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ABSTRACT

Due to the diversity and unpredictability of changes in malicious code, studying the traceability of variant families
remains challenging. In this paper, we propose a GAN-EfficientNetV2-based method for tracing families of
malicious code variants. This method leverages the similarity in layouts and textures between images of malicious
code variants from the same source and their original family of malicious code images. The method includes a
lightweight classifier and a simulator. The classifier utilizes the enhanced EfficientNetV2 to categorize malicious
code images and can be easily deployed on mobile, embedded, and other devices. The simulator utilizes an enhanced
generative adversarial network to simulate different variants of malicious code and generates datasets to validate
the model’s performance. This process helps identify model vulnerabilities and security risks, facilitating model
enhancement and development. The classifier achieves 98.61% and 97.59% accuracy on the MMCC dataset and
Malevis dataset, respectively. The simulator’s generated image of malicious code variants has an FID value of 155.44
and an IS value of 1.72 ± 0.42. The classifier’s accuracy for tracing the family of malicious code variants is as
high as 90.29%, surpassing that of mainstream neural network models. This meets the current demand for high
generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of
malicious code.

KEYWORDS
Malicious code variant traceability; feature reuse; lightweight neural networks; code visualization; attention
mechanism

1 Introduction

The Security Bulletin: Annual Statistical Report, released by Kaspersky Lab on 14 December,
2023, shows that cybercriminals released an average of 411,000 malicious files per day in 2023, which
is a 3% increase from the previous year. During the COVID-19 pandemic, people started using the
Internet for communication, online learning, telecommuting, and the expansion of network areas,
making it more vulnerable to cybercriminals. These individuals employ new phishing attacks, malware
attacks, and other tactics to steal personal and company information, posing a significant threat to
the security of individuals’ assets. Therefore, addressing the issue of cyberattacks cannot be delayed.
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The research on early detection and analysis of malicious code necessitated the artificial extraction
of malicious code features. This process required researchers to possess substantial expertise in
assembly code and analyze a large number of code snippets, which proved to be costly and inefficient.
With the advent of visualization techniques, researchers have transformed malicious code binaries
into images. They have utilized feature engineering combined with machine learning techniques to
classify them based on their features. This approach reduces labor costs but makes it challenging
to identify hidden or obfuscated malicious code variants. With the emergence of deep learning,
convolutional neural networks can automatically extract features from malicious code images. These
models demonstrate a certain level of generalization capability and anti-obfuscation capability. Despite
the gradual development of various types of high-performance deep learning models, accurately
combating and timely defending against malicious code variants remains a significant challenge in
maintaining global cybersecurity.

Due to the diversity and rapid evolution of malicious code variants, their malicious behavior,
structure, and characteristics differ from those of the original version. Consequently, the detection
model may not accurately identify and classify them. Some malicious code can mutate itself to
evade detection and analysis by altering its own code, potentially causing system damage and service
interruptions. However, variants are essentially changes made based on the original version. To prevent
and promptly address constantly evolving new types of malicious code, it is essential to study the
traceability of malicious code variants. By analyzing malware family relationships, Reference [1] found
a significant amount of similar code shared among almost all malware families. Reference [2] utilized
image processing techniques to visualize malicious code binaries, as depicted in Fig. 1. Various families
of malicious code images from the MMCC dataset and Malevis dataset are showcased. The figure
illustrates that malicious code graphs from the same family exhibit similar layouts and textures, while
the malicious code images from different families display noticeable differences. Malicious code files
are diverse and cannot be quickly compared. The traditional method can only be used for passive
analysis, which is much slower than the rate at which malicious code changes. Consequently, it is
challenging to grasp and predict the patterns of change in malicious code. Therefore, this paper
proposes to begin by focusing on the features of malicious code images, utilizing similar malicious code
images with homology, and generating simulated malicious code variants to serve as the data for model
training and validation. On the one hand, it predicts the various directions of change in malicious code
from a feature perspective. On the other hand, it studies the classification model of malicious code
with stronger generalization capability, which can identify various malicious code variants. The main
contributions of the work presented in this paper are as follows:

(a) Amonetize      (b) Regrun (c) Tracur 

Figure 1: Malicious code image samples from different families (a), (b), (c)

1. An effective method for classifying malicious code based on visual features is proposed. This
method transforms malicious code into RGB images without the need for feature engineering
or disassembly tools. The model automatically extracts malicious code image features and
analyzes them for family attributes.



CMC, 2024, vol.80, no.1 803

2. A lightweight model is proposed. The Ghost module is utilized to reconstruct the deep
convolutional structure in order to reduce the generation of redundant features. This effectively
avoids the impact of redundant features on the model size and computational effort.

3. A model with strong generalization and anti-obfuscation capability is proposed. A limited
number of essential features are extracted through the ECA-Net structure. Feature reuse
is employed to link shallow features with deeper ones, enhancing feature utilization and
consequently boosting the model’s classification performance.

4. It is proposed to use the improved Auxiliary Classifier Generative Adversarial Network
(ACGAN) to simulate images of malicious code variants. This will aid in predicting and sim-
ulating changes in the features of malicious code, thereby validating the model’s performance
and enhancing research on the model.

The structure of the paper is as follows: Section 2 analyzes the methods used for visual feature-
based malicious code classification in recent years, Section 3 details the model proposed in this paper,
and Section 4 describes the dataset, evaluation metrics, experimental environment, and experimental
content for verifying the model’s performance.

2 Literature Survey

Malicious code detection and classification have been key research areas. To effectively respond to
the threat of malicious code, researchers have recently proposed a vision-based method for detecting
malicious code. This method involves transforming a malicious code binary file into an image to
distinguish between different families of malicious code based on image features. This section surveys
the research on vision-based methods for tracing malicious code variant families using lightweight
models. Table 1 presents the methodological characteristics and limitations of the studies in this field.

Table 1: Summary and comparison of existing methods

Author Date Method Characteristic Disadvantage

Wang et al. [3] 2020/01 VGGNet Reusability of malicious
code

Not validated with an
unknown dataset

Li et al. [4] 2021/05 Ghost-
DenseNet-SE

Reconstructing
DenseNet

The model consumes a
significant amount of
memory

Umer et al. [5] 2022/01 GANs Creating morphing
samples

Low accuracy in case of
attack

Anandhi et al. [6] 2022/08 DenseNet Generate adversarial
attacks

Reduced model
accuracy due to
interference

Chaganti et al. [7] 2022/09 EfficientNetB1 Multiple
representations of
malicious code
signatures

EfficientNetV1 has
drawbacks

(Continued)
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Table 1 (continued)

Author Date Method Characteristic Disadvantage

Gupta et al. [8] 2022/11 ANN IDA + Feature
engineering

The classification
accuracy is too low

Wang et al. [9] 2023/01 FFSE Feature fusion +
Channel attention
mechanism

Lack of generalization
validation

Dao et al. [10] 2023/03 MLP-Mixer-
Autoencoder

Multilayer perceptron +
Autoencoder

Poor feature learning in
models

Liu [11] 2023/08 PV-DM Open-set classification Few unknown
malicious code samples

Ravi et al. [12] 2023/09 ViT4Mal Lightweight vision
transformer

Model performance
degradation

2.1 Traceability Methods for Malicious Code Variant Families

To improve the model’s capacity to identify variations of malicious code, researchers have
enhanced its generalization capability and anti-obfuscation ability through adversarial attacks and
data augmentation. Reference [3] introduced a VGGNet-based classification system for malicious
code variants, which can extract more feature information by training with RGB images of malicious
code. However, the model was not evaluated with malicious code variants, which does not adequately
demonstrate its ability to detect such variants. Reference [5] proposed the use of a GAN to generate
zero-day adversarial attacks, providing a method to create attack adversaries using a GAN. However,
the detection accuracy of their proposed classification model was only 84%. Reference [6] utilized
the fast gradient sign method and additive noise to create adversarial samples for evaluating the
detection capability of the DenseNet model. This study validated the robustness of the deep learning
model against adversarial attacks. Reference [9] proposed a feature fusion-based fast detection method
for malicious code to address the timeliness issue of detecting malicious code variants. However, the
test was conducted using the original dataset, which lacked the ability to validate the generalization
capability of the model. Reference [11] proposed open-set recognition of malicious code through
homology analysis, which can identify unknown categories of malicious code, even with limited
samples of such code.

2.2 Lightweight Malicious Code Classification Model

Mobile devices, such as cell phones and laptops, that contain a large amount of personal
information and sensitive data can easily become the target of attackers. Therefore, we have devel-
oped lightweight malicious code classification models that can be utilized in resource-constrained
environments to enhance the information security of a larger number of users. Reference [4] proposed
a malicious code detection method based on Ghost-DenseNet-SE, utilizing a lightweight Ghost
module to reconfigure the convolutional layer of the Dense block. The enhanced model has a high
capacity for feature extraction. However, DenseNet incurs a significant memory overhead during
training, and the SE attention mechanism generates a large number of parameters during the modeling
process. Reference [7] utilized multiple models to evaluate various malicious code samples. The study
found that the lightweight model EfficientNetB1 performed the best on the malicious code dataset.
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Moreover, it was concluded that byte-level malicious code images more accurately represent the
characteristics of malicious code. Reference [10] proposed an integrated architecture of Multilayer
Perceptron and Autoencoder instead of a CNN model. This architecture has fewer hyperparameters
and can still operate without a GPU. Reference [12] proposed that the utilization of lightweight
vision transformers for malware detection on edge devices, without relying on deeper networks, can
enhance computational efficiency. However, the accuracy of lightweight model recognition is not
sufficiently high.

3 Methodology

Fig. 2 illustrates the overall framework of the methodology presented in this paper. First, the
binary sequence containing the malicious code is divided into 8-bit subsequences. These subsequences
are then converted to decimal values ranging from 0 to 255. These decimal values correspond to the
R, G, and B pixel points, respectively, to create the RGB map of the malicious code. The images are
divided into a training set, a validation set, and a test set in the ratio of 8:1:1. During the training phase,
the data is imported into the classifier and the simulator for feature learning of various families. In the
testing phase, the test set is fed with a dataset of malicious code variants generated by the simulator
into the classifier to evaluate its performance and analyze any weaknesses.

Figure 2: The overall framework of the methodology in this paper
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3.1 The Classifier: Improved EfficientNetV2-s

The backbone network of the malicious code variant classifier is the EfficientNetV2-s network.
The original model mainly consists of the MB module and Fused-MB module, while the improved
model adds a Dense module to connect the shallow features with the deep features. The classifier layer
structure is shown in Fig. 3.
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Figure 3: Layer structure of the classifier

3.1.1 Fused MBConv Module

The EfficientNetV2 model combines 1 × 1 pointwise convolution with depthwise convolution to
form a standard 3 × 3 convolution. This increases the number of parameters in the model, although
it enhances training speed. Therefore, this paper proposes using the Ghost module to reconstruct the
convolution layers of the Fused MBConv module, as shown in Fig. 4. The Ghost module utilizes a
series of linear transformations to produce feature maps that are equivalent in size to those generated
by a standard convolution, but with reduced computational complexity and a smaller parameter count.
When expansion �= 1, two layers of Ghost are used instead of the original 3 × 3 convolution and 1 × 1
convolution layers for dimensionality increase and decrease operations. The SiLU activation function
is replaced with the ReLU function, which is more suitable for the nonlinear activation of Ghost, to
reduce the transmission and calculation of redundant information. When the expansion factor is set
to 1, the original 3 × 3 convolutional structure is preserved and utilized in the shallowest layer of the
network. This ensures that the model can achieve quicker inference and computation by working with
basic features and patterns.

BN
RELU BN

Ghost Ghost Dropout

H×W×C H×W×C

strde=2

strde=1

Expansion  1

Conv2d 
3×3 Dropout

H×W×C H×W×C

strde=2

strde=1

Expansion = 1

BN
SiLU

Figure 4: Structure of the improved fused MBConv module

3.1.2 Dense Module

DenseNet utilizes feature concatenation and can achieve excellent results on unknown data with
robust generalization capability. We incorporate the Dense module into the middle layer of the
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classifier to connect the outputs of the shallow layers to the inputs of all subsequent layers. This ensures
effective feature transfer during the training process, reducing computational losses and errors in the
model. The Dense module is mainly composed of 1 × 1 convolutions and 3 × 3 convolutions, which
are combined using 1 × 1 convolutions and 2 × 2 AvgPooling. The structure is illustrated in Fig. 5.
However, having too many densely connected networks can render the model structure redundant and
consume a significant amount of memory. Therefore, this paper suggests incorporating only two Dense
modules in the middle layer. The first module, DenseBlock, contains three DenseLayers. The second
module, DenseBlock, contains six DenseLayers. The Transition layer is used to compress the feature
map and connect the two DenseBlocks. The shallow features are passed to the subsequent MBConv
module after all the layers are densely interconnected.

Conv2d
1×1

BN
RELU Conv2d

3×3

BN
RELU

Dropout

Dense Block

BN
RELU Conv2d

1×1
AvgPool2d

Transition layer

Feature Reuse Feature Compression

Figure 5: Structure of Dense module

3.1.3 MBConv Module

The MBConv module is situated in the deep layers of the EfficientNetV2 model. It utilizes depth-
separable convolution along with Squeeze-and-Excitation Networks (SE) to extract more abstract
and advanced features in the deeper layers of the network. To simplify the underlying structure, we
suggest utilizing the Ghost module instead of the standard convolution, and the Efficient Channel
Attention Network (ECA-Net) instead of the SE. The improved structure is shown in Fig. 6. When
stride = 1, the information from the input layer is directly passed to the output layer through a shortcut
branch, and 20% of the feature information is randomly discarded. This helps avoid the problem of
gradient vanishing caused by the network layers being too deep. When stride = 2, the feature map
first passes through a Ghost module, where the output channel number is an inflated multiple of the
input channel number. This is followed by depth-separable convolution with the ECA-Net, a process
that maintains the same number of channels. Finally, the Ghost module is utilized to scale the feature
map to a specified output channel size. Utilizing two Ghost modules for dimensionality enhancement
and dimensionality reduction can enhance the model’s focus on important features and capture global
features, thereby improving the performance, efficiency, and generalization ability of the classifier.

Ghost
Depeise Conv

k × k, s1/s2
GhostECA Dropout

H×W×C H×W×C

strde=2

strde=1

BN
RELU BN

Figure 6: Structure of the improved MBConv module

3.2 Malicious Code Variant Simulator: Improved ACGAN

The backbone network of the malicious code variant simulator is ACGAN, as shown in Fig. 7. The
generator includes class labels as auxiliary information for generating images. These labels are fed back
to the generator as targets for learning when the discriminator outputs. The discriminator receives the
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samples, judges whether they are true or false, and identifies the class labels. This process assists
the ACGAN in efficiently simulating data based on different classes simultaneously. To ensure that
the ACGAN model realistically simulates malicious code variants, this paper improves the ACGAN
model. The simulator structure is shown in Fig. 8.

Figure 7: Structure of the ACGAN
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Figure 8: Structure of the simulator

Replacing the generator backbone structure. The original network structure of the generator in the
ACGAN is prone to information stacking in the generated image when using deconvolution. This
issue significantly impacts the quality of the generated picture. To address this, we have replaced
the deconvolution structure into a combination of upsampling and convolution (e.g., Fig. 8c). This
modification effectively eliminates the checkerboard pattern in the generated image and enhances the
overall quality of the generated images.

Addition of the ECA-Net. This architecture can incorporate a lightweight attention mechanism to
each channel to dynamically adjust the feature responses across channels. Due to the absence of an
attention mechanism in the original ACGAN, it lacks focus on key regions, leading to the generation of
blurry images. Therefore, we propose adding ECA-Net after the embedding layer of the generator and
before the output layer of the discriminator, as illustrated in Fig. 8a,b, to assist the model in capturing
crucial features and distinguishing features of malicious code images across various categories. This
enhancement aims to provide the generator with more precise feedback to simulate images of malicious
code variants accurately.

Regulating the capabilities of the generator and discriminator. In ACGAN, it is common for
the discriminator to have excessive discriminative power, which can hinder the effective training
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of the generator. Therefore, we propose adding a Ghost module for deep convolution reconstruction to
the generator (as shown in Fig. 8d) to enhance the generator’s learning ability. Additionally, we suggest
implementing a random deactivation algorithm after each convolution layer of the discriminator (as
illustrated in Fig. 8e) to prevent its ability from growing too rapidly. This approach ensures that both
components can compete on an equal footing, facilitating optimization and ultimately reaching a Nash
equilibrium.

4 Experiments
4.1 Experimental Environment and Dataset

The development tools and versions used for the experiments in this paper are Python 3.7 and
PyTorch 1.10.1. The running server is the Dawning Technology DCU (Name: Heterogeneous Node-
4D1-2, Resource No. 7285-32C-128G-4Card-2).

To evaluate the performance of the GAN-EfficientNet model proposed in this paper, we utilized
the Microsoft Malware Classification Challenge (MMCC) dataset provided by Microsoft. This dataset
comprises nine families of malicious code, totaling 10,868 samples. Moreover, this paper uses the
Malevis dataset to verify the domain adaptive capability of the model. The Malevis dataset includes
25 categories of malicious code software and 1 category of cleaning software. In this paper, we selected
25 malware data points to participate in training and testing the model. The number and categories of
the two datasets are shown in Fig. 9, and they exhibit different relationships in terms of sample size,
categories, and category numbers.

Figure 9: Distribution of malicious code categories and numbers on the (a) MMCC dataset, and (b)
Malevis dataset

4.2 Indicators for Experimental Evaluation

4.2.1 Indicators for the Evaluation of the Classifier

In this paper, four metrics—Accuracy, Precision, Recall, and F1-score—are used as indicators
of model classification performance. In this case, the metrics use True Positives (TP), False Positives
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(FP), True Negatives (TN) and False Negatives (FN) to define the above four metrics, as in Eqs. (1)–
(4), respectively.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 − score = 2 × TP + TN
TP + TN + FP + FN

(4)

To evaluate the lightweight and computing power of the model, this paper also considers the
number of parameters and the computational load, as shown in Eqs. (5) and (6). The number of
parameters indicates the total number of parameters that the model needs to be trained, and the
fewer parameters there are, the less memory the model occupies. The computational amount refers
to the number of floating-point operations needed to run the network model once. The smaller the
computational amount, the faster the computational speed of the model.

Parameter = (Cin × (K × K) + 1) × Cout (5)

FLOPs = 2 × H × W × (Cin × (K × K) + 1) × Cout (6)

4.2.2 Indicators for the Evaluation of the Simulator

In this paper, we utilize the FID (Fréchet Inception Distance) [13] and IS (Inception Score) [14] to
assess the quality of the model in generating malicious code variants from various perspectives. The
lower the FID score, the more similar the two images are. The formula is shown in Eq. (7), where x
denotes the real image, g denotes the generated image, μ denotes the mean, σ denotes the covariance,
and Tr denotes the trace of the matrix.

FID (x, g) = ∥∥μx − μg

∥∥2

2
+ Tr

(
σx + σg − 2

√
σxσg

)
(7)

The higher the IS value, the better the quality and diversity of the image. The formula is
shown in Eq. (8), where G denotes the generator, E denotes the expectation, x denotes the generated
image, y denotes the classification model prediction result, and DKL denotes the scatter between the
distributions.

IS (G) = exp(Ex∼pg DKL (p (y|x) ‖ p (y))) (8)

4.3 Experimental Results

To verify the effectiveness of the proposed method, the following experiments were conducted in
this paper.

4.3.1 Performance Comparison of the Classifier with the Original Model EfficientNetV2

The training parameters of the model in this paper are shown in Table 2. The classifier training
utilizes the Adam optimizer and implements cosine annealing decay with a learning rate based on
the performance of the validation set, following the double decay strategy. The CrossEntropyLoss
function is used as the loss function for the classifier, and experiments are conducted on the MMCC



CMC, 2024, vol.80, no.1 811

dataset. The accuracy vs. loss change curves during the training process are shown in Fig. 10. To verify
the domain adaptive ability of the model to different malicious code datasets, this paper utilizes various
datasets for training and testing. The accuracy vs. loss curves on the Malevis dataset are depicted in
Fig. 11.

Table 2: Model training parameters

Parameter Classifier Simulator

Epoch 300 500
Batch size 32 32
Learning rate Generator: 0.0004 Discriminator: 0.0002 0.002
Betas (0.5, 0.999) (0.5, 0.999)
Image size 256 ∗ 256 256 ∗ 256
Channel 3 3

Figure 10: Accuracy and loss curve of the classifier on the MMCC dataset

To verify the effectiveness of this method in improving the model performance and lightening
the model, it was compared with the original EfficientNetV2-s model. Table 3 demonstrates four
classification indicators, as well as parametric and arithmetic comparisons of the two models on the
MMCC dataset and the Malevis dataset.

As shown in Fig. 10, during the initial stage of training on the MMCC dataset, the classifier dis-
played instability on the validation set. This is due to the high randomness of parameter initialization in
the early stage of training. The model did not fully learn the features of the data, resulting in significant
fluctuations in accuracy and loss on the validation set. After the 200th epoch, the performance of
the model stabilizes on both the training and validation sets. As shown in Table 3, the accuracy,
precision, recall, and F1-score of the enhanced model have improved by 0.65%, 0.65%, 0.65%, and
0.67%, respectively. Additionally, only 1 in 12.66 of the parameters of the original model are utilized.
As shown in Fig. 11, there are no unstable fluctuations in the classifier performance on the Malvis
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dataset, and there is not a significant difference in performance between the training and validation
sets. As shown in Table 3, the four classification indicators of the enhanced model have increased by
0.16%, 0.22%, 0.16%, and 0.2%, respectively.

Figure 11: Accuracy and loss curve of the classifier on the Malvis dataset

Table 3: Performance comparison between our method and EfficientNetV2-s

Dataset Model Accuracy/% Precision/% Recall/% F1-score/% Params/M FLOPs/G

MMCC EfficientNetV2-s 97.96 98.00 97.96 97.94 20.19 3.75
Proposed classifier 98.61 98.65 98.61 98.61 1.59 4.43

Malevis EfficientNetV2-s 97.43 97.49 97.43 97.42 20.19 3.75
Proposed classifier 97.59 97.71 97.59 97.62 1.59 4.43

The proposed classifier demonstrates good adaptability and generalization ability on both datasets
when fewer parameters and fewer operations are utilized. This is because the model is lightweight and
utilizes feature reuse methods in the improvement process. Using Ghost instead of regular convolution
results in fewer redundant features. Using the ECA-Net structure instead of the SE structure helps
avoid introducing a large number of parameters during the modeling process. The Dense module is
added to the middle layer for both shallow and deep feature transfer and reuse. Shallow features are
fully utilized, reducing feature loss during transmission, and enhancing the model’s ability to recognize
malicious codes.

4.3.2 Verify the Simulation Quality of Malicious Code Variants

The simulator is trained using the Adam optimizer. The loss function uses Binary Cross Entropy
Loss and Focal Loss. The training parameters are shown in Table 2. Fig. 12 displays simulated images
of various families of malicious code variants. Column 1 displays the original malicious code images,
column 2 shows the images generated by the ACGAN, column 3 presents the images generated by the
simulator without utilizing ECA-Net, and column 4 exhibits the images produced by the simulator.
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Table 4 corresponds to their FID and IS values, respectively. As shown in Fig. 12 and Table 4, the
original ACGAN generated images exhibit a checkerboard pattern, which is due to the stacking of
feature information caused by the inability to divide the convolution step size using a deconvolution
structure. The simulator, when not utilizing ECA-Net, produces images with inadequate detail
characterization and blurriness. Compared to the previous two, the average FID value of the proposed
simulator decreased by 218.58 and 33.46, respectively. Additionally, the IS value increased by 0.71
and 0.01, respectively. This indicates a significant enhancement in image quality and diversity. From
the experimental results, it can be seen that the generator utilizing a combination of convolution and
upsampling structures can prevent the generation of image checkerboards. Additionally, incorporating
ECA-Net helps the simulator better capture the details of malicious code images and focus on
important features.

Gatak

Kelihos_ver1

Simda

Tracur

Original Variant 1 Variant 2 Variant 3

Figure 12: Comparison of generated malicious code variants and original samples

Table 4: Comparison of FID and IS values for samples of different malicious code variants

Dataset FID IS

The ACGAN generated dataset 407.48 1.00
The simulator without using ECA-Net generated dataset 188.90 1.71 ± 0.60
Proposed simulator generated dataset 155.44 1.72 ± 0.42
Original dataset – 1.73 ± 0.54

The variant samples are similar to the original samples but differ in texture, indicating that the
simulator can not only retain the features of various malicious code families in the dataset but also
makes changes in the detailed portrayal, reflecting the attacker’s reuse of the key code in the process
of malicious code writing. In summary, the simulator can effectively simulate malicious code variants
processed via obfuscation techniques such as rearrangement, encryption and compression.

4.3.3 Performance Comparison between the Proposed Classifier and Other Models

To validate the malicious code classification ability of the classifier proposed, the experiments
in this section compare it with seven mainstream neural networks for multiclassification, in addition
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to comparing it with models without the addition of the Dense and Ghost structures, respectively,
and exploring the role of the two structures. Table 5 shows their performance comparison on the
MMCC dataset. Table 5 shows that the accuracy of the proposed classifier in this paper is improved
by 1.39%, 1.57%, 0.92%, 0.55%, 5.36%, 5.09% and 1.39% over that of the VGGNet16, GoogLeNet,
MobileNetV2, DensnetNet121, EfficientNetB0, EfficientNetB1, and GhostNet models, respectively,
by 0.55%, 5.36%, 5.09%, and 1.39%. Moreover, model parameters decreased by 26.11, 4.39, 0.65, 5.37,
2.43, 4.39, and 3.59 million. After the Ghost module has reconstructed the model, the number of
parameters and the computation amount are reduced to 93% and 69% of the original, respectively,
which can achieve higher classification performance. The Dense module is used to improve the
ability of the model to distinguish the features of different categories of malicious codes, and the
classification indexes of the model are improved, but this process consumes some computational
resources. Reducing the number of parameters facilitates the deployment and operation of the model in
restricted environments such as mobile devices or embedded systems. The proposed method increases
the computational complexity while improving the model’s classification performance and reducing
the number of parameters. However, it is far less than the computational complexity of large models.
More efficient computational methods or hardware acceleration within an acceptable range can still
achieve faster inference speed.

Table 5: Comparison of performance between the model proposed and different models

Type Model Accuracy/% Precision/% Recall/% F1-score/% Params/M FLOPs/G

Mainstream models VGGNet16 97.22 97.33 97.22 97.21 27.70 15.42
GoogLeNet 97.04 97.18 97.04 97.02 5.98 2.08
MobileNetV2 97.69 97.75 97.69 97.67 2.24 0.42
DensnetNet121 98.06 98.10 98.06 98.05 6.96 2.88
EfficientNetB0 93.25 93.73 93.25 93.08 4.02 0.40
EfficientNetB1 93.52 93.55 93.52 93.28 6.52 0.71
GhostNet 97.22 97.28 97.22 97.16 5.18 0.20

Models with different
structures

The classifier
without using
Dense

98.33 98.40 98.33 98.33 1.10 1.95

The classifier
without using
Ghost

98.43 98.44 98.43 98.42 2.30 4.75

Proposed classifier 98.61 98.65 98.61 98.61 1.59 4.43

To verify that the proposed classifier can trace the family of malicious code variants, this paper
uses the simulator to simulate malicious code variants as a new test set to test the proposed classifier
with eight mainstream models and two comparison models. To better characterize the data, the number
of individual classes of each family of malicious code variants constructed is the same as that in the
original test set. Table 6 shows the different performance values exhibited by the ten models on the
new test set. Fig. 13 shows the categorized data of this paper’s models on the new test set.
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Table 6: Comparison of performance between the model proposed and different models on the new
test set

Type Model Accuracy/% Precision/% Recall/% F1-score/%

Mainstream VGGNet16 80.67 79.73 80.67 79.52
models GoogLeNet 79.28 77.37 79.28 77.24

MobileNetV2 78.35 78.61 78.35 77.25
DensnetNet121 76.50 76.60 76.50 78.65
EfficientNetB0 47.73 47.32 47.73 37.72
EfficientNetB1 69.10 62.59 69.10 61.44
EfficientNetV2-s 75.67 75.27 75.67 73.21
GhostNet 49.31 60.25 49.31 42.50

Models with
different

The classifier without
using Dense

80.31 78.57 80.31 75.57

structures The classifier without
using Ghost

84.10 82.36 84.10 79.95

Proposed classifier 90.29 90.42 90.29 88.62

Figure 13: Confusion matrix of the classifier on the new test set

The ten models achieve more than 90% or even greater accuracy on the original test set with strong
malicious code categorization capability. However, on the new test set, the accuracies of these models
are less than 85%, indicating that these models cannot classify malicious code variants. In contrast, the
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classifier proposed in this paper shows excellent performance on both the original and the new test sets.
On the new test set, the performance of the proposed classifier is much more excellent than that of the
other models. In particular, the classifier we proposed has 9.98% higher accuracy in tracing malicious
code variants than the classifier without using the Dense module. This is because the classifier uses the
Dense module for feature reuse, which better distinguishes different categories from the feature level.
The use of the attention mechanism structure can focus on the critical features of the model to improve
the generalization capability of the model. The data enhancement and regularization techniques can
improve the model’s anti-confusion ability so that even if some of the features of the malicious code
have changed to a certain extent, the model can still able to accurately traced back to the malicious
code family.

As shown in Fig. 13, all four samples of the Simda family are misclassified, and the classification
accuracies of the Tracur family and the Obfuscator.ACY family are also relatively low, indicating that
the model is affected by the class imbalance problem of the MMCC dataset, and it is easy to produce
incorrect predictions for these types of malicious code family deformations or interferences with a
small number of samples. The model can be modelled based on this problem in the future. In the
future, the model can be improved according to this problem to solve the impact of the class imbalance
problem of the data on the model’s performance.

4.3.4 Comparison of the Method Used in This Article with other Studies in the Field

Table 7 compares this paper’s method with the research techniques of the last three years, which
have achieved significant results. On the MMCC dataset, the accuracy of the proposed method is
greater than that of other methods in the literature, and it is an efficient and lightweight model
that can ensure that the model can be accurately categorized while requiring fewer parameters
and less computation. In image-based malicious code classification, feature extraction is performed
by processing image information, and the literature in Table 7 uses grayscale, RGB, and RGBA
maps, which are 1-, 3-, and 4-channel images, respectively, input data for the model; these maps
contain feature information ranging from less to more. Compared directly, more than the input
grayscale map in other studies is needed to satisfy the complete learning of the classification model,
and the input RGBA image contains too much information, which reduces the learning efficiency
of the classification model. In contrast, the method in this paper focuses on increasing feature
information to provide model training while minimizing redundant information to achieve efficient
model performance.

Table 7: Comparison of the method used in this article with other studies in the field

Author Model Feature Date Accuracy/%

Zhu et al. [15] WGAN-GP Grayscale image 2021 97.18
Hemalatha et al. [16] DenseNet Grayscale image 2021 98.46
Wang et al. [17] DEAM Grayscale image 2021 97.30
Shao et al. [18] Mcs-ResNet RGBA image 2022 97.21
Anandhi et al. [6] DenseNet Grayscale image 2022 96.79
Qiu et al. [19] HBF-VGG14-Net Grayscale image 2023 96.00
Liu [11] PV-DM Grayscale image 2023 96.00
Proposed Classifier RGB image 2024 98.61
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5 Conclusion

To summarize, this paper proposes a GAN-EfficientNet-based malicious code variant family
traceability method consisting of a classifier and simulator. The classifier is a lightweight model with
high accuracy, strong generalization capability, and anti-obfuscation ability, and the simulator can
learn the critical features of malicious code and simulate malicious code variants. In this paper, the
simulator simulates the malicious code variants to effectively verify the tracing ability of the classifier’s
variant family and determine the shortcomings of the classifier, which points to the direction for
the next step to improve the model. The method in this paper will be more targeted according to
the characteristic information from different malicious code families, timely strategies for cracking
malicious attacks will be developed, and essential means and guarantees for maintaining network
security will be provided.

However, there is still room for improvement in the computational efficiency of the classifier
proposed. More suitable channel number rules can be determined through experiments and tuning,
balancing the model’s expressive power with computational resource requirements.

During the research on generative adversarial networks, we found that inputting adversarial
samples in model training can improve the sensitivity of the model to feature changes. In the future,
we will carry out adversarial training of the model to further improve the classifier’s ability to trace
the malicious code variant families.
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