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ABSTRACT

Significant advancements have been witnessed in visual tracking applications leveraging ViT in recent years, mainly
due to the formidable modeling capabilities of Vision Transformer (ViT). However, the strong performance of such
trackers heavily relies on ViT models pretrained for long periods, limiting more flexible model designs for tracking
tasks. To address this issue, we propose an efficient unsupervised ViT pretraining method for the tracking task
based on masked autoencoders, called TrackMAE. During pretraining, we employ two shared-parameter ViTs,
serving as the appearance encoder and motion encoder, respectively. The appearance encoder encodes randomly
masked image data, while the motion encoder encodes randomly masked pairs of video frames. Subsequently, an
appearance decoder and a motion decoder separately reconstruct the original image data and video frame data
at the pixel level. In this way, ViT learns to understand both the appearance of images and the motion between
video frames simultaneously. Experimental results demonstrate that ViT-Base and ViT-Large models, pretrained
with TrackMAE and combined with a simple tracking head, achieve state-of-the-art (SOTA) performance without
additional design. Moreover, compared to the currently popular MAE pretraining methods, TrackMAE consumes
only 1/5 of the training time, which will facilitate the customization of diverse models for tracking. For instance,
we additionally customize a lightweight ViT-XS, which achieves SOTA efficient tracking performance.
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1 Introduction

Single object tracking is a fundamental task within the field of computer vision, aiming to
persistently track an arbitrary target object across a video sequence starting from its initial condition
[1–3]. In particular, the user provides the bounding box of a target object in the initial frame of a
video. Subsequently, the algorithm forecasts the bounding box of this target in the following frames.
The past few years have seen remarkable progress in this domain, primarily fueled by the evolution of
deep learning technologies [4–8]. Notably, the introduction and integration of the Vision Transformer
(ViT) [9] have been pivotal in this wave of advancements, developing numerous tracking algorithms
that leverage ViT’s architecture to achieve superior performance.
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ViT-based trackers [10–12] have shown superior performance, yet they harbor significant short-
comings. Primarily, these trackers depend on ViT models that have undergone extensive pretraining,
making any subsequent modifications both costly and labor-intensive. Moreover, the orientation
of ViT models’ pre-training is generally towards tasks like image classification [13–16], focusing
predominantly on static imagery. This approach does not necessarily cater to the nuanced requirements
of tracking tasks, which demand a comprehensive grasp of both appearance and motion. Thus, the
development of an efficient pretraining method, specifically for the tracking task, is imperative to
enhance the tracker’s effectiveness.

To address these challenges, this paper introduces a new unsupervised ViT pretraining method
for the tracking task, namely TrackMAE. This method utilizes a masked ViT autoencoder to
simultaneously consider appearance and motion information, thereby optimizing the ViT model for
tracking applications. The rationale behind this approach is predicated on the indispensability of
comprehending both appearance and motion for visual object tracking. To address the pretraining’s
previous effectiveness in motion information modeling, TrackMAE significantly enhances the pre-
training process’s efficiency and effectiveness.

To achieve the aforementioned objective, we develop a dual-branch pretraining framework
comprising an appearance branch and a motion branch. The appearance branch is equipped with
an appearance encoder and an appearance decoder, while the motion branch features a motion
encoder and a motion decoder. The encoder employs the ViT model, and the decoder employs a
smaller transformer model. In the appearance branch, the process is executed on images to facilitate
the learning of appearance understanding. Specifically, an image undergoes random masking, with
the unmasked tokens inputted into the appearance encoder. Subsequently, the appearance decoder
endeavors to reconstruct the original image in the pixel domain. In parallel, the motion branch operates
on pairs of video frames to glean insights into the motion relationship between frames. Here, two
frames from the same video are randomly masked, and the unmasked tokens are concatenated and
fed into the motion encoder. The motion decoder then aims to reconstruct the original frame pair in
the pixel domain. By sharing model parameters between the appearance and motion branches, the
framework engenders simultaneous learning of both appearance and motion understanding, thereby
enhancing the model’s proficiency in visual object tracking.

Our experiments demonstrate the efficiency and effectiveness of the proposed TrackMAE
method, achieving new state-of-the-art results across multiple tracking benchmarks. In summary,
this manuscript includes the following two main contributions.

First, we introduce a new unsupervised pretraining method for ViT models in the visual tracking
task, predicated upon a masked autoencoder. This approach is designed to cultivate a nuanced
comprehension of both appearance and motion dynamics, thereby facilitating an efficient and potent
paradigm for training ViT models specifically tailored for tracking applications.

Second, we unveil a new suite of pretrained ViT models, alongside a corresponding new lineage
of ViT-based tracking models, which strike a good trade-off between speed and tracking accuracy.
Experiments verify the effectiveness of the proposed new models.

2 Related Work
2.1 Single Object Tracking

In the realm of single object tracking, Siamese-based methods [17–21] have garnered significant
popularity. These methods typically utilize a dual-backbone architecture with shared parameters to
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concurrently extract features from both the template and search region images. This is followed by
the application of a correlation-based network for feature interaction, culminating in the use of head
networks for the final prediction task. Some learning-based methods further enhance the Siamese-
based trackers. For instance, Zhang et al. [22] proposed to learn better feature representation through
a multi-task loss function, enhancing tracking accuracy and robustness. Zhang et al. [23] introduced
channel and spatial attention-guided residual learning, which enhances feature representations in
Siamese networks and addresses overfitting issues, resulting in improved tracking performance.
Innovations such as Transformer Tracking (TransT) [24] and Transformer Meets Tracker (TMT) [25],
along with the subsequent enhancements [26,27], have augmented tracking efficacy by integrating
the transformer architecture [7–9] for enhanced feature interaction. More recently, the advent of a
one-stream framework has set new state-of-the-art performance in tracking, exemplified by Sequence
to sequence Tracking (SeqTrack) [10], One-Stream Tracking (OSTrack) [11], Simplified Tracking
(SimTrack) [12], Mixed Transformer (MixFormer) [28], and Single Branch Transformer (SBT) [29].
This framework amalgamates feature extraction and fusion within a singular backbone network,
a strategy that is both simplistic and effective, leveraging the pretrained capabilities of backbone
networks initially optimized for image classification tasks. Pretrained ViT backbone models play a
pivotal role in the superior performance of one-stream trackers. Thus, we develop a new specialized
pretraining method tailored for the tracking task, further enhancing the tracking performance.

2.2 Self-Supervised Learning

In recent decades, self-supervised learning has emerged as a domain of considerable interest,
with a myriad of manually crafted agent tasks devised for pretraining, including but not limited
to image colorization [30], future frame anticipation [31], and rotation estimation [32]. Amidst this
backdrop, contrastive learning methods [16,33–35] have ascended to prominence as the leading self-
supervised strategies, albeit their effectiveness often relies on large pretraining data. On the other
hand, drawing inspiration from the natural language processing domain, specifically masked language
models [36], the concept of Masked Image Modeling (MIM) has been introduced, aiming at the
autonomous learning of image representation. MAE [13] stands as a quintessential exemplar of MIM
methodologies. This strategy has demonstrated its efficacy across an extensive range of downstream
applications, encompassing image classification, object detection, and video comprehension.

Notably, ViT models pretrained via the MAE method have showcased exemplary efficacy in the
realm of visual object tracking. Nonetheless, this pretraining approach is not inherently tailored for
tracking purposes, failing to capitalize on tracking-specific data and to fully harness the potential of
ViT for tracking tasks. Furthermore, the substantial training costs associated with this method render
model modifications prohibitively expensive. In light of these considerations, our work introduces
a new efficient pretraining method for tracking. This method uniquely integrates appearance and
motion information, thereby optimizing both pretraining efficiency and tracking performance.

3 Proposed Method

The overall framework of the proposed method is illustrated in Fig. 1, which comprises three main
stages: pretraining, fine-tuning, and tracking.
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Figure 1: Flowchart of model pretraining, fine-tuning, and tracking

For pretraining, the aim is to enhance the model’s feature representation capability. To achieve
this, we propose the TrackMAE method, which is the focus of this work. Firstly, we preprocess the
collected training data to obtain a collection of input sample units for the model. Then, we sample the
required number of samples for one iteration from this collection. Subsequently, random masking is
applied, followed by feeding the masked data into the ViT model to obtain latent features. Next, we
reconstruct the original image from the latent features and calculate the loss compared to the original
image, optimizing the ViT model through gradient descent. This process iterates until the specified
number of iterations for pretraining is reached. More details will be discussed in subsequent sections.

The goal of fine-tuning is to teach the model to execute the tracking task. For fine-tuning,
commonly used methods in the tracking field are adopted. Initially, we preprocess the collected
training data to obtain a collection of sample pairs (consisting of one template image and one search
region image). Then, we sample from this collection and input it into the ViT Model. The features
outputted by the ViT Model are then input into the tracking head to predict the bounding box on the
search region. Subsequently, the loss is computed between the predicted bounding box and the ground
truth bounding box, optimizing the ViT Model as well as the tracking head. Similar to pretraining,
this process iterates until the specified number of iterations for fine-tuning is reached. The ViT model
for fine-tuning initially loads the optimized weights from the pretraining stage.

After pretraining and fine-tuning, the obtained model is capable of performing the tracking task.
Specifically, for a video sequence, in the first frame, the user specifies the bounding box of the target,
initializing the algorithm to crop the target template from the frame. In the subsequent frames, the
search region image is obtained by expanding the bounding box from the previous frame. The search
region image and the template image are then input into the ViT model, followed by the Tracking
Head, which outputs the tracking result for the current frame. This process repeats for each frame
until the end of the video sequence.
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In the aforementioned steps, the main focus of our work lies in improving the pretraining phase
to obtain better initial weights for the ViT model. The fine-tuning and tracking phases follow popular
methods in tracking. Therefore, the subsequent sections will focus on introducing our TrackMAE
pretraining method.

3.1 Overview of TrackMAE Pretraining

As illustrated in Fig. 2, Our TrackMAE pretraining method is an autoencoding paradigm that
reconstructs the original signal from its partial observation. This methodology bifurcates into two
distinct branches: one dedicated to appearance and the other to motion. Within the motion branch,
a pair of video frames constitute the original signal, whereas the appearance branch utilizes a single
image for this purpose. Each branch is equipped with an encoder that translates the observed signal
into a latent representation, coupled with a decoder responsible for the regeneration of the original
signal from this latent space. By employing shared parameters across the two encoders, our model
concurrently learns to discern the dynamic interplay between two video frames and to capture the
static appearance characteristics inherent in a single image.

Figure 2: Overall paradigm of the proposed TrackMAE pretraining

3.2 Inputting and Masking

We partition the input comprising both the video frame pair f1, f2 ∈ R
3×H×W and the image

x ∈ R
3×H×W into uniform, non-overlapping patches with size 3 × P × P. Subsequently, a subset
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of these patches is selected, while the remainder are obscured through masking. Following MAE
[13], we employ the random sampling strategy, i.e., we sample random patches following a uniform
distribution.

Within the appearance branch, the random sampling procedure is implemented with a substantial
masking ratio (75% in our experiments). This deliberate reduction in available information cultivates
a challenging reconstructive task, thereby enhancing the model’s capacity to interpret and encode the
nuanced facets of image appearance. Conversely, in the motion branch, we apply a moderate masking
ratio of 60%. Given the inherent resemblance between the two video frames under consideration, the
preserved information is comparatively abundant. Consequently, the model can organize the retained
patches to reconstruct the original video frames. This strategic choice facilitates the model’s ability to
grasp the spatial relationships of the unmasked patches.

3.3 TrackMAE Encoder

Both the motion and appearance encoders employ a ViT model, leveraging shared weights. Frames
and image patches undergo conversion into tokens via linear projection, subsequently augmented with
positional embeddings. Then, the video frames’ unmasked tokens are concatenated and processed
with the motion encoder’s Transformer blocks. The image’s unmasked tokens are processed with
the appearance encoder’s Transformer blocks. Since the encoder only processes the unmasked token
embeddings, the compute and memory are significantly reduced, allowing us to scale up the encoders.

3.4 TrackMAE Decoder

Both the motion and appearance decoders utilize the Transformer architecture. As shown in
Fig. 2, the TrackMAE decoders are fed with the full set of frames and image tokens, which includes
both the encoded unmasked patches and the masked tokens. Each masked token is a shared, trainable
embedding, denoting the absent patch. Positional embeddings are additionally integrated into this set
of tokens. The motion and appearance decoders, respectively processing the frames token set and the
image token set, are tasked with predicting the original normalized pixels for each token. Considering
the decoders’ engagement with the full token set, a lightweight Transformer configuration is adopted
to ensure efficiency. The lightweight Transformer consists of 4 blocks with a dimension of 512.

3.5 Reconstruct Target

Our TrackMAE is trained to reconstruct the normalized pixels corresponding to the original
frames and image. The terminal layer of the TrackMAE decoder embodies a linear projection, which
endeavors to forecast the normalized pixel vector for each patch, denoting the patch index. The
output is subsequently reshaped into the form of the reconstructed frames and image. The adopted
loss function is the Mean Squared Error (MSE) loss, which quantifies the discrepancy between the
reconstructed and original signals within the normalized pixel domain. The loss is confined to the
masked patches, summarized as follows.

L =
∑

j∈f 1,f 2

[
λmLMSE

(
pj, p̂j

)] +
∑

j∈x

[
λaLMSE

(
pj, p̂j

)]
(1)

Here, j stands for the index of unmasked pixels within frames f1, f2, or image x. pj represents the
j − th predicted pixel, and p̂j is the j − th normalized original pixel. λm = 1 and λa = 1 are the
regularization parameters in our experiments.
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3.6 Evaluation Tracker

To assess performance on the downstream tracking task, we develop a straightforward tracking
framework utilizing our pretrained ViT models. As depicted in Fig. 3, the template and search region
images are partitioned into patches. Subsequently, these patches are transformed into tokens via a
linear projection layer. The pretrained ViT blocks then proceed to extract feature representations
from these tokens. Ultimately, we employ a rudimentary corner-based tracking head [26] to predict
the bounding box of the target object. The loss function adheres to a conventional and simplistic
paradigm [26] commonly adopted in tracking.

L = λGLGIoU

(
b, b̂

)
+ λ1L1

(
b, b̂

)
(2)

Herein, LGIoU signifies the generalized IoU loss, and L1 represents the L1-norm loss. b and b̂ denote
the predicted and ground-truth bounding boxes, respectively. λG = 1 and λ1 = 1 are the regularization
parameters. For the inference, we also follow the common method [26].

Figure 3: Framework of the evaluation tracker

4 Experiments
4.1 Implementation Details

Models. We employ our Track-MAE method to pretrain three variants of ViT models: ViT-L,
ViT-B, and ViT-XS (L: Large, B: Base; XS: eXtra Small). The comprehensive configurations of these
models are detailed in Table 1. For all models, the decoder’s settings remain consistent: with 8 layers,
a hidden size of 512, 16 attention heads, and an Multilayer Perceptron (MLP) size of 2048. Our
implementation is carried out utilizing Python 3.8 and PyTorch 1.11.0.
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Table 1: Details of TrackMAE pretrained models

Encoder Layers Hidden size MLP size Heads Params (M)

ViT-L 24 1024 4096 16 307
ViT-B 12 768 3072 12 86
ViT-XS 4 768 3072 12 29

Pre-training. The datasets utilized for pretraining encompass the train-splits of ImageNet1k
[37], COCO (Common Objects in Context) 2017 [38], TrackingNet [39], GOT-10k (Generic Object
Tracking) [40], and LaSOT (Large-scale Single Object Tracking) [41]. Regarding the appearance
branch, image sampling is conducted from ImageNet1k and COCO2017, with ImageNet1k being
sampled four times more frequently than COCO2017. For the motion branch, frame pairs are sampled
uniformly from TrackingNet, LaSOT, and GOT-10k. Common data augmentations, including scaling,
translation, cropping, and jittering, are employed to enrich the dataset. All input images and frames
undergo resizing to 256 × 256 resolution. The patch size is set to 16 × 16. The masked ratios for
the appearance and motion encoders are set at 75% and 60%, respectively. The optimizer utilized is
Adaptive Moment with Weight decay (AdamW) [42], incorporating a weight decay of 5e-2. The base
learning rate is established at 7.5e-5, with a cosine decay schedule employed for learning rate decay.
Training is executed on Intel Xeon CPU E5-2690 v4 @ 2.60 GHz with 512 GB RAM and 8 NVidia
RTX 3090 GPUs, spanning 500 epochs with a batch size of 128, and each epoch comprises 200,000
samples. The initial 25 epochs integrate a warmup strategy [43].

Tracking Models. Based on our TrackMAE pretrained ViT models, we develop five variants of
TrackMAE trackers with diverse encoders and input resolutions, as outlined in Table 2. We adopt ViT-
L as our backbone models for TrackMAE-L384 and L256, ViT-B for TrarckMAE-B384 and B256, and
ViT-XS for TrackMAE-XS. For the tracking head, we utilize the corner-based head implementation
from Spatio-Temporal trAnsfoRmer Tracking (STARK) [26]. Furthermore, we provide details on
model parameters, Floating Point Operations Per Second (FLOPs), inference speed, and latency in
Table 2. The fine-tuning and testing strategy remains consistent with that of previous popular trackers
[10,24,26]. The speed and latency are measured on an Intel Core i9-9900K CPU @ 3.60 GHz with
64 GB RAM and a single NVidia TITAN RTX GPU.

Table 2: Details of TrackMAE tracking models

Model Encoder Input resolution Params (M) FLOPs (G) Speed (fps) Latency (ms)

TrackMAE-L384 ViT-L 384 × 384 305 351 10 100
TrackMAE-L256 ViT-L 256 × 256 305 156 23 43
TrackMAE-B384 ViT-B 384 × 384 88 100 26 38
TrackMAE-B256 ViT-B 256 × 256 88 45 63 16
TrackMAE-XS ViT-XS 256 × 256 31 15 202 5

Compared Methods. In our experiments, many popular tracking method are chosen for com-
parison, including Sequence to sequence Tracking (SeqTrack) [10], One-Stream Tracking (OSTrack)
[11], Siamese Re-detection Convolutional Neural Network (SiamR-CNN) [18], Siamese Region
Proposal Network Plus Plus (SiamRPN++) [19], Siamese Box Adaptive Network (SiamBAN) [21],
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Transformer Tracking (TransT) [24], Transformer Meets Tracker (TMT) [25], STARK [26], Shifted
Window Tracking (SwinTrack) [27], Mixed Transformer (Mixformer) [28], Attention in Attention
Tracking (AiATrack) [44], Transforming Model Prediction (TMP) [45], Cyclic Shifting Window Trans-
former Tracking (CSWinTT) [46], Keep Tracking (KeepTrack) [47], Siamese Attention (SiamAttn)
[48], Object-aware anchor-free networks (Ocean) [49], Discriminative Model Prediction (DiMP) [50],
Multi-Domain Networks (MDNet) [51], Hierarchical Tracking (HiT) [52], Fast Efficient Accurate
Robust tracking (FEAR) [53], Hierarchical Cross-Attention Tracking (HCAT) [54], Exemplar Trans-
formers Tracking (E.T.Track) [55], Lightweight Tracking (LightTrack) [56].

4.2 State-of-the-Art Comparison

LaSOT . The state-of-the-art (SOTA) comparison results on LaSOT [41] are presented in Table 3.
With the same encoder and input resolution, our TrackMAE-B256 surpasses previous SeqTrack-B256
and OSTrack-256 by 1.1 and 1.9 in Area Under Curve (AUC) score, respectively. It is noteworthy that
our TrackMAE pretraining method significantly reduces training time, saving up to 5 times the training
duration compared to their MAE pretraining method. Upon scaling up the model, TrackMAE-L384
achieves a new SOTA performance with a 72.5 AUC score. Fig. 4 presents the results of attribute-
based evaluations on LaSOT, indicating the performance of the tracker under different challenging
scenarios. The results demonstrate that our approach outperforms previous methods across various
challenges, showcasing the comprehensive improvement brought by the pretraining of the base model.
Particularly, our approach exhibits the most significant performance advantage under the challenges
of fast motion and background clutter, highlighting its strong tracking stability and discriminability.
Furthermore, as demonstrated in Table 4, TrackMAE-XS establishes a SOTA performance compared
to previous efficient trackers, achieving a 66.0 AUC score and running 202 frames per second (fps).

Table 3: Comparison with state-of-the-art trackers on the LaSOT benchmark. The best results are
shown in underline font. P: precision, norm: normalization

AUC Pnorm P

TrackMAE-L384 72.5 81.3 78.6
TrackMAE-L256 72.4 81.6 78.5
TrackMAE-B384 70.5 79.2 75.8
TrackMAE-B256 71.0 80.5 77.1
SeqTrack-B256 [10] 69.9 79.7 76.3
OSTrack-256 [11] 69.1 78.7 75.2
Mixformer-L [28] 70.1 79.9 76.3
Mixformer-22k [28] 69.2 78.7 74.7
SwinTrack [27] 71.3 – 76.5
AiATrack [44] 69.0 79.4 73.8
TMP [45] 68.5 79.2 73.5
CSWinTT [46] 66.2 75.2 70.9
KeepTrack [47] 67.1 77.2 70.2
STARK [26] 67.1 77.0 –
TransT [24] 64.9 73.8 69.0
TMT [25] 63.9 – 61.4
SiamAttn [48] 56.0 64.8 –

(Continued)
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Table 3 (continued)

AUC Pnorm P

SiamBAN [21] 51.4 59.8 –
Ocean [49] 56.0 65.1 56.6
SiamR-CNN [18] 64.8 72.2 –
DiMP [50] 56.9 65.0 56.7
SiamRPN++ [19] 49.6 56.9 49.1
MDNet [51] 39.7 46.0 37.3

Figure 4: AUC scores of different attributes on the LaSOT benchmark

Table 4: Comparison with state-of-the-art efficient trackers on the LaSOT benchmark. The best results
are shown in underline font. P: precision, norm: normalization

AUC Pnorm P Speed (fps)

TrackMAE-XS 66.0 74.1 69.1 202
HiT-Small [52] 60.5 68.3 61.5 192
FEAR [53] 53.5 – 54.5 105
HCAT [54] 59.3 68.7 61.0 195

(Continued)
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Table 4 (continued)

AUC Pnorm P Speed (fps)

E.T.Track [55] 59.1 – – 40
LightTrack [56] 53.8 – 53.7 128

TrackingNet. The SOTA comparison results on TrackingNet [39] are detailed in Table 5. Our
TrackMAE-L384 achieves the highest performance with an AUC score of 85.4. Furthermore,
TrackMAE-B256 exhibits superior performance compared to the aligned OSTrack-256 and SeqTrack-
B256. As outlined in Table 6, TrackMAE-XS surpasses previous efficient trackers.

Table 5: Comparison with state-of-the-art trackers on the TrackingNet benchmark. The best results
are shown in underline font. P: precision, norm: normalization

AUC Pnorm P

TrackMAE-L384 85.4 89.3 85.5
TrackMAE-L256 84.8 88.8 84.2
TrackMAE-B384 84.9 89.0 84.4
TrackMAE-B256 83.8 88.2 82.6
SeqTrack-B256 [10] 83.3 88.3 82.2
OSTrack-256 [11] 83.1 87.8 82.0
Mixformer-L [28] 83.9 88.9 83.1
Mixformer-22k [28] 83.1 88.1 81.6
SwinTrack [27] 84.0 – 82.8
AiATrack [44] 82.7 87.8 80.4
TMP [45] 81.5 86.4 78.9
CSWinTT [46] 81.9 86.7 79.5
STARK [26] 82.0 86.9 –
TransT [24] 81.4 86.7 80.3
TMT [25] 78.4 83.3 73.1
SiamAttn [48] 75.2 81.7 –
SiamR-CNN [18] 81.2 85.4 80.0
DiMP [50] 74.0 80.1 68.7
SiamRPN++ [19] 73.3 80.0 69.4
MDNet [51] 60.6 70.5 56.5

GOT-10k. The SOTA comparison results on GOT-10k [40] are elaborated in Tables 7 and 8.
Our TrackMAE model family exhibits competitive performance compared to previous trackers.
Specifically, TrackMAE-L384 attains the top result with a score of 77.0 in average overlap (AO) score,
while TrackMAE-XS achieves the top efficient performance with a score of 66.9 in AO score.
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Table 6: Comparison with state-of-the-art efficient trackers on the TrackingNet benchmark. The best
results are shown in underline font. P: precision, norm: normalization

AUC Pnorm P Speed (fps)

TrackMAE-XS 79.8 84.5 76.5 202
HiT-Small [52] 77.7 81.9 73.1 192
HCAT [54] 76.6 82.6 72.9 195
E.T.Track [55] 75.0 80.3 70.6 40
LightTrack [56] 72.5 77.8 69.5 128

Table 7: Comparison with state-of-the-art trackers on the GOT-10k benchmark. The best results are
shown in underline font.

AO SR0.5 SR0.75

TrackMAE-L384 77.0 85.4 76.5
TrackMAE-L256 76.4 85.2 74.2
TrackMAE-B384 74.9 83.8 72.2
TrackMAE-B256 74.0 83.5 71.9
SeqTrack-B256 [10] 73.7 – –
OSTrack-256 [11] 73.6 82.8 71.4
SimTrack [12] 69.8 78.8 66.0
Mixformer-22k [28] 70.7 80.0 67.8
SwinTrack [27] 72.4 – 67.8
AiATrack [44] 69.6 80.0 63.2
SBT [29] 70.4 80.8 64.7
CSWinTT [46] 69.4 78.9 65.4
STARK [26] 68.8 78.1 64.1
TransT [24] 72.3 82.4 68.2
TMT [25] 68.8 80.5 59.7
Ocean [49] 61.1 72.1 47.3
SiamR-CNN [18] 64.9 72.8 59.7
DiMP [50] 61.1 71.7 49.2
SiamRPN++ [19] 51.7 61.6 32.5
MDNet [51] 29.9 30.3 9.9

4.3 Ablation Study

We use TrackMAE-B256 as the baseline model in our ablation study. The result of the baseline
model is reported in Table 9 (#1).
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Table 8: Comparison with state-of-the-art efficient trackers on the GOT-10k benchmark. The best
results are shown in underline font.

AO SR0.5 SR0.75 Speed (fps)

TrackMAE-XS 66.9 76.2 60.0 202
HiT-Small [52] 62.6 71.2 54.4 192
FEAR [53] 61.9 72.2 – 105
HCAT [54] 65.1 76.5 56.7 195
LightTrack [56] 61.1 71.0 – 128

Table 9: Ablation study on LaSOT and GOT-10k. � denotes the performance change (averaged over
benchmarks) compared with the baseline

# Method LaSOT GOT-10k �

1 Baseline 71.0 74.0 –
2 w/o motion branch 67.5 70.0 −3.8
3 w/o appearance branch 69.6 73.2 −1.1
4 TrackMAE → MAE 69.1 72.4 −1.8
5 TrackMAE → Scratch 62.3 61.2 −10.8
6 Decoder width: 512 → 256 69.5 72.4 −1.6
7 Decoder width: 512 → 768 70.4 73.5 −0.6
8 Decoder depth: 8 → 4 70.4 74.0 −0.3
9 Decoder depth: 8 → 12 71.3 74.4 +0.4
10 Appearance mask ratio: 75% → 65% 70.8 73.6 −0.3
11 Appearance mask ratio: 75% → 85% 70.1 73.3 −0.8
12 Motion mask ratio: 60% → 50% 70.9 74.0 −0.1
13 Motion mask ratio: 60% → 70% 70.3 73.7 −0.5

Component Analysis. We separately remove the motion branch and the appearance branch, then
train the remaining branch using the same datasets. The results in Table 9 (#2 and #3) demonstrate a
decrease in performance for both cases, indicating that learning to understand image appearance and
inter-frame motion correlation is indispensable. Furthermore, it highlights that the impact of inter-
frame motion correlations is more significant.

Pre-training Method. We conduct a comparative analysis between our TrackMAE pretraining
method, the MAE pretraining method, and training from scratch. For the MAE pretraining, we
utilize aligned datasets with those used in TrackMAE, following the original training schedule length
as specified in its original paper [10], which incurs a training time five times longer than ours. As
depicted in Table 9 (#4), although the MAE method requires a longer training duration, it yields
inferior performance compared to our approach. In contrast, for the training from scratch method,
we train the tracking model on tracking datasets with the same training time as TrackMAE. As
illustrated in Table 9 (#5), this approach obtains significantly lower performance compared to our
method, underscoring the efficacy of our approach.
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Decoder Architecture. We report the influence of the decoder settings (depth and width) in Table 9
(#6–#9). After a thorough evaluation, considering factors such as performance and computational
efficiency, we determined the optimal configuration with a decoder depth of 8 and width of 512.

Masking Ratio. Table 9 (#10–13) delineates the impact of the masking ratio. Notably, the optimal
masking ratio for the appearance branch is relatively high (75%), while for the motion branch, it
is modest (60%). This discrepancy can be attributed to the inherent reconstruction processes for
images and frames. A higher masking ratio necessitates the model to develop a deeper understanding
of appearance for image reconstruction. Conversely, a modest masking ratio prompts the model to
organize the remaining patches to reconstruct frames, facilitating the learning of motion relationships.

4.4 Visualization Results

In this section, to enhance our understanding of the model’s capabilities and limitations, we
visualize several representative cases, encompassing both successful and unsuccessful instances.

Successful Cases. Fig. 5 illustrates representative successful cases. Our model demonstrates good
tracking accuracy and robustness under various conditions such as changes in target appearance and
viewpoint (#1), motion blur (#2), severe occlusion (#3), low illumination (#4), and adverse weather
conditions (#5).

Figure 5: Visualization of representative successful cases

Failure Cases. Fig. 6 displays representative failure cases. The model is prone to tracking drift in
the presence of interfering similar objects (#1), particularly when the correct target is occluded (#2).
Additionally, when the background is cluttered (#3), there is a decrease in the precision of bounding
box predictions.
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Figure 6: Visualization of representative failure cases

5 Conclusion

This work proposes a new ViT pretraining method for visual object tracking, i.e., TrackMAE. It
employs a two-branch masked autoencoder method to train the ViT to understand both the appear-
ance and the motion information, resulting in less training cost and higher tracking performance.
Extensive experiments demonstrate that TrackMAE is effective, achieving competitive performance in
the tracking task. We hope this work could provide a flexible way to train a tracking model, facilitating
the model design and training of tracking.
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