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ABSTRACT

Wearing helmets while riding electric bicycles can significantly reduce head injuries resulting from traffic accidents.
To effectively monitor compliance, the utilization of target detection algorithms through traffic cameras plays a
vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.
However, manual enforcement by traffic police is time-consuming and labor-intensive. Traditional methods face
challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.
This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles, addressing
these challenges. The proposed model improves upon YOLOv8n by deepening the network structure, incorporating
weighted connections, and introducing lightweight convolutional modules. These modifications aim to enhance
the precision of small target recognition while reducing the model’s parameters, making it suitable for deployment
on low-performance devices in real traffic scenarios. Experimental results demonstrate that the model achieves an
mAP@0.5 of 91.8%, showing an 11.5% improvement over the baseline model, with a 16.2% reduction in parameters.
Additionally, the model achieves a frames per second (FPS) rate of 58, meeting the accuracy and speed requirements
for detection in actual traffic scenarios.
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1 Introduction

Electric bicycles, serving as a convenient, cost-effective, and eco-friendly mode of short-distance
transportation, are increasingly becoming the preferred choice for individuals’ local commutes. As
of 2022, the total number of electric bicycles in China has surged to 350 million. However, this rise in
electric bicycle usage has been paralleled by a concerning increase in traffic accidents involving electric
bicycles. Notably, head injuries account for the highest proportion of driver injuries and fatalities
in such accidents. Wearing a safety helmet correctly while riding an electric bicycle can significantly
mitigate the risks of severe head injuries and fatalities resulting from traffic collisions.
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With the nationwide implementation of registration policies for electric bicycles in China and
the enforcement of the “One Helmet, One Belt” initiative by the Ministry of Public Security, there
has been a notable reduction in accidents caused by traffic violations. However, despite the current
national regulations mandating compulsory helmet usage for electric bicycle riders, instances of non-
compliance persist on the roads. Moreover, law enforcement authorities face significant challenges
in deploying manpower at scale for continuous monitoring and enforcement of helmet-wearing
regulations. The research objective is to explore detection technologies and apply them to identify
helmets and license plates on electric bicycles, aiming to standardize safety practices among electric
bicycle riders. This research holds substantial practical importance.

In traditional helmet and number plate detection methods, most rely on physical texture or colour
features for localisation and recognition. Jia et al. [1] proposed a model that combines helmet colour,
local features and histogram of oriented gradient (HOG) features to identify safety helmets used in
construction sites. Hsu et al. [2] proposed a combination of directional gradient histogram (HOG) and
support vector machine (SVM) to detect motorcycle number plates. Zhong et al. [3] proposed a method
based on character edge detection operators to detect car license plates, and an algorithm based on
colour features to extract license plate characters, but the effectiveness is poor when the colour of the
vehicle body is close to the license plate. These traditional machine learning methods rely heavily on
specific scenes. For example, the effectiveness of identifying safety helmets based on colour features in
construction sites is better when the helmets are of a single colour and uniform style. However, their
effectiveness needs to be verified in scenarios with different types and styles of electric vehicle helmets,
as well as complex traffic environments. In traffic scenes where the environment is complex, traditional
machine learning methods face significant challenges in target detection. With the development of
deep learning technology, the use of convolutional neural networks enables object detection in more
complex background environments. This is particularly beneficial for detecting helmets and number
plates in complex traffic scenarios, such as the non-motorised vehicle lane studied in this paper.

This study introduces an enhanced detection model for identifying electric bicycle helmets and
license plates using YOLOv8n in non-motorized vehicle lane scenarios. The model is designed to
improve detection accuracy while minimizing parameter usage. The efficacy of the upgraded algo-
rithm is confirmed through ablation experiments. Comparative analyses with other object detection
algorithms underscore its superior performance. The key research methodologies include:

(1) Refinement of the YOLOv8n network structure: By enhancing the network structure and
incorporating a small target detection head, the model can better capture features across various scales
and abstraction levels, leading to enhanced overall performance.

(2) Improvement of the Concat module by integrating weighted connections: This enables the
learning of weights for input tensors from different directions, thereby reinforcing the influence of
input tensors with higher weights.

(3) Development of lightweight convolutional modules to replace original convolutional layers:
These lightweight modules significantly reduce the model’s parameter count and computational
complexity, with minimal impact on accuracy. This adaptation enhances the model’s suitability for
deployment on edge devices in traffic settings.

The paper is structured as follows: Section 2 provides an overview of the current research status on
electric bicycle license plates and helmets, introducing the YOLOv8 model. Section 3 elaborates on the
enhancements made to the YOLOv8 model, offering detailed derivations of the necessary equations.
Section 4 discusses the experimental setup and result analysis. Finally, in Section 5, conclusions are
presented along with potential avenues for future work.
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2 Related Work
2.1 Related Research

Research on the detection of electric bicycle license plates and helmets currently predominantly
relies on deep learning, which is further divided into one-stage object detection and two-stage object
detection tasks. One-stage object detection involves directly generating object category confidence and
position coordinates through a single detection pass. Representative models include the YOLO series
[4], SSD [5], RT-DETR [6], and others. One-stage object detection models exhibit fast recognition
speed and lightweight model size, making them suitable for lightweight devices or real-time detection
scenarios where hardware requirements are not stringent. However, these models may have slightly
lower detection accuracy. Two-stage object detection models identify the location of the target in
the first stage, obtaining proposed bounding boxes to improve accuracy and recall. In the second
stage, these proposed boxes undergo classification to refine the position further. Representative models
for two-stage detection include Faster CNN [7], among others. Two-stage object detection models
typically have larger model sizes, higher detection accuracy, but slower detection speed, making them
suitable for high precision detection tasks.

Many scholars have conducted research on the detection of targets such as helmets or license
plates on electric bicycles. Wang et al. [8] improved the two-stage object detection algorithm Faster
R-CNN. They integrated Inception Res-Net_v2 into the overall architecture of Faster R-CNN to
extract features specific to car license plates. The algorithm then employed threshold binarization
for character segmentation, followed by the use of the mLetNet5 network for license plate character
recognition. Qi et al. [9] performed row projection correction on license plates, utilized the MobileNet-
SSD algorithm to detect single-row and stacked characters, and achieved good recognition results by
feeding stacked characters into a recognition network based on the CTC loss. Islam et al. [10] explored
the use of two separate models for car license plate detection and number recognition, comparing
the detection performance of different models. They proposed using Faster R-CNN for license plate
detection and sending the recognized license plate images to an SSD model for license plate number
recognition, ultimately achieving a 98% accuracy in license plate detection and a 91.67% accuracy in
license plate character recognition. While these algorithms demonstrate high detection accuracy, their
network models are relatively large, leading to slow prediction speeds, which may not be conducive
to real-time detection in traffic environments. Alharbi et al. [11] proposed a method for license plate
recognition using the YOLO model, followed by license plate number recognition using the RCNN
model. They enhanced the YOLO model by modifying its architecture and introduced K-means++
clustering for precise identification. The final model achieved promising results in terms of detection
accuracy. Zhang et al. [12] proposed an improved YOLOv5s-BC algorithm for recognizing electric
bicycle helmets. They introduced soft pooling into the SPP layer of YOLOv5s, replaced the PAN
network with BiFPN, and added CA attention. Finally, they changed the loss function to EIOU.
The overall model mAP reached 98.4%, representing a 6.3% improvement compared to the initial
YOLOv5 model. Aboah et al. [13] introduced a small data sampling technique for dataset processing
and used YOLOv8 for model training to identify motorcycles and driver helmets. They achieved the
seventh place in the 2023 AI City Challenge. Zhuang et al. [14] proposed an improved YOLOv5m
algorithm, modifying the DIOU loss function, adding ECA attention between the Backbone and
Neck, and redesigning anchor boxes using the K-means clustering algorithm. They also applied
Mosaic augmentation to the dataset. The overall recognition accuracy (mAP) for helmets and license
plates increased from 90.55% to 92.7%, effectively enhancing model precision. This model not only
detects helmets but also recognizes license plates, although it does not identify license plate numbers,
which is a slight limitation.
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In the current research, there is a scarcity of studies that discuss the integration of electric
bicycle license plate numbers with helmet detection within a single model. This paper independently
constructed a dataset of nonmotorized vehicles captured from an overhead perspective on footbridges.
The dataset includes annotations for 22 classes of targets, such as helmets, license plates, and license
plate numbers. The aim is to utilize a single model to recognize electric bicycle riders, helmets, and
license plate numbers. This approach is intended to assist law enforcement officers in using deep
learning-based object detection technology to address issues related to electric bicycle helmets.

2.2 YOLOv8 Model

The YOLOv8 model is one of the mainstream single-stage object detection models, known for its
outstanding detection speed among numerous models, making it highly suitable for real-time detection
tasks.

Compared to the YOLOv5 version, YOLOv8 replaces the original C3 module with the C2f
module, which can fuse more features; removes the convolutional layers before up sample in the Head
part; adopts the concept of anchor free, enhancing the model’s ability to recognize the same object
at different scales, etc. The YOLOv8 model consists of five different network depths: YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. Among them, YOLOv8n is the model with the
smallest network depth in this series, suitable for deployment on embedded devices with lower
performance. As traffic cameras themselves belong to low-performance embedded devices, this paper
improves the YOLOv8n model structure to achieve the detection of electric bicycle license plates,
helmets, drivers, and other targets.

The YOLOv8 model is composed of a Backbone and a Head. The Backbone part uses convolu-
tional layers and C2f layers to extract input features, integrating features in SPPF. The head part uses
Path Aggregation Network (PAN) [15] and Feature Pyramid Network (FPN) [16]. PAN is a bottom-up
feature extraction structure, while FPN is a top-down feature extraction structure. After concatenating
the ensample layers with the outputs of the C2f layers in the backbone with consistent sizes, feature
fusion is enhanced. Finally, the features extracted by the C2f layer in the head are sent to the detection
head, which calculates the position of the target box and classification confidence, predicting targets
of different sizes on different feature maps. Fig. 1 shows the network structure of the YOLOv8 model.

3 Improved Model

The main focus of this paper is to address the issues of missed detections and low accuracy
in detecting small objects, such as license plates, in the baseline YOLOv8n model. This paper first
deepens the network architecture to enable the extraction and fusion of a wider range of features.
Additionally, a new small object detection head has been added to enhance the accuracy of detecting
small objects. Secondly, in the Concat module for network feature fusion, weighted concatenation
is used to emphasise the importance of features that conteibute significantly to model performance
improving, thus enhancing model accuracy. Finally, a lightweight convolution module, Group Cross
Conv (GCC), is designed to replace the original Conv module in the Backbone section. The final
model shuows significant improvements in accuracy while reducing the number of model parameters
and the size of the model files. The structure of the improved model is shown in Fig. 2. The first
improvement involves the addition of a new network structure and small target detection head on a
gray background. In the second enhancement, the Concat module in the Head section is replaced with
the Weighted Concat module, highlighted in green. The third enhancement occurs in the BackBone,
where the Conv module is replaced with the lightweight GCC module.
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3.1 Network Structure and Detection Head Improvements

In the baseline YOLOv8 model, inherited from previous YOLO version, three detection heads are
characteristic, covering typical object detection scenarios. However, in real traffic scenes, small objects
such as license plates occupy few pixels, contain limited information, and belong to various categories,
posing challenges for accurate recognition by the model.

To address these issues, this paper extends the depth of the network structure in the head region
of the YOLOv8 model, allowing for better extraction and fusion of image features. An additional C2f
layer is introduced to extract deeper information and fuse shallow information, enriching semantic
representation. An added up sample layer adjusts the feature map size for easier fusion with other
deep feature maps. Furthermore, a connecting layer concatenates shallower and deeper information,
allowing the network to combine deep abstract features with texture and shape features obtained from
shallower layers. After feature extraction, another C2f layer is employed for feature fusion. Lastly,
a detection head is appended to the C2f layer to strengthen feature detection for small objects and
continue feature extraction through convolutional layers, transmitting features to different depths.
The original YOLOv8 detection head consists of three feature map sizes: 20 × 20, 40 × 40, and 80 ×
80. The newly added small object detection head can detect targets on the output feature map with a
size of 160 × 160, effectively improving the accuracy of recognizing small objects such as license plates
and helmets.

Assuming an input image size of 1280 × 1280, the original YOLOv8n detection head has a size of
80 × 80, with a receptive field of 1280/80 = 16, meaning targets smaller than 16 × 16 pixels are likely
to be ignored. The newly added small object detection head has a size of 160 × 160, with a receptive
field of 1280/160 = 8, capable of detecting targets as small as 8 × 8 pixels, thus enhancing sensitivity
to small objects. The specific improvements in the network structure and detection head are depicted
in the gray background section of Fig. 2.

3.2 Introduction of Weighted Concatenation

In the Head section of YOLOv8, the Concat module is used to merge features from different depths
to enhance the network’s semantic representation. Traditional Concat operations simply concatenate
two tensors without considering weights for tensors from shallow and deep layers. Inspired by the
Bi-directional Feature Pyramid Network (BiFPN) structure [17], this paper introduces weighted
concatenation, where tensors from different inputs are multiplied by calculated weights before being
connected, thus enhancing the contribution of features significant to the model.

BiFPN designs addition operations for tensors at different depths, merging shallow information
such as edges and textures with deep abstract features, enriching network connections and seman-
tic representation. Moreover, after normalizing the weights, this approach prevents scaling issues,
ensuring stable feature fusion and mitigating problems like gradient explosion or vanishing during
model learning. Weighted Concat calculates weights for different tensors, enhancing the significance
of valuable input branches and overall model recognition accuracy. Considering the original Concat
operation in the model simply concatenates tensors from different inputs, this paper replaces the
addition operation in BiFPN with concatenation to maintain consistency in the number of channels
after Concat operations and avoid sharp declines in model performance due to significant reductions
in channel numbers. From a lightweight perspective, the Weighted Concat operation eliminates cross-
network depth connection features in BiFPN, only improving the weights of different tensors during
feature fusion, thereby reducing complexity costs and parameter quantities, and better representing
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input features. The equation for Weighted Concat is as follows:

P = Concat
(

w1

w1 + w2 + ε
· X1,

w2

w1 + w2 + ε
· X2

)
(1)

In Eq. (1), P represents the output tensor, Concat denotes the concatenation operation, W 1 and
W 2 are learnable parameters used to learn the weights of different input tensors, X 1 and X 2 are two
input tensors, and ε is a constant with a value of 0.0001, which helps to avoid division by zero.
During backpropagation, W 1 and W 2 continuously learn and adjust their values to connect the two
input tensors according to different weight coefficients, thereby enhancing the accuracy of the model.
The Weighted Concat is represented by the green module in Fig. 2 and the pseudo-code of module
algorithm is shown in Fig. 3.

Figure 3: The algorithm for weighted concatenation

3.3 Introduction of Group Cross Conv (GCC) Lightweight Convolution Module

Building on these improvements, while the YOLOv8 model deepens the network structure
and introduces Weighted Concat for normalised connection weights, the increase in model perfor-
mance also increases the number of parameters and computational complexity, resulting in increased
GFLOPs. This makes the model bulky and less conducive to running on low-performance embedded
devices. Therefore, this paper proposes a plug-and-play lightweight convolution module, GCC, to
replace the original Conv module.

The structure of the GCC model is depicted in Fig. 4, wherein the distinction between the
GCC module and the Conv module lies in the colored portion. The GCC module consists of
Group Convolution (GConv) [18], Cross Convolution (Cross Conv), Concat, Shuffling [19], Batch
Normalization [20], and the SiLU activation function [21]. GConv reduces the parameter count
of convolutional operations, while Cross Conv utilizes the results of GConv as input and replaces
3 × 3 convolutional kernels with 1 × 3 and 3 × 1 convolutional kernels, reducing the convolutional
kernel parameters from 9 to 6. The results of both convolution operations are concatenated and then
subjected to shuffling. Finally, the concatenated result is normalized and passed through the SiLU
activation function to produce the final output.
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The module designed in this paper allows users to specify input and output channel numbers,
enabling plug-and-play functionality without altering channel numbers when replacing other types of
convolution modules. Assuming the original convolution layer has an input channel number of C1

and an output channel number of C2, the input tensor with C1 channels undergoes group convolution
operation, resulting in an output channel number of C2/2 with C1/2 groups. The output tensor of the
grouped convolution is then subjected to a CrossConv operation, using 1 × 3 and 3 × 1 convolutions
for feature extraction, respectively. The results of the grouped convolution and CrossConv are
concatenated to obtain a tensor with C2 channels. To enhance inter-channel relationships, a shuffle
operation is performed as the final step, yielding the ultimate result. The pseudo-code of the GCC
module algorithm is shown in Fig. 5.

Figure 5: The algorithm for Group Cross Conv
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To further demonstrate the lightweight effect of the GCC module when replacing the Conv
module, the calculation equations for parameters (Params) is introduced.

Convparams = Kw × Kh × Cin × Cout (2)

GConvparams = Kw × Kh × Cin

Group
× Cout

Group
× Group (3)

CrossConvparams = 1 × Kh × Cin × Cout + Kw × 1 × Cin × Cout (4)

Eqs. (2)–(4) represent the parameter calculation equations for Conv, Gconv, and CrossConv,
respectively. For simplicity, the computations here omit consideration for bias parameters. In fact,
within the GCC module, the bias parameter is configured as False. The meanings and values of
each symbol in the equations are defined as follows: Kw and Kh represent the width and height of
the convolution kernel, as mentioned earlier, the convolution kernel size for regular convolution and
group convolution is 3 × 3, and for group convolution, it is 3 × 1 and 1 × 3; Cin and Cout are the
input and output channel numbers, both taken as C1 and C2; Group is the number of groups in group
convolution, taking the value C1/2.

The result of the parameter calculation for Conv is obtained as follows:

Convparams = Kw × Kh × Cin × Cout (5)

= 3 × 3 × C1 × C2

= 9C1C2

The result of the parameter calculation for GConv is obtained as follows:

GConvparams = Kw × Kh × Cin

Group
× Cout

Group
× Group

= 3 × 3 × C1

C1/2
× C2/2

C1/2
× C1

2
= 9C2

(6)

The result of the parameter calculation for CrossConv is obtained as follows:

CrossConvparams = 1 × Kh × Cin × Cout + Kw × 1 × Cin × Cout

= 1 × 3 × C2

2
× C2

2
+ 3 × 1 × C2

2
× C2

2
= 3

2
C2

2

(7)

Therefore, GCCparams is equal to the sum of Gconvparams and CrossConvparams.

GCCparams = Gconvparams + GrossConvparams

= 9C2 + 3
2

C2
2

(8)

To facilitate a deeper comparison between Convparams and GCCparams, taking into account that the
output channel count is practically non-zero, we can utilize Eqs. (5) and (8) to eliminate C2, resulting
in 9C1 and 9 + (3/2)C2, respectively.



458 CMC, 2024, vol.80, no.1

In the YOLOv8 Backbone, the input channel count C1 typically doubles after passing through the
Conv module. In the YOLOv8n model architecture, there are a total of five convolutional modules
within the Backbone. The first Conv module transforms a 3-channel input through convolution to
yield a 16-channel output. For this specific module, the values for input and output channels are
employed in the following equations: 9C1 = 27 and 9 + (3/2)C2 = 33. The lightweight of the GCC
module in our study did not yield the expected results; instead, it slightly increased the parameter
count. However, in the subsequent Conv modules of the Backbone section, when the GCC module
was employed as a replacement, a parameter lightweight effect was achieved due to the output channel
count being twice that of the input channel count. For instance, in the second convolutional module
where the input tensor is 16 channels and the output tensor is 32 channels, applying the results derived
from the equations: 9C1 = 144 and 9 + (3/2)C2 = 57 demonstrates the superior performance of
the GCC module in reducing parameter count. Moreover, as one moves closer to the bottom of
the Backbone, the reduction in parameter count becomes more pronounced. This trend persists in
subsequent Conv modules within the Backbone, achieving parameter lightweight. Further calculations
in this regard are omitted for brevity. Upon substituting the values into the calculations, it is observed
that GCCparams is smaller. Therefore, replacing the original Conv convolution module with GCC can
achieve lightweight.

In fact, in Eqs. (5) and (8), it can be observed that in terms of the comparison of parameter
quantity between the Conv module and the GCC module, when the number of channels is high,
the coefficients become crucial in determining the size of the parameters. When extended to the
typical Conv modules in YOLOv8, under common scenarios where the output channel number is
twice the input channel number, C2 can be replaced by 2 × C1. This substitution clearly highlights the
contribution of the GCC module in parameter optimization.

Although reducing parameters may lead to a potential decrease in accuracy, the use of different
convolutions for feature extraction results in features that are richer compared to the original
convolution. This richness in features can help mitigate the accuracy impact caused by lightweight.
The results of the GConv module and the CrossConv module are concatenated, followed by a Shuffle
operation. The concatenation and shuffling operations incur minimal additional computational and
spatial costs. Channel shuffling allows the model to learn features from each channel, compensating for
the weakened inter-channel connections introduced by previous grouped convolutions. Therefore, the
designed GCC module in this paper achieves higher lightweight when replacing the Conv convolution
module. The addition of the GCC module is illustrated in the Backbone section of Fig. 2.

4 Experimental Results and Analyses
4.1 Dataset

Due to the lack of publicly available datasets for identifying targets such as electric bicycles,
license plates, and helmets in traffic environments, this paper constructs a dataset of images from
non-motorized vehicle lanes at traffic intersections, manually annotating information such as electric
bicycles, electric tricycles, helmets, and license plates.

The images in the dataset are manually collected by the authors, taken at the Huaiyuan Night
Market Overpass in the Xixia District of Yinchuan City, Ningxia. The photographs were captured
using a Redmi K20 Pro smartphone. The collection method involved fixing the smartphone on a
bracket above the pedestrian overpass and recording videos at a rate of 30 frames per second with
a 4K resolution. Subsequently, frames were extracted from the videos. Additionally, a small number
of shared electric bicycle photos parked by the roadside were added to enrich the dataset.
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The resolution of the collected images is 3840 × 2160. In YOLOv8’s object detection task, the
default practice is to resize input images to 640 × 640 resolution. Simple resizing of images may lead
to loss of details, especially for small targets like license plates. However, resizing input images to
match the original image size would require significant GPU memory and might lead to memory
overflow during model training. Therefore, this paper segments the images in the self-built dataset
without altering the original RGB values of pixels. In each image, as the background information
predominates, target segmentation is performed to remove unnecessary background information,
facilitating subsequent training. During segmentation, the background information around the target
is appropriately retained. Because electric bicycles of different brands vary in size, and some targets
may appear closer or farther in images, the pixel sizes of the targets also vary, resulting in non-uniform
image resolutions in the dataset. For annotation, a total of 22 labels are used, including numeric
characters 0–9, uppercase letters A, H, M, Q, Chinese characters, and general categories such as
helmets, license plates, people, electric bicycles, bicycles, and electric tricycles. The dataset used in this
paper comprises a total of 5546 images, which are randomly split into training, validation, and test
sets in an 8:1:1 ratio. Specifically, the training set consists of 4474 images, the validation set consists
of 506 images, and the test set consists of 566 images.

In Table 1, all types and quantities of labels are summarized. Although some labels have low
counts, Focal Loss in YOLOv8 can effectively handle this class imbalance issue by reducing the weights
of easily classified samples during training, enabling the model to focus on hard-to-classify samples.
This helps mitigate the poor performance of the model on categories with fewer instances.

Table 1: Types and quantities of dataset labels

Label Count Label Count Label Count

Human 6768 0 624 7 295
e-bike 4020 1 476 8 318
Bikecard 1180 2 511 9 296
Bike 947 3 390 A 664
Casque (helmet) 629 4 239 M 56
e-3bike 336 5 376 H 76
Ning (chinese character) 653 6 370 Q 52
Lin (chinese character) 354

4.2 Experimental Setup and Training Process

Software Environment: Windows Server 2019 Datacenter 64-bit operating system, PyCharm
2023.1.2 Community Edition, CUDA 11.8, Python 3.8, PyTorch 2.0.1.

Hardware Environment: 2 Intel® Xeon® Gold 6154 @3.00 GHz processors, 256 GB DDR4
2666 MHz memory, NVIDIA TITAN V with 12 GB memory, 4 TB mechanical hard drive (for storing
datasets), and 1 TB solid-state drive (system disk).
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The default input image size for YOLOv8n is 640 × 640 pixels. When the input image exceeds this
size, it is compressed before object detection. However, most images in the self-built dataset in this
paper are around 1000 × 1000 pixels. Using the default size may result in loss of license plate details
during image compression, leading to poor recognition performance. Therefore, the model’s imgsz
parameter was adjusted to 1280 to identify complete image features.

The hyperparameters of the proposed model and various comparison models are consistent, as
shown in Table 2.

Table 2: Hyperparameters setting of model training

Parameter names value

Batchsize 4
Imgsz 1280
Epochs 200
Optimizer SGD
Momentum 0.937
Close mosaic 10
Model (pretrained weights) NULL

4.3 Evaluation Metrics

In this paper, multiple metrics are used to evaluate the performance of the models in the
experiments. The selected metrics include:

1. Mean Average Precision (mAP): MAP is calculated by computing the average precision and
recall for each individual class, and then taking the mean. It represents the overall detection accuracy
of the model across all classes.

2. Parameters: Parameters refer to the number of parameters in the model. A smaller value is
preferable.

3. Frames per Second (FPS): FPS indicates the number of images that can be processed per second
on the current hardware environment. A higher value is desirable.

4. Floating Point Operations (FLOPs): FLOPs represent the number of floating-point operations
required per second when running the model. A lower value is preferable.

5. Precision: Quantifies the proportion of accurately predicted instances among all positive
predictions. A higher Precision value indicates fewer false positives, thereby reflecting a more accurate
model performance.

6. Recall: Delineates the proportion of correctly predicted positive instances out of all actual
positive instances. A greater Recall value signifies fewer instances being missed, thus indicating a more
comprehensive model performance.
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4.4 Benchmark Model Comparison Experiment

Various mainstream object detection models are compared using the self-built dataset in this
paper. The performance results of each model are presented in Table 3.

Table 3: Performance comparison of different models

Model mAP@ mAP@ Precision Recall Parameters FLOPs FPS Training time/H
0.5 0.5–0.95 /M /G

Faster RCNN 18.8 11.2 15.2 20.1 137.1 370 13 65.6
SSD 30.4 11.4 29.6 28.4 26.4 141.2 51 33
RT-DETR-l 61.2 40.1 66.2 61.7 32 – 18 33.9
PP-PicoDet-l 14.2 – – – 5.8 – 8.2 12.2
TTFNET 3.7 1 1.2 13.8 45.7 – 26 34.4
TOOD 15.7 7.9 15.4 24.3 32.1 – 13.7 28.2
YOLOv5n 75.4 42.2 65.1 71 1.7 4.2 74 9.5
YOLOv6n 57.3 36.7 45.4 68 4.2 11.8 123 7.6
YOLOv7tiny 72.9 40.8 67.5 69.8 6.1 13.2 69 15.1
YOLOv8n 80.3 50.2 75.8 71.7 3 8.1 128 8.2
YOLOv8s 89.6 55.9 81.8 85.2 11.1 28.5 67 8.1
Our model 91.8 56.7 85.5 86.3 2.5 11.2 58 10.5

In the experimental results, Faster RCNN exhibits lower precision. Upon examining the precision
for each class, it was observed that this model performs well on medium-sized and large objects, but
its performance on small targets such as license plates is poor. This contributes to the overall lower
mean Average Precision (mAP). SSD, PP-PicoDet-l [22], TOOD [23], TTFNet [24], and YOLOv6n
[25] show significant differences in detection metrics compared to the YOLOv8n model. Although the
RT-DETR-l model slightly improves precision compared to other models, its large parameter count
and low FPS make it unsuitable for real-time detection in traffic scenarios. YOLOv5n offers some
advantages in terms of parameter count and computational complexity, but still falls short in precision
compared to YOLOv8. YOLOv7n [26] outperforms most models but still lags behind YOLOv8n in
each metric. The YOLOv8n model demonstrates high precision, relatively low parameter count, and
computational complexity, with an FPS suitable for real-time detection in traffic environments. This
is one of the reasons why this model was chosen as the benchmark in this study.

Comparing these model performance metrics, it can be observed that the proposed model in this
paper exhibits significant improvements in precision compared to other benchmark models. Not only
does it achieve higher accuracy than YOLOv8s, but it also has clear advantages in terms of parameter
count and computational complexity, making it easily deployable on low-cost, performance-limited
embedded devices.

4.5 Ablation Experiment

To validate the effectiveness of the proposed improved model, ablation experiments were con-
ducted to assess the impact of each module improvement on the overall model performance. Sequen-
tially, improvements including increased network depth and small target detection head, Weighted
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Concat, and GCC lightweight convolution replacing Backbone convolution layers were compared.
These improvements were added to the original YOLOv8n model, and training was conducted for 200
epochs under the same experimental conditions. The training results are summarized in Table 4.

Table 4: YOLOv8n ablation experiment results

Model Network
depth &
detection
head

Weighted
Concat

GCC mAP
@0.5/%

mAP
@0.95/%

Precision Recall FLOPs
/G

Parameters
/M

FPS Model size
/KB

YOLOv8n-1 80.3 50.2 75.8 71.7 8.1 3.0 128 6135
YOLOv8n-2 √ 91.4 56.3 83.6 86.9 12.2 2.9 88 6261
YOLOv8n-3 √ √ 91.7 57.4 85.9 87.4 12.2 2.9 88 6266
Our model √ √ √ 91.8 56.7 85.5 86.3 11.2 2.5 58 5507

YOLOv8n-1 serves as the baseline model employed in our experiments. Without any model
modifications, its mAP@0.5 metric is observed to be only 80.3%, indicating suboptimal detection
accuracy. YOLOv8n-2, an enhanced version of the baseline model, features a deeper network structure
and introduces a specialized small-object detection head. This design significantly improves the
model’s precision to 91.4%. However, this enhancement comes at the cost of increased computational
complexity. YOLOv8n-3 builds upon YOLOv8n-2 by replacing the original Concat connection with
Weighted Concat, achieving a marginal 0.3% performance improvement with almost no change
in model parameters or computational complexity. In this paper, we propose a novel model that
further refines the architecture based on YOLOv8n-3. We replace Conv modules in the Backbone
with lightweight convolutional modules (GCC). This adjustment results in a substantial reduction
in both model computation complexity and parameter count. Despite marginal improvements in the
mAP@0.5 metric, there is a noticeable reduction in the model’s parameter count. Furthermore, the
generated model files exhibit a significant decrease in storage space requirements. This presents a cost-
effective storage and computational solution for the practical deployment of the model.

4.6 Detection Results and Analysis

In Fig. 6, a selection of images is presented to test the detection performance of the proposed
model. To ensure privacy, one digit of the license plate number is obscured in the displayed images.
The first row shows the original images, the second row shows the detection results of the Faster RCNN
model, the third row shows the detection results of the YOLOv6n model, the fourth row shows the
detection results of the SSD model, the fourth row shows the detection results of the TOOD model,
the fifth row shows the detection results of the YOLOv8n baseline model, and the last row shows
the detection results of our model proposed in this paper. The selected comparison images include
three images captured in normal weather conditions and two images captured in rainy weather. The
selection of targets includes electric bicycles, electric tricycles, bicycles, helmets, license plates, license
plate numbers, and pedestrians. The confidence threshold used for detection is set to 0.5, meaning that
the model annotates targets with a confidence score greater than 50%.
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Figure 6: Comparison of model detection effects

By comparing the detection results in the images, it can be observed that all models perform well in
recognizing large objects but exhibit poorer performance in identifying small objects. Faster RCNN
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and TOOD failed to recognize any characters on the license plates, and Faster RCNN also missed
detecting helmets. YOLOv5n and YOLOv6n were able to identify some characters on the license plates
based on this, but not comprehensively. Among these benchmark models, YOLOv8n performs the best,
being able to recognize the most license plate characters. This indicates that under the framework of
deep learning, feature extraction for small objects remains challenging. In models based on anchor
boxes, default anchor boxes may not meet the requirements for detecting small objects, necessitating
careful design of anchor boxes based on the characteristics of object detection tasks. YOLOv8n’s
anchor-free design conveniently circumvents this complexity. Additionally, in small object detection,
existing detection heads may not satisfy the requirements for detecting tiny objects, necessitating better
optimization of the model network to enable the extraction of features from small objects. This is
precisely the work carried out in Sections 3.1 and 3.2 of this paper. In contrast, the improved YOLOv8n
model proposed in this paper accurately detects all targets, regardless of whether it is sunny or rainy.
This demonstrates that after the improvement of the YOLOv8n baseline model, the model is more
sensitive to small targets such as license plate numbers, enabling high-precision detection of electric
bicycles, helmets, and license plates in traffic scenarios.

5 Conclusions and Prospect

This paper conducted experiments using various baseline models to detect targets such as electric
bicycle drivers, helmets, and license plates, with the aim of identifying the optimal baseline model
for further improvement. To address the limitations of the baseline model in detecting small targets
like license plate numbers, the YOLOv8n model’s network structure was enhanced by deepening it
and introducing a small object detection head. The feature concatenation component of the model
was refined by incorporating weighted parameters. Additionally, to improve accuracy, a lightweight
convolution module (GCC) was devised to reduce the model’s computational complexity and param-
eter count, making it more suitable for deployment on embedded devices like traffic cameras. The
model developed in this study enables different types of target detection on non-motorised vehicle
lanes in traffic scenarios, prompting e-bike riders to wear safety helmets to reduce injuries from traffic
accidents.

The experimental results illustrate a substantial enhancement achieved by the improved YOLOv8n
model presented in this paper compared to the original baseline model. The mAP@0.5 and mAP@0.5–
0.95 metrics saw notable increases of 11.5% and 6.5%, respectively, while reducing the parameter count
from 3 to 2.5 M through lightweight optimization. Despite an increase in computational complexity
(FLOPs) due to network depth and the addition of a small object detection head, this was offset by
a decrease following the replacement of the original convolution module with the lightweight GCC
module. This adaptation enables the model to run operate on devices with limited computational
capabilities for effectively detecting helmets and license plates of electric bicycle drivers. Consequently,
the enhanced model proposed in this study can serve as a high-performance and efficient tool to
support traffic police in enforcing helmet regulations for electric bicycle drivers in practical scenarios.

Nevertheless, the model is not without limitations. For example, the identified license plate of
an electric bicycle requires post-processing to ascertain the sequential arrangement of the license plate
numbers through localization. Additionally, there is reduced accuracy in detecting pedestrians wearing
raincoats on rainy days. Future endeavors will concentrate on developing software to transform the
license plate numbers detected by the model into a more realistic character sequence, aligning with
their respective positions. Moreover, efforts will be directed towards refining the model and enriching
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the dataset with images captured in diverse weather conditions, including rainy, foggy, and dusty
atmospheres, to bolster the model’s resilience and precision.
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