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ABSTRACT

This paper presents a novel watermarking scheme designed to address the copyright protection challenges
encountered with Neural radiation field (NeRF) models. We employ an embedding network to integrate the
watermark into the images within the training set. Then, the NeRF model is utilized for 3D modeling. For copyright
verification, a secret image is generated by inputting a confidential viewpoint into NeRF. On this basis, design an
extraction network to extract embedded watermark images from confidential viewpoints. In the event of suspicion
regarding the unauthorized usage of NeRF in a black-box scenario, the verifier can extract the watermark from
the confidential viewpoint to authenticate the model’s copyright. The experimental results demonstrate not only
the production of visually appealing watermarks but also robust resistance against various types of noise attacks,
thereby substantiating the effectiveness of our approach in safeguarding NeRF.
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1 Introduction

Neural radiance field (NeRF) [1] is a technique employed for generating high-quality 3D recon-
struction models. It utilizes neural networks to learn a continuous function mapping spatial coordi-
nates to density and color, enabling the synthesis of novel viewpoints. NeRF has garnered significant
attention in computer vision research [2–5]. It is foreseeable that, similar to the sharing of 2D images
and videos, future trends will involve the online sharing of 3D content. Research on copyright
protection for NeRF is currently limited, and training on NeRF has consistently posed a significant
challenge. Consequently, safeguarding the copyright of NeRF models has emerged as an important
and pressing issue.

Common copyright protection technologies include data encryption [6,7], digital watermarking
[8–10], digital signatures [11], etc. However, since NeRF models need to be displayed to users and
require a certain degree of robustness, data encryption and digital signature technologies are not
applicable. Therefore, we have focused our discussion on digital watermarking. Digital watermarking
embeds a copyright identifier into digital media through embedding algorithms. When a copyright
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dispute arises, the copyright owner can extract the watermark information from the media through
the inverse operation of the embedding algorithm to confirm copyright ownership. Traditional
watermarking algorithms [12] mainly rely on specific mathematical functions to modify the media for
embedding watermarks. However, traditional algorithms often fail to achieve a good balance between
imperceptibility, robustness, and watermark capacity. With the application of deep learning technology
in the field of watermarking, the embedding and extraction methods of watermarks no longer require
manually designing complex mathematical functions and demonstrate good performance. In deep
learning watermarking [13], copyright owners embed watermark information into carrier images
through encoders and extract watermark information from images containing watermarks processed
through noise layers through decoders. The embedding and extraction process is close to a black box.
However, although existing deep learning-based watermarking algorithms exhibit strong robustness,
excellent imperceptibility, and large embedding capacity, most watermark algorithms are designed
for multimedia data such as images, sound, and video, lacking research on watermark algorithms
for implicit data like NeRF. One intuitive solution is to directly embed watermarks into samples
rendered by NeRF models using existing watermark methods. However, this method only protects
the copyright of rendered samples, not the NeRF model itself. If the NeRF model is stolen, malicious
users may generate new samples using new rendering methods, making this method unsuitable for
protecting 3D model copyrights. Traditional 3D data are primarily represented in the form of point
clouds [14], voxels [15], or triangular meshes [16]. Copyright protection strategies for these types of
3D data generally fall into three categories: directly embedding watermarks by translating, rotating,
or scaling 3D shapes [17]; modifying 3D model parameters to embed watermarks [18]; and employing
deep learning techniques for watermark embedding [19]. However, NeRF models do not have specific
structural information, so these methods cannot protect the copyright of NeRF.

Li et al. [20] established a connection between information hiding and NeRF, proposing the
StegaNeRF scheme for information embedding. This approach involves training a standard NeRF
model, which is subsequently utilized as a generator for generating new viewpoints. During the
training process of the message extraction network, the NeRF network is trained twice to ensure
accurate message extraction from the 2D images rendered from the StegaNeRF network. Additionally,
Luo et al. [21] introduced the CopyRNeRF scheme, which employs watermark colors as a substitute
for the original colors in NeRF to protect the model’s copyright. Furthermore, a distortion-resistant
rendering scheme was designed to ensure robust information extraction in the 2D rendering of NeRF.
This method directly safeguards the copyright of NeRF models while maintaining high rendering
quality and bit precision. However, both of the aforementioned methods involve secondary training
of NeRF, incurring substantial training costs.

To address the issue of needing to retrain the NeRF model for copyright protection purposes, in
this paper we propose a novel watermarking algorithm tailored for NeRF. We employ a conventional
approach, utilizing an embedding network to embed the watermark into the images within the training
set. Then, we utilized the NeRF model for 3D modeling. Copyright validation is achieved by the
generation of a secret image from a confidential viewpoint using the NeRF model, followed by the
design of a watermark extractor using neural network overperparameterization techniques to extract
the embedded watermark from this image. In a black-box scenario [22], when suspicion arises regarding
the unauthorized use of 3D models, the verifier can extract the watermark from the confidential
viewpoint to authenticate the model’s copyright. In order to fortify the model’s robustness, a noise layer
was incorporated during the optimization process to achieve anti-distortion rendering. In the event of
a malicious theft of the model, even when attackers employ diverse rendering methods or process the
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rendered image, the copyright verifier retains the capability to extract watermark information from
the model. This paper makes the following contributions:

1. Our proposal presents a novel watermarking scheme for NeRF, taking advantage of its ability
to generate new perspective images and utilize perspective information as the key. The security
of the watermark algorithm is ensured by the continuity of perspective synthesis and the large
key space.

2. To implement the watermarking scheme, we rely on traditional watermarking techniques
and eliminate the requirement for secondary NeRF training. By training a simple extraction
network, we extract watermarks from a specific perspective of the model.

3. To achieve robustness, we introduced a noise layer during the training process of the NeRF
model, achieving anti distortion rendering.

2 Proposed Method

This section describes the application scenarios of our algorithm and the specific details of algo-
rithm implementation. Existing watermarking schemes for neural radiance fields require secondary
training of the model, and the quality of watermark extraction is not high. Therefore, this paper
proposes a black-box watermarking scheme for neural radiance fields, where we directly embed
watermark information into the NeRF model without the need for secondary training of the model. By
leveraging the ability of the NeRF model to synthesize new viewpoints, we use viewpoint information
as a key and train an extractor to extract watermark information from secret viewpoint images. In
real-world scenarios, when our model is stolen, we can prove the model’s copyright by extracting the
watermark information using the key.

2.1 Application Scenarios

Algorithm 1: Typical application scenario of MarkNeRF
1: Alice obtains a set of images depicting a 3D scene and trains MarkNeRF M to embed watermark
information.
2: Alice openly shares Model M on the Internet for others to enjoy the 3D scene.
3: Bob obtained model M without Alice’s permission and uploaded it to the network in his own name.
4: After discovering that Bob had published model M, Alice used a secret perspective to extract the
watermark. This is to verify that Alice is the legitimate owner of Model M, not Bob.
5: Bob’s unauthorized publication constitutes copyright infringement, therefore the infringing content
must be withdrawn.

The specific process of the application scenario is shown in Fig. 1.

2.2 Algorithm Process

This approach comprises five key stages: watermark embedding, MarkNeRF training, noise layer
processing, watermark extraction, and copyright verification. Fig. 2 shows the process of our scheme.
The process begins with the embedding of the watermark W into the original image set {Yi}, achieved

through the use of an embedding network Gφ, resulting in the generation of the image set
{

Ŷi

}
with

an embedded watermark. Subsequently, MarkNeRF M is trained with
{

Ŷi

}
and its corresponding

camera pose {Pi}. To prevent attackers from creating pirated models by processing and retraining
the rendered images after obtaining our model. During the training process, we introduce a noise
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layer N for processing and perform noise processing on the rendered image set {Hi} to obtain
{

Ĥi

}
.

Simultaneously, the copyright verifier selects a secret camera perspective Ps as the key, renders the
secret image S through M, and subsequently trains an extractor Dϕ to recover the watermark image
Ŵ. The model parameters of Dϕ are saved, and MarkNeRF M is uploaded to the social cloud. Finally,
during the copyright verification stage, the copyright verifier renders image S from M using the key Ps,
inputs it into extractor Dϕ, and obtains the watermark image Ŵ to verify the copyright of model M.

Figure 1: Application scenario process. The copyright owner embeds watermark information into the
MarkNeRF model before publishing it on the Internet. In the event of malicious model theft, the
copyright owner can extract the watermark from the model using the designated key

Figure 2: Algorithm process of MarkNeRF. The network is embedded to generate a set of watermarked
images, after which the MarkNeRF model and extractor are trained. The attack layer is designed to
simulate various types of noise attacks, while the extractor is responsible for extracting watermark
information from a concealed perspective

Modeling. We treat embedding and extraction as two separate tasks, and define the processes for
embedding and extraction as follows:

Ŷi = Gφ(Yi, W), i ∈ [1, k] (1)

S = θ(Ps), Ŵ = Dϕ(S) (2)
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Furthermore, the embedding and extraction procedures, we conducted training for MarkNeRF
M and applied a noise layer to the rendered image. The overall process can be described as follows:

({Ŷi}, {Pi}) → θ , i ∈ [1, k] (3)

Hi = θ(Pi), Ĥi = N(Hi), i ∈ [1, k] (4)

subject to E(Ŷi) = Yi, E(Ĥi) = Ŷi, and E
(

Ŵ
)

= W. In this context, θ denotes the weight associated

with MarkNeRF M, N represents the noise layer processing, and four different types of noise attacks
(Gaussian noise, Pepper noise, Speckle noise, and Poisson noise) are applied to {Hi} in a flexible

manner, resulting in the generation of
{

Ĥi

}
. k denotes the total number of images utilized for training

purposes.

We utilized a joint learning approach for the embedding and extraction of watermarks, with
the aim of achieving copyright protection for NeRF. A noise layer has been employed to mimic the
behavior of potential attackers in the implementation of N. Even if the attacker obtains the model
through secondary training without changing the perspective, we can still extract watermarks from
the model, making the method proposed in this paper robust.

2.3 Network Implementation

Embedding. Drawing upon the remarkable capacity and superior image quality of the encoding-
decoding network proposed in [23], we developed an embedding network denoted as Gφ, based on this
architecture. The specific network structure of Gφ is shown in Fig. 3a. Gφ receives input from {Yi} and
W, and integrates the features from both images via convolutional and concatenation operations. It
comprises seven structural layers, each consisting of dense connections and convolutional layers from
the convolutional neural network. Moreover, batch normalization (BN) is employed to normalize the
data, while the ReLU activation function is utilized in each convolutional layer to enhance feature
transmission through dense connections. This strengthens the ability of Gφ to extract deep-level
features from images. Furthermore, residual connections are employed to capture the global features

of the feature map, thus resulting in the generation of a high-quality image
{

Ŷi

}
.

MarkNeRF. The neural radiation field is trained using an MLP network, which inputs the three-
dimensional coordinate position x = (x, y, z) and direction d = (θ , ϕ) of spatial points, outputs the
color c = (r, g, b) of spatial points, and the density σ of corresponding positions (voxels). In the
specific implementation, the position information of x and d is encoded first, then x is input into the
MLP network and outputted with σ and a 256 dimensional intermediate feature. The intermediate
feature and d are then input together into the fully connected layer to predict colors, and finally a two-
dimensional image is generated through volume rendering. The network structure of NeRF is shown
in Fig. 4.

In the training process of MarkNeRF, we used the same network structure as NeRF and an 8-
layer MLP network. The rendered image Hi was subjected to noise processing to generate image Ĥi

Through constraints on the loss between Ĥi and Ŷi, the weight θ of M was optimized.

Extractor. Extractor Dϕ takes the secret image S rendered by MarkNeRF M using the secret
camera position Ps as input. It employs seven convolutional layers to extract the watermark image.
The specific network structure of the extractor Dϕ is shown in Fig. 3b. By adjusting the number of
iterations and model parameters during the training process, we successfully achieved the extraction
of watermark images from specific secret perspectives by the extractor.
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Figure 3: Detailed network structure of embedded networks and extractors. Both Gφ and Dϕ utilize
7-layer convolutional neural networks and dense residual connections for feature propagation

Figure 4: Detailed network structure of MarkNeRF. Similar to NeRF [1], we trained the model using
an 8-layer MLP network

2.4 Objective Loss Function

Loss function. We employed an iterative approach to optimize the embedding network, MarkN-
eRF network, and extractor network. To achieve this, we simultaneously optimized three losses for

E
(

Ŷi

)
= Yi, E

(
Ĥi

)
= Ŷi, and E

(
Ŵ

)
= W. E (·) is the expectation operator. The first part of the

loss Lemb involves assessing the similarity between the original image Yi and the watermarked image
Yi, utilizing mean square error analysis.

Lemb = 1
k

∑k

i=1
||Yi − Gφ(Ŷi, W)||2

2 (5)

The second part of the loss Lmar pertains to the content loss of the three-dimensional represen-
tation. This content loss Lmar, comprises two distinct elements: the mean square error loss and the
perceptual loss.

Lmar = 1
k

∑k

i=1
(||Ŷi − Ĥi||2

2 + λ||�(Ŷi) − �(Ĥi)||2
2) (6)
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where �(·) denotes the feature representation obtained from a VGG-16 network, and λ is a hyperpa-
rameter used to balance the loss functions.

The third component of the loss Lext incorporates the loss of watermark information. Specifically,
Lext consists of two components: the mean square error loss and the structural similarity index
(SSIM) loss.

Lext = ||W − Ŵ||2
2 + α(1 − SSIM(W, Ŵ)) (7)

where α is a hyperparameter used to balance the loss functions. Therefore, the overall loss to train the
copyright-protected neural radiance fields can be obtained as follows:

L = γ1Lemb + γ2Lmar + γ3Lext (8)

where γ1, γ2, and γ3 are hyperparameters used to balance the loss functions.

3 Experimental

This section delineates the experimental settings and analyzes the performance of our algorithm
under different experimental conditions. The performance of watermark algorithms is typically
assessed based on two main criteria: invisibility and robustness. We evaluated the invisibility and
robustness of our algorithm by comparing it with other algorithms. Subsequently, to analyze the
impact of different modules within the algorithm on the overall framework, we conducted ablation
experiments by selectively removing certain modules.

3.1 Experimental Settings

Dataset. We evaluated our algorithm using the NeRF Semantic and Layered Light Field Flow
(LLFF) datasets from the NeRF dataset. Among them, LLFF’s forward scenes include {flower},
{room}, {leaves . . . } and NeRF Synthetic’s 360 degree scenes include {lego}, {drums}, {chair}, {hotdog},
{ship . . . }. To evaluate the effectiveness of our method, in the NeRF Semantic dataset, our training
process involved inputting 100 views per scene. To evaluate the visual quality of our method, we
selected 20 images from the test dataset associated with each scenario. Additionally, we conducted
renderings of 200 views per scene to examine the accuracy of watermark extraction under different
camera perspectives. Furthermore, we randomly selected images from the ImageNet dataset to serve
as watermark images. Throughout the experiment, we present all the results as average outcomes.

Training. Our method was implemented using PyTorch. The images were resized to a dimension
of 256 × 256. The hyperparameters were set as follows: λ = 0.01, α = 0.5, γ1 = 1, γ2 = 1, and γ3 =
5. We utilized the Adam optimizer with default values of β1 = 0.9, β1 = 0.999, ε = 1 × 10−8, and
a learning rate of 1 × 10−4. Throughout the optimization process, we performed 20 K iterations of
optimization on the extraction network Gφ using the loss function Eq. (5). Subsequently, we conducted
200 K joint optimizations on the parameters θ of the model M and the extractor Dϕ, employing Eq. (8).
The experiment was executed on an NVIDIA A100 GPU.

Baselines. To Baselines our knowledge, there is currently limited research on watermarking for
NeRF. As a result, we compared four strategies to ensure a fair comparison: (1) LSB [24]+NeRF
[1]: Utilizing the classic LSB algorithm to embed watermark information into the dataset images
before training the NeRF model; (2) DeepStega [25]+NeRF [1]: Employing the two-dimensional
watermarking method DeepStega to process the image prior to training the NeRF model; (3) HiDDeN
[26]+NeRF [1]: Processing the image using the HiDDeN scheme before training the NeRF model; (4)
StegaNeRF [20]; (5) CopyRNeRF [21].
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Evaluation. We assessed the efficacy of our proposed method relative to other approaches based on
the invisibility and robustness of digital watermarking. For invisibility, we utilized the Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) [27] to compare the visual quality of the output results watermark image embedding. For
robustness, we investigated the efficiency of extracting watermark images by evaluating the quality of
the rendered images under various distortions. Furthermore, we conducted a study on the ability to
extract watermark images from a secret camera perspective.

3.2 Algorithm Performance

Quality of embedded images. In Fig. 5, we randomly select images from various scenes as
the original images and embed them into the same watermark image W Generally, the details of
the watermark are nearly imperceptible within the image. Although enlarged differences may be
discernible, the visibility of these differences is not crucial, as long as the labeled image is perceived to
be closely aligned with the original image. We conducted additional embedding experiments involving
more than 500 images in the dataset, resulting in an average PSNR of 36.41 dB and an average SSIM
of 0.975 between the embedded images and the original images.

Figure 5: Results of watermark embedding. (a) Original image; (b) Embedded image; (c) Residual
(×10)

Quality of rendering effects and watermark extraction. We conducted a quantitative assessment
of the reconstruction quality using various baseline methods, and the experimental results for the
lego and trex datasets are presented in Tables 1 and 2. It is worth noting that all watermarking
algorithms have a relatively small impact on the quality of NeRF rendering, achieving a high level
of reconstruction quality. The qualitative results of different baseline methods are shown in Figs. 6
and 7. Specifically, while LSB [24]+NeRF [1], DeepStega [25]+NeRF [1], and HiDDeN [26]+NeRF
[1] demonstrated favorable outcomes in terms of steganography or watermarking for two-dimensional
images, they were unable to effectively extract information from rendered images due to the alterations
caused by NeRF-based view synthesis. In contrast, MarkNeRF demonstrated accurate recovery of
watermark images through the incorporation of an additional extractor Dϕ, and the impact on the
rendering quality, as measured by PSNR, remained relatively minimal due to the joint training applied.
The results of watermark extraction using the extractor Dϕ are presented in Fig. 8.
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Table 1: Quantitative analysis of invisibility (lego)

Method NeRF rendering Watermark extraction

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
Standard NeRF 33.51 0.9156 0.1121 N/A N/A
LSB+NeRF 27.58 0.8445 0.1356 N/A N/A
DeepStega+NeRF 26.23 0.8486 0.1475 N/A N/A
HiDDeN+NeRF 27.74 0.8961 0.1423 N/A N/A
StegaNeRF 30.67 0.9589 0.0280 30.15 0.9722
CopyRNeRF 30.32 0.9657 0.0331 30.42 0.9579
MarkNeRF (Ours) 32.21 0.8943 0.1224 31.59 0.9667

Table 2: Quantitative analysis of invisibility (trex)

Method NeRF rendering Watermark extraction

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
Standard NeRF 31.24 0.9123 0.0267 N/A N/A
LSB+NeRF 30.23 0.9026 0.0322 N/A N/A
DeepStega+NeRF 30.41 0.9078 0.0331 N/A N/A
HiDDeN+NeRF 30.56 0.9123 0.0321 N/A N/A
StegaNeRF 31.29 0.9416 0.0355 30.23 0.9421
CopyRNeRF 30.43 0.9312 0.0376 31.47 0.9341
MarkNeRF (Ours) 31.66 0.9457 0.0312 32.12 0.9451

Figure 6: The rendering effect of NeRF model (lego) under different baselines. We demonstrated the
residuals (×10) between images rendered with different schemes and ground truth values
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Figure 7: The rendering effect of NeRF model (trex) under different baselines. We demonstrated the
residuals (×10) between images rendered with different schemes and ground truth values

Figure 8: Extracting watermark image effects. (a) Original watermark image; (b) Extracted watermark
image; (c) Residual (×10)

Model robustness on 2D noise. We assess the robustness of our method by subjecting it to various
traditional noise attacks. Comparing the SSIM values of images rendered by different methods after
passing through noise layers with the original image, the experimental results are detailed in Table 3.
We examine several common types of noise, such as Gaussian noise, Poisson noise, Speckle noise and
Pepper noise. It is evident from the results that our method demonstrates strong resilience against
various two-dimensional noises. Specifically, our approach delivers comparable performance in image
rendering to alternative methods in the absence of noise. However, when confronted with different
distortions, the superior rendering quality highlights the efficacy of our antidistortion rendering
during the training process.

Effectiveness of a secret perspective. To assess the efficacy of the secret perspective in MarkNeRF,
images rendered from various perspectives are subjected to testing using an extractor. The experimental
results are depicted in Fig. 9. From the obtained results, it is evident that as the rotation angle
increases, the extracted watermark image progressively becomes more blurred, eventually becoming
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unextractable. However, when the rotation angle is small, adjacent views of the secret perspective
can still extract some watermark information. In the following work, we will optimize the extractor
network structure so that watermark information can only be extracted from the secret perspective.

Table 3: Effect of noise on image rendering quality

Method No noise Gaussian noise Poisson noise Speckle noise Pepper noise

Standard NeRF 0.9452 0.4491 0.9113 0.1415 0.1654
LSB+NeRF 0.9216 0.4123 0.8965 0.1345 0.1547
DeepStega+NeRF 0.9432 0.4288 0.8859 0.1387 0.1621
HiDDeN+NeRF 0.9142 0.4157 0.9014 0.1364 0.1642
StegaNeRF 0.9132 0.4316 0.9074 0.1574 0.1653
CopyRNeRF 0.9245 0.8997 0.9124 0.8421 0.8697
MarkNeRF (Ours) 0.9341 0.9124 0.9289 0.8654 0.8895

Figure 9: Comparison of watermark extraction effects on different visual images. We test the images
rendered from different perspectives in our extractor, and as the rotation angle increases, the extracted
watermark information gradually becomes blurred

To quantitatively analyze the influence of different perspectives on the effectiveness of watermark
extraction, this study also provides the PSNR and SSIM values between the extracted watermark
images and the original watermark images when inputting images from different perspectives. These
experimental results are illustrated in Fig. 10. The angle variation ϕ in the figure represents the angle
of counterclockwise rotation around the central z-axis.

3.3 Ablation Study

Impact of noise adding modules. To evaluate the impact of the noise processing module in our
watermarking algorithm, we removed the noise module and retrained our model. We compared
the performance of models without the noise module and our noise-resistant model in extracting
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watermarks under noise attacks. Fig. 11 illustrates the visual results of watermark extraction under
different noise attacks for both models. We conducted tests under Poisson noise, speckle noise,
pepper noise, and Gaussian noise, respectively. Experimental results demonstrate that compared to the
NeRF model without the noise module, our model exhibits less distortion and demonstrates certain
robustness against noise influence.

Figure 10: Quantitative analysis of the watermark extraction effect. (a) The influence of the angle ϕ

on the SSIM value between the extracted watermark image and the original watermark image; (b)
The influence of the angle ϕ on the PSNR between the extracted watermark image and the original
watermark image

Figure 11: Comparison of experimental results between models without the noise module and our
model. The first column illustrates the watermark extraction performance of the model without the
noise module under different noise attacks, while the second column depicts the watermark extraction
performance of our model under the same noise attacks. We also displayed the PSNR values between
each image and ground truth values
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Influence of hyperparameters and watermark size. For the hyperparameter settings, we conducted
control experiments with different values of γ3 to balance embedding and extraction capabilities. As
shown in Table 4, although different values of γ3 impose varying constraints on the training and
extraction processes, potentially affecting the quality of model rendering and watermark extraction,
the experimental results demonstrate that both the rendered images and extracted watermark images
produced by the final model exhibit satisfactory quality, indicating insensitivity of our algorithm to
γ3. Furthermore, we attempted embedding watermark images of different sizes into the model to test
its generalization ability. As presented in Table 5, our method demonstrates effective generalization to
watermark images of different sizes.

Table 4: Experimental results under different γ3 values

γ3 NeRF rendering Watermark extraction

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
0.1 33.66 0.9124 0.1126 28.86 0.8964
0.5 32.58 0.8997 0.1075 29.63 0.9013
1 31.41 0.9012 0.1246 30.31 0.9126
2 31.78 0.9047 0.1167 30.24 0.9231
5 32.14 0.9169 0.1099 30.65 0.9314

Table 5: Experimental results under different sizes of watermarks

Size NeRF rendering Watermark extraction

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
32 33.31 0.9144 0.1022 30.21 0.9169
64 33.46 0.9071 0.1146 31.57 0.9155
96 32.18 0.9164 0.1362 31.22 0.9126
128 33.45 0.9052 0.1274 30.46 0.9074
256 32.97 0.9146 0.1387 31.78 0.9137

Impact of embedding networks. To test the effectiveness of embedding watermark information into
the NeRF dataset images, we trained two NeRF models using the original dataset images without
embedded watermark information and the dataset images with embedded watermark information,
respectively, and compared their rendering results. We conducted experiments on multiple datasets,
and the results are shown in Fig. 12. From the experimental results, it can be observed that there is no
significant visual difference between the images rendered by the NeRF model trained with embedded
watermark information and the NeRF model trained without embedded watermark information. This
suggests that during the NeRF model training process, our watermark information was optimally lost,
resulting in ineffective transmission of the embedded watermark information to the NeRF model. In
future work, we will consider adopting more effective methods to embed watermark information into
the NeRF model.



1248 CMC, 2024, vol.80, no.1

Figure 12: Extracting watermark image effects. (a) Groundtruth; (b) The images rendered by the NeRF
model trained with embedded watermark information; (c) The images rendered by the NeRF model
trained without embedded watermark information; (d) Residual (×10) image between (b) and (c)

4 Conclusion

With the proposal of Neural Radiation Field (NeRF), NeRF technology has developed rapidly
in 3D content generation and editing, street view maps, and robot positioning and navigation in
recent years. However, training NeRF models requires a large amount of resources, and there is
currently limited research on NeRF copyright protection. How to effectively protect NeRF has
become an important issue. This article introduces a new method of NeRF copyright protection,
namely MarkNeRF. We propose a framework that embeds watermark information into the NeRF
model through an embedding network. The copyright owner can use the secret perspective information
as a key, and then extract the watermark from the image rendered from the secret perspective through
an extractor, achieving copyright protection of the NeRF model. In addition, we have also designed
anti distortion rendering to enhance the robustness of the model. The experimental results show that
our method not only exhibits high visual quality in watermark extraction, but also has a certain degree
of robustness, thus verifying the effectiveness of our method in NeRF copyright protection.

Limitations: Although we considered the robustness of the model in the design process, when
malicious users attack the weight of the model, the model may be compromised, affecting rendering
quality and watermark extraction performance. In addition, the extractor we designed can still extract
some watermark information if the secret perspectives are relatively close, and there is still room for
optimization in the network structure of the extractor. In future work, we will actively consider how
to solve these problems.
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