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ABSTRACT

In the era of the Internet, widely used web applications have become the target of hacker attacks because they
contain a large amount of personal information. Among these vulnerabilities, stealing private data through cross-
site scripting (XSS) attacks is one of the most commonly used attacks by hackers. Currently, deep learning-based
XSS attack detection methods have good application prospects; however, they suffer from problems such as being
prone to overfitting, a high false alarm rate, and low accuracy. To address these issues, we propose a multi-stage
feature extraction and fusion model for XSS detection based on Random Forest feature enhancement. The model
utilizes Random Forests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as
features, which are subsequently merged with the original data features to form a feature set with richer information
content. Further feature extraction is conducted through three parallel channels. Channel I utilizes parallel one-
dimensional convolutional layers (1D convolutional layers) with different convolutional kernel sizes to extract local
features at different scales and perform multi-scale feature fusion; Channel II employs maximum one-dimensional
pooling layers (max 1D pooling layers) of various sizes to extract key features from the data; and Channel III
extracts global information bi-directionally using a Bi-Directional Long-Short Term Memory Network (Bi-LSTM)
and incorporates a multi-head attention mechanism to enhance global features. Finally, effective classification and
prediction of XSS are performed by fusing the features of the three channels. To test the effectiveness of the model,
we conduct experiments on six datasets. We achieve an accuracy of 100% on the UNSW-NB15 dataset and 99.99%
on the CICIDS2017 dataset, which is higher than that of the existing models.
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1 Introduction

In the contemporary digital landscape, web applications are widely used in areas such as social
networking, media, and management, and often contain large amounts of private personal informa-
tion, making them a major target for hacker attacks [1]. Among them, XSS attacks are a common
cybersecurity threat [2], through which attackers exploit security vulnerabilities in web applications to
inject malicious code into users’ browsers [3], with the aim of stealing session tokens, login credentials,
and personal data [4].
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XSS attacks have profoundly affected various critical sectors. For instance, in 2018, British
Airways, the UK’s largest airline, experienced a data breach attributable to an XSS vulnerability in
its online payment module, resulting in data theft from 380,000 users [5]. Furthermore, Computer
Reseller News reported in July 2021 that within the first half of that year alone, over 98.2 million
individuals across healthcare, financial, professional, and retail sectors encountered data breaches.
Additionally, in 2022, an XSS vulnerability was discovered in a Chrome extension. It is evident that
XSS has emerged as one of the most perilous vulnerabilities on the Web, presenting a contemporary
challenge for security researchers [6].

Currently, in the field of XSS attack detection, researchers have developed a variety of approaches,
including traditional static, dynamic, and hybrid analyses [6,7], as well as advanced techniques based
on machine learning and deep learning. Static analysis examines potential security vulnerabilities
without executing the source code, while dynamic analysis focuses on analyzing the behavioral patterns
of the code as it executes in real time [8]. Hybrid analysis merges the advantages of the first two to
overcome the limitations of each. Although traditional methods play a key role in preventing XSS,
they are slow to process, produce high False Positive Rate (FPR), and require significant investments
of time and cost. Although deep learning methods possess powerful data representation capabilities
to analyze complex nonlinearities and deep relationships in data, enabling flexible handling of various
attack variants [9] and stealthiness [10–13], the single-channel models primarily used by these methods
struggle to capture all attack patterns in complex network environments, often resulting in high FPR
and low accuracy rates. Furthermore, the performance of deep learning models is highly dependent
on the quality of raw data and adequate annotations, and in practical applications, the scarcity of data
annotations restricts the models’ ability to learn effective patterns and impacts their generalization
ability.

To address the aforementioned issues, we propose a novel multi-stage method for XSS detec-
tion that combines Random Forest and CNN-POOL-BiLSTM. This method integrates the feature
enhancement capability of the Random Forest algorithm with advanced deep learning technology to
achieve hierarchical feature extraction and fusion. This enhancement effectively improves the accuracy
of XSS detection while mitigating the risk of overfitting and false alarms during the detection process.
In addition, the proposed model is capable of being deployed in a variety of network environments
going forward, particularly in industries demanding high security, such as financial services and
healthcare, to effectively safeguard critical infrastructures and ensure the security of user data.

The main contributions of this paper are as follows:

(1) Multi-stage feature extraction strategy: The model adopts a staged approach to feature
extraction. The initial stage utilizes the Random Forest algorithm to capture the intrinsic structure and
patterns of the data, extracts key features through the leaf node index, and combines these features
with the original data features to form a more comprehensive feature set that encompasses richer
information. This strategy addresses the problem of insufficient data annotations. To our knowledge,
this represents the first innovative application of the leaf node index of Random Forests as key features
to expand and enhance the feature set of the original data in cybersecurity research. This approach
signifies a significant advancement in research methodology within this field.

(2) Three-channel parallel feature processing: The model incorporates three parallel feature
extraction channels, each dedicated to different data feature types. Channel I utilizes one-dimensional
convolution with convolution kernels of varying sizes to extract multi-scale local features; Channel
II employs max 1D pooling layers of varying sizes to extract key features; and Channel III employs
Bi-LSTM and a multi-head attention mechanism to bidirectionally extract and enhance global XSS
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information. This method addresses the challenge that a single-channel model faces in capturing all
attack modes within complex network environments.

(3) Cross-dataset validation: The efficacy of the model is confirmed across multiple public datasets
covering different network environments and attack patterns, ensuring the model’s generalization
capability and adaptability. This cross-dataset testing approach argues that the model is not only
effective on a single dataset but also able to adapt to a variety of complex network environments
and attack scenarios, which is crucial for real-world deployment and application.

(4) Creation of an XSS dataset: To evaluate the proposed model more effectively, a dataset tailored
to XSS attacks was developed during the experiments. This dataset consists of simulated normal access
and XSS attack traffic, ensuring the practicality and adaptability of the experiment.

2 Literature Review

In recent years, numerous researchers have developed various XSS attack detection methods
aimed at mitigating the impact of XSS vulnerabilities on network security through efficient and
accurate detection. The details are shown in Table 1.

Table 1: Summary of review-related research

Authors Models Datasets Classifications Advantages Limitations

Fang
et al. [14]

Word2vec +
LSTM

Own dataset 2 categories High accuracy
and recall are
achieved.

Failed to capture
XSS attacks’
complexity and
variability; did not
use benchmark
datasets.

Liu
et al. [15]

Graph
convolutional
Network +
residual
network

Own dataset 2 categories The model is
accurate and
effective with
small samples.

Further validation
is needed for its
generalization
across diverse
datasets.

Mokbal
et al. [16]

XGBoost xxsed 2 categories XGBXSS
performs
excellently on
the test set.

Data with few
samples or
excessive features
risk overfitting.

Li
et al. [17]

BiLSTM CWE-079 2 categories Higher recall
rates.

Single-channel
model has poor
feature extraction,
unverified
generalizability,
and high FPR.

(Continued)



846 CMC, 2024, vol.80, no.1

Table 1 (continued)

Authors Models Datasets Classifications Advantages Limitations

Abaimov
et al. [18]

CNN XSS-payload-
list

2 categories Performs well
on specific
samples.

The model uses a
single channel and
only one dataset,
with insufficient
feature extraction
and generalisability
to be verified.

Tadhani
et al. [19]

CNN-LSTM Own testbed
dataset,
SQL/XSS
payload
dataset, and
HTTP CSIC
2010 dataset

3 categories High accuracy
and low FPR.

The model uses
just one dataset; its
generalizability
needs verification.

AARden
et al. [20]

BiLSTM Synthetic
datasets

2 categories High accuracy. The model uses
only one dataset;
its generalization
needs verification.

Fang et al. [14] introduced a deep learning-based XSS attack detection method, utilizing Word2vec
to extract features from XSS payloads and conduct model training and testing with a long short-term
memory Recurrent Neural Network (RNN). Although this method demonstrates high accuracy and
recall on real datasets, Word2vec may not adequately capture specific script structures or the complex
patterns of XSS attacks during feature extraction.

Liu et al. [15] developed a novel XSS load detection model utilizing graph convolutional networks
and residual networks for feature analysis and identification. The model enhances detection accuracy
by preprocessing the data and constructing graph structures. Although the model exhibits strong
performance in small sample tests, its ability to generalize across a broad and diverse dataset requires
further validation.

Mokbal et al. [16] developed an XSS attack detection framework named XGBXSS, which
utilizes an Extreme Gradient Boosting (XGBoost) algorithm and advanced parameter optimization
techniques. The framework enhances computational efficiency and significantly boosts detection
performance through an advanced feature extraction method and a feature selection strategy that
integrates information gain with sequential backward selection. Although XGBXSS demonstrates
strong performance on the test set, it faces the risk of overfitting when dealing with limited samples
or an excessive number of features.
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Li et al. [17] developed an XSS vulnerability auditing method that combines a PHP code parsing
tool and a Bi-LSTM model, which utilizes Word2vec to tag sequences and analyze the relationships
between these sequences via a Bi-LSTM network. Their experiments demonstrated a recall of 0.98,
significantly higher than the precision of 0.92, indicating that the method could possess a high FPR.

Abaimov et al. [18] developed a Convolutional Neural Network (CNN) model on the GitHub
dataset that achieved accuracies of 95.7% and 90.2% in detecting SQL injection and XSS attacks,
respectively. However, their model exhibits limited generalization capabilities when encountering new
or unknown attack samples.

Tadhani et al. [19] introduced a hybrid deep learning network that combines CNN and LSTM,
targeted at enhancing the protection of web applications against XSS and SQL injection attacks.
However, this model may forfeit critical information during the concurrent feature extraction process
involving CNN and LSTM.

The AARden team [20] proposed a deep learning approach incorporating BiLSTM, which
successfully achieves accurate classification of XSS attacks, SQL injections, and normal requests by
integrating manually labeled datasets for SQL injection and XSS attacks and employing multiple
preprocessing strategies such as Porter stemming extraction and word embedding. However, the model
only utilizes one dataset, thus its generalization performance needs to be verified.

In summary, the current research on XSS attack detection has made significant progress, with
numerous scholars developing a variety of models based on advanced machine learning techniques.
These models, spanning from combinations of Word2vec and LSTM using deep learning techniques
to complex structures employing graph convolutional networks and residual networks, have demon-
strated high accuracy and recall on specific datasets. However, these methods typically suffer from
limitations such as insufficient generalization and inadequate capturing of complex attack patterns.

3 Methods

In this paper, we introduce a multi-stage XSS detection method that integrates Random Forest
algorithm and CNN-POOL-BiLSTM to address several challenges. These challenges comprise com-
plex feature processing, the limited adaptability of traditional methods, the susceptibility to overfitting
in single-model neural networks, and inadequate annotations of the original XSS data.

In the primary stage of the model, the Random Forest algorithm is utilized to analyze the data
deeply, identify its underlying structure and significant patterns, and generate a new feature set by
extracting the leaf node indices of the Decision Tree (DT). These features are subsequently fused
with the original data, forming an information-rich feature set. To further refine feature processing,
the model incorporates three parallel channels operating independently. The first channel extracts
multi-level local features in a 1D convolutional layer using three convolutional kernels of different
sizes, enhancing the representational ability of these features through fusion techniques. The second
channel focuses on identifying key features in the data through varying sizes of max 1D pooling layers.
The third channel integrates a BiLSTM and a multi-head attention mechanism to effectively capture
global information and improve understanding of long-term dependencies in the data. This multi-
channel feature processing strategy not only enhances the accuracy and efficiency of the XSS attack
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detection model but also improves its adaptability and generalization in dealing with complex network
environments. Its implementation is realized through four stages, as depicted in Fig. 1.

(1) Step 1

The first step entails data pre-processing, which aims to ensure the quality and consistency of
the data. This process comprises the removal of missing values, unique coding of the data, and
normalization of the data.

(2) Step 2

In the second step, the Random Forest algorithm is used to dig deeper into the intrinsic structure
and hidden patterns of the data. It is then used to generate leaf node indices as features of new
dimensions. These newly generated features are incorporated into the original feature set, overcoming
the problem of inadequate labelling of the original data, increasing the information content of the
feature set and improving the expressiveness of the features.

(3) Step 3

The third step employs three parallel channels for additional feature extraction. Channel I utilizes
parallel 1D convolutional layers, each with convolutional kernel sizes of 3, 5, and 7, for extracting
local features across various scales and conducting multi-scale feature fusion. Channel II employs a
max 1D pooling layer with kernel sizes of 3, 5, and 7 to extract pivotal features from the data, aiming to
capture the most salient information. Channel III employs a Bi-LSTM to capture global information
bidirectionally, which is combined with the multi-attention mechanism to further enrich the global
information.

(4) Step 4

The fourth step is to overlay and fuse the features of the three channels, which not only combines
the unique perspectives and information of each channel, but also enhances the diversity and richness
of the features. This process allows the model to understand and represent the data in a more
comprehensive way, improving the accuracy of the prediction and the model’s ability to generalise.
Finally, a dense connectivity layer combined with an activation function is used to convert the
integrated features of the network into probability distributions for each category to which the data
belongs, leading to classification predictions.
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Figure 1: General framework of the model

4 Key Technologies for the Implementation of the Methodology
4.1 Data Pre-Processing

To ensure data quality, we employ data cleaning, one-hot encoding, and normalization techniques
to uphold the validity and consistency of the data for subsequent analysis and modeling.

(1) Data Cleaning

When working with datasets, the initial step involves addressing extreme values representing
positive and negative infinity, which may arise due to errors in data collection or computation. Given
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the mathematical instability and potential discrepancy with reality associated with these extreme
values, their proper handling is essential to ensure the quality of the data. Therefore, we have adopted
the strategy of replacing all such extreme values with NaN (not a numeric value) to identify anomalous
data points. Lastly, to handle these missing values without eliminating any data rows, we opted to
replace these NaNs with the average value of the corresponding data columns. This method yields a
reasonable numerical estimate while preserving the overall statistical characteristics of the data.

(2) One-Hot Encoding

Given that certain datasets contain symbolic features, such as User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), Terminal Network (TELNET), File Transfer Protocol (FTP),
we employ one-hot encoding to convert these symbolic features into numerical representations for
subsequent analysis.

(3) Normalization

The primary objective of normalisation is to adjust the data to a consistent scale or range, thus
improving model training efficiency and algorithm performance. This process entails reducing scale
differences among different features, facilitating faster model convergence, bolstering model stability
and robustness, and mitigating numerical instability issues. Normalisation boosts the resilience and
efficiency of the model by ensuring a uniform scale among different features. The normalisation
formula is given in Eq. (1).

xnew = xcurrent − xmin

xmax − xmin

(1)

The variable xcurrent represents the original value to be normalized, denoted as the current value;
xmin denotes the minimum value in the dataset; and xmax denotes the maximum value in the dataset.

4.2 Feature Expansion

To mitigate the negative impact of insufficient raw data annotation on the model’s learning
effectiveness and generalization ability, we utilize the Random Forest algorithm for feature set expan-
sion. The core of this approach lies in enhancing the data features through the multi-tree structure
of Random Forest and the strategy of randomly selecting features. Specifically, we initially analyze
the original dataset using the Random Forest algorithm to identify crucial features and underlying
patterns. Based on this information, we generate new feature sets to enrich the original dataset.
These new features not only improve the model’s ability to understand the data but also enhance
its adaptability and generalization to new scenarios. This approach effectively enhances the model’s
performance when confronted with inadequately annotated raw data. The specific implementation
process is as follows:

(1) Bootstrap sampling: Initially, the original dataset D is partitioned into a training set and a test
set based on a specific ratio. Subsequently, bootstrap sampling is employed to extract N subsets DN

from the training dataset, each utilized for training individual trees within the Random Forest.

(2) Compute the gini inequality: For each subset DN, calculate its Gini impurity G(DN). The Gini
impurity G(DN) serves as a metric for the level of classification ambiguity within the dataset and the
calculation formula is shown in Eq. (2).

G (DN) = 1 −
J∑

j=1

p2
j (2)
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where pj represents the proportion of samples belonging to the j-th category in the dataset DN, and J
denotes the total number of categories.

(3) Splitting trees: During the DT construction process, the algorithm selects features that most
effectively reduce the Gini impurity to serve as split nodes. At each node, the algorithm traverses
through all features and their potential split points, computes the weighted Gini impurity following
the split, and identifies the features and split points that minimize the weighted Gini impurity. The
weighted Gini deprivation is calculated according to Eq. (3).

ΔG (DN, A) = G (DN) −
k∑

i=1

|DNi|
|DN| G (DNi) (3)

Here, A represents the feature under consideration, while DNi denotes the subset obtained after
segmentation based on a specific segmentation point of feature A, with k representing the number of
subsets.

(4) Recursive splitting: The above process is repeated, recursively applying the Gini impurity
calculation and optimal feature selection to each split child node until a certain stopping condition
is satisfied, e.g., the maximum depth of the tree is reached.

(5) Construction of the Random Forest: By iterating through the aforementioned steps on various
subsets of DN, multiple DTs are constructed to constitute a Random Forest.

(6) Leaf node path retrieval: Within each DT of a Random Forest, every sample is allocated to a
leaf node. We record the entire path taken by each sample to reach the leaf node. This path reflects the
sample’s splitting history within the DT, encompassing the testing conditions of every traversed node.

(7) Extended feature set: The leaf node paths of every sample are converted into a novel feature
set. More precisely, the path information of each sample within the DT, comprising the node
indices traversed, the splitting features employed at each node, and the splitting threshold, is utilized
for generating a novel feature set. Consequently, the original feature set is enriched into a more
comprehensive feature set that incorporates information about DT paths.

4.3 Channel I

To extract local information from XSS data, a 1D convolutional neural network is employed. This
network utilizes a 1D convolutional operation to learn and extract local features from the input data.
The formula is given by Eq. (4).

xl
j = f

(
M∑

i=1

xl−1
i ∗ kl

ij + bl
j

)
(4)

Here, xl
j represents the output of neuron j in the lth 1D convolutional layer. The activation function

f , in this paper, is the softmax function used to introduce nonlinearity. The convolution operation is
denoted by

∑M

i=1 xl−1
i ∗ kl

ij, where xl−1
i represents the output of neuron i in the (l-1)th layer and kl

ij is the
weight connecting neuron i in the (l-1)th layer to neuron j in the lth layer. Additionally, bl

j represents
the bias term of neuron j in the lth layer of the 1D convolutional layers.

For comprehensive coverage of the region of interest by the CNN output, precise control of
the receptive field becomes imperative. Therefore, we employ convolutional kernels of varying sizes,
processed concurrently, to extract features across different scales. This strategy enables the network
to focus on both the intricacies of local structures and the nuances of details. In the initial channel,
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a parallel 1D convolutional layer is introduced with convolutional kernels of sizes 3, 5, and 7, each
with depths of 32, 64, and 128, respectively. This configuration facilitates the simultaneous extraction
of diverse local attack features. Smaller convolutional kernels excel at capturing local structures and
finer details, while larger ones are adept at grasping long-range dependency information. Such a design
comprehensively enhances the network’s understanding of the input data, thereby refining feature
perception across various scales.

4.4 Channel II

To prioritize the extraction of crucial features from the XSS data, we incorporate a max 1D
pooling layer into the model. This layer enables the model to concentrate on the most significant
and informative features by selecting the maximum value from each pooled region. This systematic
approach effectively emphasizes the pivotal aspects of the data, ensuring that the model captures
features essential for the final task. Consequently, the model’s capability to identify and utilize key
information across diverse datasets is enhanced.

yj = max
(
x(j−1)·s+1, . . . , x(j−1)·s+k

)
(5)

where yj is the jth element in the pooled output sequence, k is the size of the pooling window, and s is
the step size.

In this study, three different sizes of max 1D pooling layers are employed, specifically sizes 3,
5, and 7. There are several advantages to incorporating pooling layers of varying sizes. Firstly, they
facilitate the capture of features across multiple scales: smaller pooling layers excel at capturing finer-
grained features, while larger ones encompass a broader range, ensuring comprehensive coverage of
important information across all levels. Secondly, this multi-scale feature extraction enhances the
model’s generalizability by enabling the capture of diverse features across different pooling layers,
thereby augmenting the model’s ability to generalize to new data.

4.5 Channel III

To comprehensively extract global information from XSS data, we employ a cutting-edge
approach that integrates BiLSTM networks with multi-head attention mechanisms. This fusion
significantly enhances the model’s performance in handling complex data structures, particularly
excelling in tasks requiring the understanding of long-range dependencies and multi-dimensional
information.

4.5.1 BiLSTM

For the extraction of global features from XSS data, we employ the BiLSTM network, which
enhances data comprehension by integrating two LSTM networks. LSTM, a specialized form of
RNN, is adept at capturing long-term dependencies within sequences through feedback connections.
It operates by storing pertinent information in memory cells while discarding redundant data, thereby
outperforming conventional RNNs. The architecture of an LSTM’s memory cells, as depicted in
Fig. 2, comprises a single memory cell alongside three gates: the forgetting gate, the input gate, and
the output gate, each delineated as follows.
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Figure 2: LSTM model

Oblivion Gate: The Oblivion Gate determines which information should be discarded from the
cell state. As depicted in the following equation, ft represents the information to be retained (close to
1) and the information to be forgotten (close to 0).

ft = σ
(
Wf · [ht−1, xt] + bf

)
(6)

Input Gate: The old cell information Ct−1 is updated to the new cell information Ct. The update
process involves selecting a portion of the old cell information to be discarded by the Forget Gate, and
choosing a segment of the candidate cell information C̃t to be included by the Input Gate to obtain
the new cell information Ct.

it = σ (Wi · [ht−1, xt] + bi) (7)

C̃t = tanh (WC · [ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

Output gate: To determine the states characterizing the output cell based on the inputs ht−1 and xt,
it is necessary to pass the inputs through the sigmoid layer of the output gate to obtain the attenuation
coefficient ot and then multiply them by the scaled memory state Ct to derive the output information
at time t (that is, the hidden state ht).

ot = σ (Wo · [ht−1, xt] + bo) (10)

ht = ot ∗ tanh (Ct) (11)

Here, bf , bi, bc, and bo represent the bias vectors, while Wf , Wi, Wc and Wo denote the weight
matrices. The activation function for the gate is σ (.), which is a logistic sigmoid function, while tanh(.)
serves as the activation function for the input and output modules.

BiLSTM, an extended version of LSTM, analyzes data by integrating two LSTM layers: a forward
layer and a backward layer. The forward layer processes the original data sequence, capturing temporal
dependencies from the beginning to the end, while the backward layer processes the sequence in
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reverse order, capturing temporal dependencies from the end to the beginning. The simultaneous
application of LSTM layers enhances the model’s ability to learn long-term dependencies, thereby
improving detection accuracy. Therefore, in this paper, we utilize BiLSTM to extract global features
from XSS data.

4.5.2 Multiple Attentional Mechanisms

To augment the global features, we employ the multi-head attention mechanism. The multi-head
attention mechanism, a variant of the attention mechanism, constitutes a crucial component of the
neural network architecture, offering a method to allocate distinct weights to the input data for feature
extraction. Self-attention is computed as follows: initially, a linear mapping is executed for each token
in the input token sequence to derive a collection of query vectors (Q), key vectors (K), and value
vectors (V). For each token, the Q is utilized to interrogate (multiply) the K of other tokens, obtaining
the correlation value of that token with other tokens in the sequence. The formula is shown in Eq. (12).

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (12)

dk represents the embedding dimension K. For a large dimension, the dot product’s result
magnifies, leading to saturation in the region of the softmax activation function, thereby causing a
diminishing gradient. Thus, following the dot product, the outcomes Q and K are divided by dk to
prevent gradient vanishing.

As shown in Fig. 3, multi-head self-attention is an extension of the attention mechanism that uti-
lizes multiple parallel attention heads to simultaneously capture information from multiple subspaces.
Initially, it conducts h distinct linear projections of queries, keys, and values, executing attention in
parallel to generate outputs in the dimension (dV/h). Subsequently, these outputs are concatenated to
yield the final values. The expression for multi-head self-attention is as follows:

MultiHead (Q, K, V) = Concat (head1, · · · , headh) W O (13)

headi = Attention
(
QW Q

i , KW K
i , VW V

i

)
(14)

Here, headi represents the computation result of the ith attention head. W Q
i , W K

i , W V
i denote the

transformation matrices of Q, K, and V of the ith head, respectively. Additionally, W O is utilized to
transform the output of the multi-head self-attention back to the original dimension of the token.

Utilizing BiLSTM to capture long-term dependencies from both positive and negative directions,
while simultaneously incorporating the multi-headed attention mechanism, enhances the model’s
capability to attend to various parts of the data. This enables the model to comprehend and extract
key features comprehensively from multiple perspectives, facilitating a more thorough understanding
of the data. This multifaceted and in-depth information processing not only enhances the model’s
comprehension of complex data structures but also significantly heightens its sensitivity to subtle
information and efficiency in extracting global information, thereby rendering the model more
effective and accurate in processing data with intricate dependencies.
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Figure 3: Results of the multi-attention mechanism

5 Experimental Validation and Result Analysis

To validate the effectiveness of our proposed model, we conducted extensive experiments on
six datasets. In these experiments, we not only compared our CNN-POOL-BiLSTM network model
with four classical algorithms—K-Nearest Neighbors (KNN), Naive Bayes (NB), Logistic Regression
(LR), and DT, but also executed a series of ablation experiments to demonstrate the validity of the
innovations in our model. Additionally, we compared our model with the latest models proposed in the
last two years to further demonstrate its performance and advantages. Through these comprehensive
experiments and comparative analyses, we validated the effectiveness and advancement of our model
in all aspects.

5.1 Datasets

Extensive experiments were conducted on four public datasets. The first dataset, published by
Mokbal et al. [21] and updated in 2021 [16], is considered to be the first comprehensive digital signature
dataset based on XSS extracted from real-world XSS attacks. The benign samples in this dataset were
generated by crawling the top 50,000 Alexa-ranked websites, while the malicious samples were collected
by crawling raw XSS repositories such as XSSed and Open Bug Bounty. Additionally, the dataset
contains 66 numerical features.

The second dataset represents an updated version of the initial dataset. In comparison to the
initial dataset, the second dataset encompasses a greater number of numerical features, totaling 167,
rendering it more informative for conducting in-depth analysis of XSS attacks. While both datasets
are constructed similarly, with benign samples extracted from high-traffic websites and malicious
samples sourced from publicly available XSS vulnerability repositories, the second dataset offers a
more comprehensive perspective for investigating XSS attacks through the expansion of its feature set.
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The third dataset, known as the CICIDS2017 dataset, stands as one of the most renowned
intrusion detection datasets compiled by the Canadian Institute for Cybersecurity Research [22].
This dataset is meticulously crafted to address the limitations of existing datasets and furnish a
realistic and dependable resource for intrusion detection [23]. The CICIDS2017 dataset encompasses
attacks captured from Monday, 3rd July, 2017, to Friday, 7th July, spanning a total of 5 days and
including benign as well as recent common attacks. The CICIDS2017 dataset comprises 8 distinct files,
totaling 2,830,743 records, with each record containing 80 features. The entire dataset comprises 14
diverse types of attacks, including Denial of Service attacks (DoS), Web Attacks, Brute Force Breach,
Heartbleed, Penetration, Botnets, PortScan, and Distributed Denial of Service attacks (DDoS). Due
to the substantial volume of data and classes, there is increased overhead for loading and processing.
Hence, we opted to process four of these files.

The fourth dataset, known as the UNSW-NB15 dataset, was generated by the IXIA PerfectStorm
tool at the Australian Centre for Cyber Security (ACCS) CyberScope Lab [24] and stands as one
of the most popular datasets currently utilized. This dataset comprises 257,673 records, wherein
63.9% correspond to network flows representing nine types of attacks (Generic, Exploit, Fuzzer, DoS,
Reconnaissance, Analytics, Backdoor, ShellCode, Worms), with the remaining 37.1% representing
normal network connections. Each record in this dataset is composed of 49 features, among which
two are designated for multi-class and binary labelling purposes. Among the remaining 47 features, 45
are numeric, while the remaining 2 are class features.

We created the fifth dataset. To assess the applicability of our model in real network environments,
we adopted a method involving the simulation of actual network attacks. In this experimental setup,
two virtual machines were configured, one designated as the attacker and the other as the victim.
On the victim virtual machine, we established an xss-lab platform for XSS testing, whereas on the
attacker virtual machine, we performed various operations, including XSS attacks and normal access.
Throughout the test, the tcpdump tool was run on the victim VM to capture all network traffic.
Following this, the CICFLOWMETER tool was utilized to extract features from this traffic data,
resulting in a dataset comprising 2033 entries, of which 1006 were classified as normal traffic and
1027 as XSS attack traffic. By constructing this simulation environment and dataset, we were able to
precisely evaluate our model’s capability to detect XSS attacks and its efficacy in discerning between
normal and malicious traffic, without perturbing the actual network environment.

The sixth dataset, NSL-KDD [25], is an enhanced version of the renowned KDD Cup. It serves as
a crucial benchmark dataset for evaluating Network Intrusion Detection System (NIDS) algorithms.
NSL-KDD comprises two parts: KDDTrain+ and KDDTest+. The training set comprises 125,973
samples, of which 67,343 are labeled as “normal” and 58,630 as “abnormal”, encompassing 22 attack
types categorized into 4 attack categories. The test set comprises 22,544 samples, with 9711 labeled
as “normal” and 12,833 as “abnormal”, covering 37 attack types, likewise categorized into 4 attack
categories. The four categories include: DoS, Root-to-local attacks (R2L), User-to-root attacks (U2R),
and Probe attacks (Probe).

5.2 Evaluation Indicators

Following the analyses, we assessed the performance of our method using various evaluation
metrics, including model Accuracy, Precision, Recall, F1 score, FPR, and False Negative Rate (FNR).
We computed the confusion matrix, which includes True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), as demonstrated in Table 2:
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Table 2: Confusion matrix

True labels Predicted lables

0 1

0 TN FP
1 FN TP

Accuracy represents the ratio of all correctly labeled classes to the total number of classifications
and is calculated using Eq. (15).

Accuracy = TP + TN
TP + TN + FP + FN

(15)

Precision is a measure of how many of the predicted positive instances are actually positive.
Precision is calculated using Eq. (16).

Precision = TP
TP + FP

(16)

Recall represents the ratio of correctly predicted positive instances to all instances that are actually
positive. It is calculated as shown in Eq. (17).

Recall = TP
TP + FN

(17)

The F1 score is a measure of accuracy used to evaluate precision and recall. It is the harmonic
mean of precision and recall, and the F1 score is calculated according to Eq. (18).

F1 = 2 × Precision × Recall
Precision + Recall

= 2 × TP
2 × TP + FP + FN

(18)

FPR is the proportion of samples that are actually negative instances in the classification model
that are incorrectly predicted to be positive instances. FPR is calculated as shown in Eq. (19).

FPR = FP
FP + TN

(19)

FNR represents the ratio of positive samples incorrectly classified as negative to all samples that
are actually positive. FNR is calculated as shown in Eq. (20).

FNR = FN
FN + TP

(20)

5.3 Experimental Setup

In this study, all six datasets were systematically partitioned into training, validation, and test
sets, where the training set comprised 80% of the total data, the validation set comprised 10%, and
the testing set comprised 20%. This approach facilitates a comprehensive evaluation of the model’s
performance. Moreover, the Adam optimizer is employed during model training to ensure both the
efficiency and stability of the optimization process. Table 3 presents the detailed hyperparameter
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configuration adopted for each dataset. In addition, we use the cross-entropy loss function to improve
the prediction accuracy of the model.

Table 3: Hyperparameter settings

Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

Convolution kernel 3-5-7 3-5-7 3-5-7 3-5-7 3-5-7 3-5-7
Maximum pooling layer size 3-5-7 3-5-7 3-5-7 3-5-7 3-5-7 3-5-7
Neurons in BiLSTM 64 64 64 64 64 64
Multi-head attention 6 6 6 8 10 6
Batch size 32 32 32 32 32 32
Learning rate 0.0006 0.0006 0.0006 0.0006 0.01 0.02
Epoch 30 30 50 20 100 100
Activation function Sigmoid Sigmoid Sigmoid Sigmoid/

softmax
Sigmoid Softmax

5.4 Comparison of Experimental Results and Analysis with Four Classical Algorithms

To verify the performance and adaptability of our CNN-POOL-BIATTEN model, exhaustive
experiments were conducted on six selected datasets. First, Dataset 1 and Dataset 2 were utilized to
evaluate the model’s binary classification accuracy in XSS detection when processing both basic and
extended features. Subsequently, the model’s binary classification detection effect was tested across
datasets by using Dataset 3 (CICIDS2017) and Dataset 4 (UNSW-NB15) to evaluate its generalization
ability. It is worth noting that Dataset 5 was specifically created to assess the model’s performance
in distinguishing XSS attacks from normal traffic by simulating a real network environment, thus
ensuring its effectiveness in practical application scenarios. Additionally, multi-classification tests were
conducted on Dataset 4 and Dataset 6 (NSL-KDD) to further investigate the model’s capability
in handling diverse types of complex network attacks. For comprehensive evaluation, the model’s
performance was compared with four classic algorithms—KNN, NB, LR, and DT. The results are
summarized as follows.

5.4.1 Two categories

(1) Dataset 1

The results of the calculations on dataset 1 are shown in Table 4.

Table 4: Comparison of model metrics on Dataset 1

Models Accuracy Precision Recall F1 score FPR FNR

DT 98.52% 98.15% 98.46% 98.12% 0.73% 1.70%
NB 53.72% 67.91% 67.38% 53.71% 63.62% 1.62%
LR 93.51% 91.58% 92.55% 92.04% 5.26% 9.64%
KNN 88.25% 86.75% 83.20% 84.70% 5.35% 28.25%
CNN-POOL-BIATTEN 99.34% 98.97% 98.65% 98.81% 0.40% 1.35%
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The CNN-POOL-BIATTEN model demonstrates superior performance over other conventional
models in almost all metrics, particularly in accuracy (99.34%) and F1 score (98.81%). Additionally, the
model significantly reduces the FPR (0.40%) and FNR (1.35%). However, despite DT’s good accuracy
performance, its performance in other metrics does not match that of CNN-POOL-BIATTEN. NB
exhibits the worst overall performance among all models, particularly in terms of the FPR, which
is significantly higher than that of the other models. These results suggest that the CNN-POOL-
BIATTEN model offers significant advantages in handling complex datasets and performing high-
precision classification tasks.

(2) Dataset 2

The results of the calculations on Dataset 2 are shown in Table 5.

Table 5: Comparison of model metrics on Dataset 2

Models Accuracy Precision Recall F1 score FPR FNR

DT 98.90% 98.25% 98.15% 98.75% 0.69% 1.79%
NB 54.21% 68.19% 67.76% 54.21% 63.08% 1.41%
LR 93.72% 91.90% 92.69% 92.29% 4.96% 9.66%
KNN 88.47% 87.06% 83.51% 85.02% 5.21% 27.76%
CNN-POOL-BIATTEN 99.11% 99.31% 98.48% 98.88% 0.09% 2.95%

The CNN-POOL-BIATTEN model demonstrates significant superiority in all core performance
metrics, with an accuracy of 99.11%, a precision of 99.31%, a recall of 98.48%, and an F1 score of
98.88%. These metrics collectively demonstrate its excellent capability to accurately identify positive
categories and mitigate misclassifications. Additionally, its FPR of only 0.09% and FNR of 2.95%
further highlight its efficiency in error control. In comparison to CNN-POOL-BIATTEN, DT exhibits
a lower FNR but slightly inferior performance in other metrics. The performance of the NB model
significantly lags behind, suggesting that it does not handle complex data feature dependencies well
enough. The LR and KNN models exhibit relatively high FNR, suggesting significant challenges in
distinguishing positive class samples and indicating limitations in handling this dataset. Therefore, the
CNN-POOL-BIATTEN model performed best.

(3) Dataset 3

The results of the calculations on Dataset 3 are shown in Table 6.

Table 6: Comparison of model metrics on Dataset 3

Models Accuracy Precision Recall F1 score FPR FNR

DT 95.75% 96.33% 95.28% 95.66% 4.72% 4.96%
NB 69.45% 81.29% 65.78% 63.33% 67.91% 0.53%
LR 94.07% 95.02% 93.40% 93.91% 6.60% 6.65%
KNN 99.81% 98.32% 98.86% 98.59% 0.19% 1.14%
CNN-POOL-BIATTEN 99.99% 99.99% 99.98% 99.88% 0.01% 0.01%
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The results indicate that the CNN-POOL-BIATTEN model demonstrates a clear advantage in
handling complex data, especially when compared to other models. The performance of the model
approaches perfection in almost all key metrics, including an accuracy of 99.99%, precision of 99.99%,
recall of 99.98%, and an F1 score of 99.88%, as well as an exceptionally low FPR and FNR of 0.01%,
which further underscores its superior performance in terms of accuracy and reliability. In contrast, the
DT, NB, and LR models exhibit relatively high FPR, which accentuate their shortcomings in capturing
key features. The KNN model, on the other hand, demonstrates its pattern recognition power with an
accuracy of 99.81% and an F1 score of 98.59%, yet it is slightly inferior to the CNN-POOL-BIATTEN
model in terms of overall performance. Overall, our CNN-POOL-BIATTEN model significantly
surpasses the other models in several key performance metrics, especially in terms of efficiency and
reliability in reducing FPR and omissions, thus underscoring its strong potential in dealing with
complex datasets.

(4) Dataset 4

The results of the calculations on Dataset 4 are shown in Table 7.

Table 7: Comparison of model metrics on Dataset 4

Models Accuracy Precision Recall F1 score FPR FNR

DT 80.33% 81.57% 79.15% 79.54% 32.57% 9.13%
NB 78.76% 77.31% 75.86% 76.43% 34.69% 13.59%
LR 80.90% 82.50% 75.72% 77.34% 43.11% 5.44%
KNN 85.90% 85.20% 83.92% 84.48% 23.26% 8.89%
CNN-POOL-BIATTEN 100% 100% 99.99% 99.99% 0.00% 0.00%

The CNN-POOL-BIATTEN model excels in nearly all metrics, boasting a precision of 100% and
achieving zero FPR and FNR. This underscores its flawless recognition capability in classification
tasks. In contrast, the KNN model performs well among traditional models, with an accuracy of
85.90%, an F1 score of 84.48%, a lower FPR of 23.26%, and a higher recall of 83.92%, demonstrating
its effectiveness in positive category recognition. The LR model performs moderately well in terms
of both accuracy and precision. However, its high FPR of 43.11% highlights potential shortcomings
in distinguishing negative categories. The DT model performs in the middle range, with an accuracy
of 80.33% and an F1 score of 79.54%, indicating a certain degree of reliability. However, its relatively
high FPR suggests that there is still room for optimization in handling this dataset. In contrast, the
NB model is the poorest performer among all traditional models, with lower accuracy and F1 scores
of 78.76% and 76.43%, respectively. Additionally, it exhibits a FPR of 34.69% and a FNR of 13.59%,
clearly indicating its shortcomings in predictive accuracy. These comparative results underscore the
significant advantages of CNN-POOL-BIATTEN in dealing with complex classification problems.

(5) Dataset 5

The results of the calculations on Dataset 5 are shown in Table 8.
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Table 8: Comparison of model metrics on Dataset 5

Models Accuracy Precision Recall F1 score FPR FNR

DT 93.19% 94.02% 93.14% 93.16% 0.10% 13.61%
NB 93.54% 94.21% 93.49% 93.51% 0.49% 12.54%
LR 93.37% 93.34% 93.36% 93.35% 6.54% 6.73%
KNN 87.47% 87.57% 87.30% 87.39% 9.77% 15.63%
CNN-POOL-BIATTEN 99.51% 99.54% 99.48% 99.51% 0.49% 0.49%

The CNN-POOL-BIATTEN model demonstrates significant improvement in all performance
metrics compared to traditional machine learning models such as DT, NB, LR, and KNN. Specifically,
the model attains or surpasses 99.4% in accuracy, precision, recall, and F1 score, significantly
outperforming other models and highlighting its superior efficacy in complex pattern recognition and
data feature extraction. Additionally, its FPR and FNR are maintained at 0.49%, demonstrating that
CNN-POOL-BIATTEN offers enhanced stability and reliability in minimizing FPR and omissions.

5.4.2 Multi-Category

(1) Dataset 4

Highly unbalanced datasets may adversely affect model performance. Given that unbalanced
datasets are not central to this study, we excluded four minority categories: ‘Analytics’, ‘Backdoor’,
‘Shellcode’, and ‘Worms’, which comprise only 1.141%, 0.996%, 0.646%, and 0.074% of the training
set, respectively. The results of the multi-category experiments for Dataset 4 are presented in Table 9.

It is evident that the CNN-POOL-BIATTEN model exhibits strong performance in terms of
precision, recall, and F1 score across various attack types, particularly with complex attacks such
as Generic and Fuzzers. For instance, for the Generic attack type, CNN-POOL-BIATTEN achieves a
precision of 99.16%, a recall of 97.27%, and an F1 score of 98.21%, positioning it as the top performer
among all models. Additionally, in the challenging Exploits and Reconnaissance attack types, CNN-
POOL-BIATTEN demonstrates high recall and F1 scores, evidencing its robustness and adaptability
against diverse attack patterns.

(2) Dataset 6

The results of the calculations on Dataset 6 are shown in Table 10.
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It is evident that the CNN-POOL-BIATTEN model exhibits outstanding performance compared
to other models, particularly in addressing DoS and Probe attacks, where its precision, recall, and
F1 scores exceed 99%, demonstrating an exceptionally high recognition capability. The model further
demonstrates superior performance in the detection of normal traffic and R2L attacks, particularly in
the nearly flawless identification of normal traffic. Additionally, even in the U2R attack category,
which has fewer samples, the model achieves 100% precision, although the recall is low. Overall,
the CNN-POOL-BIATTEN model demonstrates significant advantages in the identification and
classification of network attacks.

5.5 Loss Functions and Accuracy Curves

To further demonstrate the model’s adaptability and generalization ability in handling data of
various types and complexities, we recorded the training and validation loss values and accuracy for
each epoch of the first four datasets. Subsequently, we plotted them as curves, represented in Figs. 4–7.

Figure 4: Loss curves and accuracy curves for the training and test data for Dataset 1

Figure 5: Loss curves and accuracy curves for the training and test data for Dataset 2
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Figure 6: Loss curves and accuracy curves for the training and test data for Dataset 3

Figure 7: Loss curves and accuracy curves for the training and test data for Dataset 4

In Figs. 4 and 5, the model demonstrates excellent stability across Dataset 1 and Dataset 2. The
rapid decrease in the loss function and the steady increase in accuracy indicate that the model exhibits
remarkable adaptability to the training data. This robustness suggests that the model effectively
avoids overfitting during training and maintains strong generalization ability. Fig. 6 illustrates some
fluctuations in the model’s performance during training on Dataset 3, which also underscores its
flexibility and adaptability. Despite these fluctuations, the model maintains relatively high accuracy
even when dealing with potentially more complex or noisy data. Fig. 7 further demonstrates the
model’s strong performance and generalization capability on Dataset 4. In the initial stages of training,
there is a rapid decrease in loss accompanied by a sharp increase in accuracy, indicating the model’s
ability to quickly learn and adapt to the data. As training progresses, both the loss and accuracy
curves stabilize, and the model’s performance on the validation set remains consistent with that on
the training set, indicating no signs of overfitting or underfitting. Ultimately, the model achieves near-
perfect accuracy levels, underscoring its efficiency and reliability in classification tasks. Overall, the
model exhibits robustness and efficiency across various datasets, demonstrating its strong learning
ability and generalization potential.
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5.6 Ablation Experiments

To validate our innovation, we performed a series of ablation experiments on the first four datasets.
Initially, in the Random Forest feature enhancement ablation experiment, we intentionally omitted
this aspect of the Random Forest feature enhancement to evaluate its specific impact on the overall
model performance. This step is intended to elucidate the role and significance of Random Forest
feature enhancement in the overall model architecture. By comparing the model’s performance before
and after the removal, we can gain a clearer understanding of the practical utility of this innovation.
Subsequently, a more detailed approach was taken in our three-channel ablation experiments. In this
series of experiments, each channel was individually removed while keeping the other two intact,
enabling the assessment of each channel’s contribution independently. The objective is to precisely
quantify the impact of each channel on model performance. This methodology not only identifies the
most critical channel but also uncovers potential synergies between them.

5.6.1 Ablation Experiments with Random Forest Feature Enhancement

As shown in Table 11, the results of the ablation experiments of the Random Forest feature
enhancement technique on different datasets demonstrate its significant advantages in improving
model performance. Specifically, the experiments on Dataset 1 show that feature enhancement
increases the accuracy of the model from 98.39% to 99.34% and the F1 score from 97.06% to 98.81%,
fully demonstrating the positive effect of feature enhancement in improving the overall performance
of the model. Despite the decrease in the accuracy rate and the slight increase in the FPR, these
changes are acceptable in the context of the overall performance improvement. Meanwhile, the increase
in recall further illustrates the effectiveness of Random Forest in improving the model’s ability to
identify positive classes. In Dataset 2, the improvements in accuracy and F1 score also highlight the
important role of feature enhancement in fine-tuning model performance. The experimental results
in Dataset 3 and Dataset 4 show that feature enhancement brings some improvement in almost all
evaluation metrics. In conclusion, the Random forest feature enhancement technique improves model
performance to varying degrees.

Table 11: Comparison of the performance of the original experiment and the ablation experiment
enhanced with Random Forest features

Datasets Accuracy Precision Recall F1 score FPR FNR

Dataset 1
Featureless enhancement 98.39% 99.17% 95.04% 97.06% 0.31% 1.35%
Characteristic enhancement 99.34% 98.97% 98.65% 98.81% 0.40% 1.35%

Dataset 2
Featureless enhancement 98.83% 97.43% 98.44% 97.93% 1.01% 1.56%
Characteristic enhancement 99.11% 99.31% 98.48% 98.88% 0.09% 2.95%

Dataset 3
Featureless enhancement 99.75% 99.72% 99.76% 99.74% 0.23% 0.21%
Characteristic enhancement 99.99% 99.99% 99.98% 99.88% 0.01% 0.01%

Dataset 4
Featureless enhancement 99.98% 99.96% 99.97% 99.99% 0.01% 0.01%
Characteristic enhancement 100% 100% 99.99% 99.99% 0.00% 0.00%
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5.6.2 Ablation Experiments in Three Channels

Based on a comprehensive analysis of the provided data, clear distinctions in the performance
of various channel combinations across the four datasets are evident, highlighting the considerable
benefits derived from the integration of Channels 1, 2, and 3, as depicted in Table 12.

Table 12: Comparison of the performance of the original experiment and the ablation experiment with
three channels

Datasets Channels Accuracy Precision Recall F1 score FPR FNR

Dataset 1

1 & 2 98.79% 98.49% 98.51% 98.51% 0.85% 2.13%
1 & 3 99.06% 98.91% 98.77% 98.84% 0.56% 1.90%
2 & 3 97.93% 96.84% 98.16% 97.47% 2.36% 1.32%
1 & 2 & 3 99.34% 98.97% 98.65% 98.81% 0.40% 1.35%

Dataset 2

1 & 2 96.79% 95.01% 97.49% 96.13% 4.10% 0.91%
1 & 3 98.95% 99.10% 98.29% 98.68% 0.22% 3.20%
2 & 3 98.57% 98.87% 97.60% 98.21% 0.19% 4.61%
1 & 2 & 3 99.11% 99.31% 98.48% 98.88% 0.09% 2.95%

Dataset 3

1 & 2 99.60% 91.45% 99.69% 95.06% 0.13% 0.40%
1 & 3 99.30% 87.57% 99.55% 92.65% 0.23% 0.69%
2 & 3 99.44% 89.00% 99.60% 93.53% 0.19% 0.56%
1 & 2 & 3 99.99% 99.99% 99.98% 99.88% 0.01% 0.01%

Dataset 4

1 & 2 98.58% 98.84% 98.12% 98.46% 3.59% 0.18%
1 & 3 99.94% 99.92% 99.95% 99.94% 0.00% 0.09%
2 & 3 99.99% 100% 99.98% 99.99% 0.00% 0.01%
1 & 2 & 3 100% 100% 99.99% 99.99% 0.00% 0.00%

On Dataset 1, the combination of Channel 1 and Channel 2 exhibited high accuracy (98.79%)
and F1 score (98.51%), albeit with slightly inferior overall performance compared to the three-
channel combination (99.34% accuracy and 98.81% F1 score). Particularly notable were the lower FPR
observed in the three-channel combination. Furthermore, the combination of Channel 1 and Channel
3 demonstrated higher accuracy and F1 score, leveraging the local feature extraction of Channel 1 and
the global information processing of Channel 3 effectively, thereby demonstrating the complementary
nature of features across different channels.

On Dataset 2, the combination of Channel 1 and Channel 2, while achieving higher accuracy
(96.79%) and recall (97.49%), exhibits slightly lower precision (95.01%) and F1 score (96.13%),
indicating limitations in detailed classification. The combination of Channel 1 and Channel 3, as
well as the combination of Channel 2 and Channel 3, exhibit higher accuracy and precision rates,
respectively. Particularly, the combination of Channel 2 and Channel 3 demonstrated almost error-
free performance in distinguishing negative categories. The combination of all three channels results
in a significant improvement in overall performance, with an accuracy of 99.11% and an F1 score of
98.88%, highlighting the advantages of integrating the characteristics of different channels.

The analysis of Dataset 3 shows that the combinations of Channel 1 and Channel 2 as well as
Channel 1 and Channel 3, although excellent in terms of accuracy and recall, are slightly less accurate
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in terms of precision and have a high FPR. The combination of Channel 1 and Channel 2 had a high
accuracy (99.60%) but a low precision (91.45%). On the contrary, the combination of all three channels
achieves perfect performance (99.99%) on almost all metrics, which significantly reduces FPR and
omissions, highlighting the importance of multi-channel feature extraction strategies.

The analysis in Dataset 4 shows that the combination of Channel 1 and Channel 2 performs well
in terms of accuracy (98.58%) and F1 score (98.46%), but it performs poorly in terms of reducing FPR.
On the contrary, the combination of Channel 1 and Channel 3 as well as Channel 2 and Channel 3
performs almost perfectly in terms of accuracy, precision, and recall. Meanwhile, the combination
of all three channels achieves perfect performance on Dataset 4 with 100% accuracy and precision,
demonstrating the effectiveness of the multi-channel strategy in improving model performance.

The results of these analyses highlight the importance of applying multi-channel feature extraction
strategies when processing complex datasets. While single-channel or two-channel combinations
perform well on specific metrics, they usually fail to achieve the overall performance of three-channel
combinations. The three-channel combination enhances the performance of the model in all aspects
and significantly enhances the generalisation ability of the model by combining the accurate capture
of local details with the processing of global information. This strategy is crucial when dealing with
complex datasets that require multiple feature types to be considered simultaneously, and it can
effectively improve the accuracy, precision, and stability of the model.

5.7 Comparison Experiments with the Latest Model

We also compared our model with the latest models proposed in the last two years on the
same dataset, to comprehensively evaluate the competitiveness and innovativeness of our model.
The experimental results and analyses are presented below, with the literature results for comparison
extracted from the original papers.

(1) Dataset 1

As shown in Table 13, the Deep Q-Network model of Thajeel et al. [2] integrates deep and rein-
forcement learning techniques with a multi-intelligent body feature selection algorithm, specifically
designed for dynamically detecting and responding to XSS attacks. The model achieves a high accuracy
of 99.59% on Dataset 1 by incorporating an innovative multi-intelligent body system for dynamic
feature optimization. However, when compared with our CNN-POOL-BIATTEN model on the same
dataset, the CNN-POOL-BIATTEN model demonstrates superior performance in key performance
metrics, despite Deep Q-Network’s slight advantage in accuracy. Specifically, CNN-POOL-BIATTEN
outperforms Deep Q-Network in terms of precision, recall, and F1 score, underscoring its high
accuracy and consistency in correctly classifying positive class samples. Additionally, the CNN-POOL-
BIATTEN model exhibits lower false-positive and false-negative rates, demonstrating its effectiveness
in reducing misclassification.

Table 13: Comparison of the performance of this paper’s model with the state-of-the-art model on
Dataset 1

Literatures Models Accuracy Precision Recall F1 FPR FNR

[2] Deep Q-Network 99.59% 89.91% 88.50% 88.62% ∼ ∼
Our model CNN-POOL-BIATTEN 99.34% 98.97% 98.65% 98.81% 0.40% 1.35%
Note: ∼ indicates that the corresponding indicator does not appear in the literature.



CMC, 2024, vol.80, no.1 869

(2) Dataset 2

As shown in Table 14, on Dataset 2, the CNN-POOL-BIATTEN model outperforms the Deep
Q-Network model of Thajeel et al. [2] in all metrics, particularly excelling in accuracy and precision
rates, which are 99.11% and 99.31%, respectively. In contrast, Deep Q-Network has an accuracy of
97.66% and a precision of 95.63%, which are lower than those of the CNN-POOL-BIATTEN model.
Although CNN-POOL-BIATTEN has a slightly higher miss rate of 2.95%, this discrepancy is within
acceptable limits relative to its recall of 98.48% and F1 score of 98.88%. Thus overall, CNN-POOL-
BIATTEN outperforms the Deep Q-Network model [2].

Table 14: Comparison of the performance of this paper’s model with the state-of-the-art model on
Dataset 2

Literatures Models Accuracy Precision Recall F1 FPR FNR

[2] Deep Q-Network 97.66% 95.63% 96.00% 95.81% ∼ ∼
Our Model CNN-POOL-BIATTEN 99.11% 99.31% 98.48% 98.88% 0.09% 2.95%
Note: ∼ indicates that the corresponding indicator does not appear in the literature.

(3) Dataset 3

As shown in Table 15, in the performance evaluation of Dataset 3, we compare our CNN-POOL-
BIATTEN model to the models reported in recent literature. Specifically, literature [26] describes how
an improved Generative Adversarial Network (GAN) is used within an unsupervised deep learning
approach to improve IoT attack detection performance, while literature [27] uses an integrated learning
approach with a combination of four machine learning classifiers, while literature [28–31] includes
the combination of bagging and Deep Neural Networks (DNN), support vector machines (SVMs),
a hybrid model of KNN and SVMs, as well as state-of-the-art techniques for integrating Recursive
Neural Network (ReNet), Transformer, and BiLSTM. All of these methods have been empirically
tested on Dataset 3 to achieve high accuracy rates and represent the latest advances in the field. To
better evaluate our model, we have compared the performance of these state-of-the-art models with
that of our model.

Table 15: Comparison of the performance of this paper’s model with the state-of-the-art model on
Dataset 3

Literatures Models Accuracy Precision Recall F1 FPR FNR

[26] BiGAN 82.3% 76.5% 76.3% 76.4% 14.2% ∼
[27] Four machine learning classifiers 98.0% 97.3% 96.0% 96.7% ∼ ∼
[28] Bagging + DNN 98.74% 99.77% 99.96% 99.86% 0.021% ∼
[29] SVM 98. 92% ∼ 99.46% ∼ 3.0% ∼
[30] KNN + SVM 98.97% 99.90% 94.43% 97.08% ∼ ∼
[31] ReNet + TranBILSTM 99.15% 99.15% 99.14% 99.14% ∼ ∼
Our model CNN-POOL-BIATTEN 99.99% 99.99% 99.98% 99.88% 0.01% 0.01%
Note: ∼ indicates that the corresponding indicator does not appear in the literature.

Comparison results show that the CNN-POOL-BIATTEN model achieves 99.99% accuracy,
99.99% precision, and 99.99% recall, with an F1 score of 99.88%. These values significantly surpass
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the 82.3% accuracy of the Bidirectional Generative Adversarial Network (BiGAN) model [26] and the
98.0% accuracy of the integrated model of four machine learning classifiers [27], indicating its superior
ability to identify correct classifications and effectively reduce misclassifications. In comparison to the
high performance of the Bagging + DNN model [28], CNN-POOL-BIATTEN still exhibits a slight
advantage in these key metrics. Furthermore, even when comparing with efficient models such as
SVM model [29] (98.92% accuracy, 99.46% precision) and KNN + SVM model [30] (98.97% accuracy,
99.90% precision, 94.43% recall), our model better balances recall while maintaining high precision.
In comparison with the ReNet + TranBILSTM model [31], while the latter performs near-perfectly in
terms of accuracy, precision, and recall (all 99.15%), our CNN-POOL-BIATTEN model continues to
demonstrate a slight advantage in these performance metrics.

(4) Dataset 4

As shown in Table 16, in the performance evaluation of Dataset 4, we compare our CNN-POOL-
BIATTEN model to a range of state-of-the-art models proposed in the literature. These models include
SVMs, CNNs, CNN-BiLSTM, composite models that combine graph neural networks, self-attention
mechanisms, and BiLSTMs, an innovative combination of LR and artificial bee colony algorithms, a
combination of DTs and Random Forests, DNNs, Artificial Neural Networks (ANNs), a combination
of KNNs and SVMs, and a combination of Bagging and DNNs. In addition, the literature includes
a variety of integrated learning models such as Gradient Boosting Machine (GBM), Lightweight
Gradient Boosting Machine (LGBM), XGBoost, and CatBoost. These studies employ diverse machine
learning and deep learning methods, representing the state-of-the-art in the field of XSS, all of which
have been experimentally validated on Dataset 4. To evaluate our model comprehensively, we analyze
the performance of our model in comparison with the performance of models in the latest literature.

Table 16: Comparison of the performance of this paper’s model with the state-of-the-art model on
Dataset 4

Literatures Models Accuracy Precision Recall F1 FPR FNR

[26] BiGAN 80.1% 81.9% 81.9% 81.9% 22%
[27] Four machine learning

classifiers
98.6% 98.0% 97.1% 70.5% ∼ ∼

[28] Bagging + DNN 96.70% 98.90% 98.67% 98.78% 0.013%
[29] SVM 93.35% ∼ 95.27% ∼ 8.78%
[30] KNN + SVM 90.98% 87.37% 99.72% 93.34% ∼ ∼
[32] CNN-BiLSTM 77.16% 82.63% 79.91% 81.25% ∼ ∼
[33] Graph neural +

Self-attention mechanism
+ BiLSTM

86.59% ∼ ∼ ∼ ∼ ∼

[34] LR + artificial bee colony 88.25% ∼ ∼ 88.26% 0.1212% 0.1143%
[35] DT + RF 88.85% 80.44% ∼ 2.27% ∼
[36] DNN 89.03% 95.00% 98.95% 96.93% 0.011%
[37] ANN 90.76% 89.32% 94.52% 91.85% ∼ ∼
[38] CNN + LSTM 96.334% 100% 95.87% 98.132% 5.87% 3.67%
[39] GBM LGBM XGBoost

catboost
98.02% 98.00% 98.00% 98.00% ∼ ∼

(Continued)
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Table 16 (continued)

Literatures Models Accuracy Precision Recall F1 FPR FNR

[40] LSTM 98.667% 100% 98.779% 98.77% 4.48% 2.22%
Our model CNN-POOL-BIATTEN 100% 100% 99.99% 99.99% 0.00% 0.00%

Note: ∼ indicates that the corresponding indicator does not appear in the literature.

In the performance analysis of Dataset 4, while each of the other models has its own features
and strengths, our CNN-POOL-BIATTEN model demonstrates certain advantages in key metrics.
For example, when compared with models like CNN-BiLSTM [32] and BiGAN [26], the latter are
effective but still fall short in accuracy, achieving 77.16% and 80.1% respectively, whereas our model
achieves 100% accuracy. Similarly, the graph neural network combined with self-attention mechanism
and BiLSTM model [33], as well as the model combining LR and artificial bee colony algorithms [34],
although they made progress in accuracy, still fell short of our model. Even the models with better
performance such as DT + RF model [35], DNN model [36], ANN model [37], KNN + SVM model
[30], SVM model [29], and CNN+ LSTM [38], which have accuracies ranging from 88.85% to 96.334%,
are still considerably inferior to the performance of our model. Although models like Bagging + DNN
model [28], GBM (LGBM XGBoost, Catboost) model [39], and the four machine learning classifiers
[27] perform well, our CNN-POOL-BIATTEN model has a slight advantage in accuracy, precision,
and recall.

It is worth noting that although Kanna et al. and Sengur et al. employed the CNN + LSTM
and LSTM models [38,40] respectively and both achieved 100% accuracy, these two approaches
seem to have some limitations compared to our proposed CNN-POOL-BiLSTM model when other
key performance metrics are considered together. Our model incorporates the properties of CNN
and BiLSTM, effectively combining the advantages of CNN in detailed feature extraction and the
capability of BiLSTM in capturing long-term dependencies. Additionally, by integrating the maximum
pooling layer, our model is able to identify and highlight key features more effectively. Meanwhile,
the introduced multi-attention mechanism further enhances the model’s ability in global feature
representation, thereby demonstrating superior performance in several key performance metrics. This
convergence of methodologies not only improves the generalisation ability of the model, but also
provides new perspectives on feature extraction and analysis on complex datasets.

6 Conclusion

In this study, we have successfully developed an innovative model that combines Random Forest
feature enhancement with the CNN-POOL-BIATTEN architecture, specifically designed to efficiently
detect XSS attacks. The model achieves efficient feature extraction and data fusion through the
integration of machine learning and deep learning techniques, significantly enhancing detection
accuracy while effectively mitigating the risk of overfitting and false alarms. The originality of the
model is manifested in its use of leaf node indexing from Random Forest as a key factor in expanding
the feature set, combined with 1D convolutional layers, max 1D pooling layers, BiLSTM, and a multi-
head attention mechanism, to thoroughly extract the local and global features of the data.

Through extensive validation across six public datasets, including comparisons with four tra-
ditional machine learning methods, comparative analysis with recent models from the past two
years, and a series of detailed ablation experiments, the model demonstrates nearly perfect detection
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results, especially on the UNSW-NB15 and CICIDS2017 datasets, achieving 100% and 99.99%
accuracy, respectively. This not only validates the model’s effectiveness, but also showcases its excellent
performance and superior generalization capabilities across multiple datasets, thereby ensuring the
model’s adaptability.

Additionally, by creating datasets specifically tailored for XSS attacks, this study further confirms
the model’s effectiveness and utility in real-world applications, offering a novel and efficient solution
for detecting XSS attacks in complex network environments and varied attack patterns. This work
not only advances the application of machine learning and deep learning in network security but also
introduces a new solution for future security protection against complex network environments and
varied attack patterns.

7 Future Directions

In future studies, we aim to address the prevalent issue of data imbalance in datasets through
the application of GANs. GANs have the potential to enhance the training dataset by generating
synthetic data samples, particularly advantageous in categories with scarce samples, thus boosting the
model’s capability to recognize various types of attacks. Concurrently, we recognize the challenges
in model interpretability due to its complex architecture. We are currently investigating advanced
interpretability techniques, including Local Interpretable Model-agnostic Explanations and Shapley
Additive Explanations. Although these techniques are not implemented in the current model version,
we plan to assess and incorporate these approaches in subsequent iterations. This strategy is expected
to enhance the model’s transparency and interpretability, essential for addressing cybersecurity
challenges and achieving an optimal balance between performance and interpretability.
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