complex water surface conditions.

Figure 18: Detection results of YOLOv7 (a) and Our algorithm (b) (Our algorithm is based on the
improved YOLOv7 for sensor fusion detection)

4 Conclusion

In this paper, in addressing the challenges of water surface target detection, including missed
detections, false positives, and low detection rates in complex water environments using purely visual
algorithms, a method integrating visual and LiDAR sensor data is proposed. For the visual sensor
component, improved YOLOv7 algorithm is employed to improve detection rates and enhance
model robustness. Firstly, a lightweight Slim-Neck paradigm structure is designed by introducing the
GhostConv module and VOV-GSCSP module, addressing the issue of redundancy in feature extraction
while reducing the complexity of the network model. Secondly, to tackle the problem of slow model
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convergence, the MPDIoU loss function replaces the original CIoU loss function, enhancing the
model’s robustness. Finally, to address the issue of imbalance in the self-built dataset, the slide loss
function is introduced to enable the model to optimize learning from these samples. The algorithms
proposed in this paper have improved target detection accuracy compared to mainstream algorithms,
reaching 91%. For the LiDAR sensor component, leveraging the point-cloud reflection characteristics
of LiDAR in water media, an approach is adopted to jointly calibrate the LiDAR and camera by
obtaining the extrinsic parameters. This is complemented by internal camera calibration to project
LiDAR point-clouds onto images, refining the detection of targets in the challenging and complex
environment of water surfaces.
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