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ABSTRACT

This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and
Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification
of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools
to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of
ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers
capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration
of an Attention Mechanism refines the model’s focus on critical segments of ECG data, ensuring a nuanced
analysis that highlights the most informative features for arrhythmia classification. Evaluated on a comprehensive
dataset of 12-lead ECG recordings, our ensemble model demonstrates superior performance in distinguishing
between various types of arrhythmias, with an accuracy of 98.4%, a precision of 98.1%, a recall of 98%, and
an F-score of 98%. This novel combination of convolutional and recurrent neural networks, supplemented by
attention-driven mechanisms, advances automated ECG analysis, contributing significantly to healthcare’s machine
learning applications and presenting a step forward in developing non-invasive, efficient, and reliable tools for early
diagnosis and management of heart diseases.
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Nomenclature

CNN Convolutional Neural Network
BiGRU Bidirectional Gated Recurrent Unit
ResNet Deep Residual Networks
ECG (Electrocardiogram) A test that measures the electrical activity of the heart and is used to

identify various heart conditions
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Arrhythmia Irregular heartbeat patterns that can be indicative of various cardiac
conditions

1 Introduction

In the realm of biomedical signal processing, the application of advanced machine learning
techniques for the analysis of electrocardiograms (ECGs) represents a significant stride towards the
enhancement of diagnostic processes, particularly in the domain of cardiovascular diseases (CVDs).
Cardiovascular diseases remain the leading cause of mortality globally, underscoring the critical need
for efficient, accurate, and early detection methodologies [1]. The electrocardiogram (ECG), a non-
invasive test that measures the electrical activity of the heart, is pivotal in the diagnosis of various
cardiac abnormalities. However, the interpretation of ECG signals demands a high level of expertise
and is often time-consuming, given the complexity and variability of the signals [2].

The advent of deep learning has revolutionized the field of automated ECG analysis by providing
tools capable of learning from data directly, without the need for manual feature extraction. Among
these, Convolutional Neural Networks (CNNs) have shown exceptional promise in recognizing
patterns and anomalies within ECG signals, attributed to their ability to capture spatial hierarchies
in data [3,4]. Concurrently, the Bidirectional Gated Recurrent Unit (BiGRU), a variant of recurrent
neural networks, has demonstrated its efficacy in capturing temporal dependencies and dynamics in
time-series data, making it particularly suited for sequential data like ECGs [5].

However, despite these advancements, the challenge of integrating the spatial and temporal
features of ECG signals in a cohesive model that maximizes diagnostic accuracy remains [6]. To address
this, the proposed research introduces a novel Hybrid Deep CNN-BiGRU Model augmented with an
Attention Mechanism. This model aims to harness the spatial pattern recognition capabilities of CNNs
and the temporal dynamic learning of BiGRUs, while the attention mechanism focuses on the most
informative parts of the ECG signal, thereby improving the overall accuracy of CVD detection.

The rationale behind combining CNNs with BiGRUs lies in their complementary strengths; while
CNNs excel in analyzing visual patterns, BiGRUs are adept at understanding sequence data. The
incorporation of an attention mechanism further enhances this synergy by allowing the model to
dynamically weigh the importance of different features at various time steps, a critical capability given
the inherent variability in ECG signals across different patients and conditions [6]. This approach
aligns with the evolving landscape of machine learning in healthcare, where the integration of multiple
deep learning architectures to leverage their respective strengths is becoming increasingly prevalent [7].

The significance of this study is manifold. First, it contributes to the burgeoning field of
AI-enabled healthcare by presenting a robust framework for ECG analysis that could potentially
streamline the diagnostic process for CVDs. Moreover, by improving the accuracy and efficiency
of CVD detection, the proposed model holds the promise of facilitating early intervention, thereby
reducing the morbidity and mortality associated with cardiovascular diseases [8]. Finally, this research
underscores the importance of interdisciplinary collaboration in the development of AI tools for
healthcare, combining insights from computer science, biomedical engineering, and clinical cardiology.

The escalating prevalence of cardiovascular diseases globally necessitates advanced diagnostic
tools for precise classification and management. This work introduces an innovative ensemble
approach that synergizes Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units
(BiGRU) augmented with an Attention Mechanism. The major contributions of this research include
leveraging the hierarchical feature extraction capabilities of ResNets to identify intricate patterns
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within electrocardiogram (ECG) data, and utilizing BiGRU layers to capture the temporal dynamics
essential for understanding the sequential nature of ECG signals. The integration of an Attention
Mechanism further refines the model’s focus on critical segments of ECG data, ensuring a nuanced
analysis that highlights the most informative features for arrhythmia classification. This combination
of convolutional and recurrent neural networks, supplemented by attention-driven mechanisms,
advances automated ECG analysis, contributing significantly to the development of non-invasive,
efficient, and reliable tools for early diagnosis and management of heart diseases.

2 Related Works

The exploration of automated systems for the detection and diagnosis of cardiovascular diseases
(CVDs) using electrocardiogram (ECG) data has been an area of intensive research over the past
decade. The utility of ECGs in diagnosing various cardiac conditions, coupled with advancements in
machine learning (ML) and deep learning (DL), has paved the way for significant breakthroughs in
this field [9]. This section reviews the related work, focusing on the development and application of
various ML and DL models for ECG analysis, highlighting the evolution towards hybrid models and
the incorporation of attention mechanisms.

Early efforts in automated ECG analysis predominantly relied on traditional machine learning
algorithms, which required the manual extraction of features based on domain knowledge. For
instance, Abubaker (2022) [10] employed Support Vector Machines (SVM) for classifying arrhythmias,
demonstrating the potential of ML in identifying specific patterns within ECG signals. Similarly,
decision trees, k-nearest neighbors (KNN), and linear discriminant analysis (LDA) have been utilized,
each presenting a unique approach to the classification and interpretation of cardiac signals [11].

The advent of deep learning offered a paradigm shift in ECG analysis by eliminating the need for
manual feature extraction. Convolutional Neural Networks (CNNs) emerged as a powerful tool for
this purpose, given their proficiency in handling spatial data. Zhang et al. showcased the application
of CNNs in detecting myocardial infarction, achieving remarkable accuracy rates [12]. Moreover,
Recurrent Neural Networks (RNNs), and specifically Long Short-Term Memory (LSTM) networks,
were explored for their ability to capture temporal dependencies in ECG data, further enhancing
diagnostic capabilities [13].

Despite these advancements, individual models often faced limitations in capturing both spatial
and temporal features comprehensively. This gap led to the exploration of hybrid models. For example,
Din et al. introduced a combination of CNN and LSTM architectures, leveraging the spatial pattern
recognition of CNNs with the sequence learning capability of LSTMs [14]. This hybrid approach
marked a significant step towards a more holistic analysis of ECG signals, revealing the complexities
of cardiac conditions more effectively.

The integration of Bidirectional Gated Recurrent Unit (BiGRU) models with CNNs further
refined the analytical prowess of these hybrid systems. BiGRUs, known for their efficiency in
processing time-series data, offered an improved mechanism for understanding the temporal dynamics
of ECG signals. Cheng et al. demonstrated the superiority of CNN-BiGRU hybrids over their single-
model counterparts, attributing this to the synergistic effect of combining spatial and temporal
analysis [15].

The addition of attention mechanisms to these hybrid models introduced a new dimension to ECG
signal analysis. Attention mechanisms allow models to focus on the most salient parts of the data,
enhancing interpretability and accuracy. Sun presented an innovative CNN-LSTM model equipped
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with an attention mechanism, showcasing improved performance in detecting arrhythmic events [16].
This model underscored the potential of attention-based models in identifying subtle, yet clinically
significant, features within ECG recordings.

Recent studies have further expanded on this foundation, exploring various configurations and
applications of hybrid DL models. Liu et al. [17] and Oleiwi et al. [18] investigated the use of multi-
channel ECG data, employing CNN-BiGRU architectures to enhance diagnostic precision across a
broader spectrum of cardiovascular conditions. Furthermore, the integration of generative adversarial
networks (GANs) with hybrid models has been explored for data augmentation, addressing the
challenge of limited labeled ECG data in training high-performing models [19].

The significance of these developments cannot be overstated. The capacity to accurately and
efficiently diagnose CVDs using ECG data holds profound implications for patient care, promising
early detection and intervention. Moreover, the evolution towards models that combine the strengths
of CNNs, RNNs (including LSTMs and BiGRUs), and attention mechanisms reflects a broader trend
in AI research towards creating more nuanced, adaptive, and effective analytical tools [20,21].

Thus, the landscape of ECG analysis for CVD detection is rapidly advancing, driven by inno-
vations in machine learning and deep learning. The trajectory from traditional ML algorithms to
sophisticated hybrid DL models equipped with attention mechanisms illustrates a commitment to
improving diagnostic accuracy and patient outcomes. As this field continues to evolve, it is anticipated
that future research will further refine these models, enhancing their applicability and effectiveness in
clinical settings.

2.1 Cutting Edges

Deep Learning Paradigm Shift: The emergence of Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) provided a significant leap forward in ECG analysis, eliminating
the need for manual feature extraction and enabling automated recognition of spatial and temporal
patterns. Hybrid models, combining CNNs with Long Short-Term Memory (LSTM) or Bidirectional
Gated Recurrent Units (BiGRU), further refined this approach, capturing both spatial and temporal
dynamics comprehensively.

Attention Mechanisms: The incorporation of attention mechanisms into hybrid models has added
a new dimension to ECG analysis. This allows models to focus on the most salient parts of the
data, enhancing interpretability and accuracy. Islam et al. showcased this with a CNN-LSTM model
equipped with an attention mechanism, improving performance in detecting arrhythmic events [22].

Data Augmentation with GANs: To address the challenge of limited labeled ECG data, generative
adversarial networks (GANs) have been integrated into hybrid models for data augmentation. This
approach has helped expand the training datasets available to models, further improving their
diagnostic precision.

2.2 Gaps and Opportunities

Comprehensive Analysis: While hybrid models have advanced significantly, individual models still
face limitations in comprehensively capturing both spatial and temporal features. Further refinements
in hybrid models are needed to ensure a more holistic analysis of ECG signals.
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Multi-Channel Data: The exploration of multi-channel ECG data remains an evolving area. While
models such as CNN-BiGRU architectures have been employed to enhance diagnostic precision across
a broader spectrum of cardiovascular conditions, more work is needed to harness the full potential of
multi-channel ECG data.

Clinical Applicability: Although these advancements have shown promising results in research
settings, there is a need to further develop these models to enhance their applicability and effectiveness
in clinical settings. This includes ensuring their robustness and adaptability across diverse patient
populations.

In conclusion, the landscape of ECG analysis for CVD detection is rapidly advancing, driven by
innovations in machine learning and deep learning. The trajectory from traditional ML algorithms
to sophisticated hybrid DL models equipped with attention mechanisms illustrates a commitment to
improving diagnostic accuracy and patient outcomes. Future research will likely refine these models
further, enhancing their applicability and effectiveness in clinical settings.

3 Materials and Methods

The proposed approach is structured around a sequence of fundamental phases: beginning
with data setup, followed by mitigating class imbalance through data augmentation, identifying key
features, and culminating in the classification of cardiovascular conditions, as illustrated in Fig. 1.
The methodology initiates with an exhaustive integration of the MIT-BIH Arrhythmia database [23].
This step is succeeded by data preprocessing measures, chiefly aimed at eliminating noise from the
ECG recordings. In response to the challenge presented by unequal class distributions, augmentation
methods are implemented to enhance the presence of less represented classes. Following this, a process
of feature extraction is undertaken, making use of a library dedicated to the extraction of features
from time-series data to produce vectors that encapsulate essential attributes for the subsequent
classification phase. With these preparatory activities concluded, our innovative ensemble CNN-
BiLSTM model is applied to the task of classification. In this final stage, the model evaluates the
feature vectors to determine the posterior probabilities associated with different classes, effectively
discerning the distinct types of cardiac rhythms. The methodologies employed for feature extraction
and classification will be elaborated on in the sections that follow.

3.1 Data

For our study, the MIT-BIH Arrhythmia database was utilized throughout the training and
evaluation stages. Renowned in cardiac research, this database contains detailed ECG data from 47
subjects, providing 48 half-hour recordings obtained using lead II and V1 electrode positions. The data,
sampled at 360 Hz and digitized with an 11-bit resolution over a 10 mV range, encompasses 109,443
heartbeats classified into five categories as per AAMI standards: Normal Beat, Supraventricular
Ectopic Beat, Ventricular Ectopic Beat, Fusion Beat, and Unknown Beat. The dataset is split into
training (80%) and testing (20%) segments to facilitate a comprehensive analysis across different
heartbeat types.

3.2 Data Preprocessing

In our study, preprocessing is essential for enhancing the quality of ECG signals by removing
various noises, including muscle artifacts, motion-related disturbances, electrical noise from external
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sources, baseline shifts, and recording device noise [24]. We adopted two preprocessing methods to
combat baseline wander and high-frequency noise. Baseline drift is reduced through median filtering
with windows of 200 and 600 ms. High-frequency noise is mitigated using a Savitzky-Golay filter
[25], as shown in Fig. 2. To segment the ECG signals into individual heartbeats, we utilize the
Pan-Tompkins algorithm [26], known for its effectiveness in detecting R-peaks, with the MIT-BIH
Arrhythmia database providing the necessary annotations. Each heartbeat is represented by a 500 ms
window, allowing for consistent data analysis and interpretation.

Figure 1: Flowchart of the proposed system
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(a) Original signal

(b) Filtered signal

Figure 2: Original and filtered ECG

3.3 Data Preparation

In the data preparation phase of our study, we meticulously divided the dataset into training and
testing subsets, allocating 80% for training purposes and reserving 20% for evaluation. This strategic
partitioning ensures comprehensive exposure to diverse data patterns during model training, while
also setting aside a representative sample for rigorous testing. To address the inherent challenge of
class imbalance within the dataset, we implemented the Synthetic Minority Over-sampling Technique
(SMOTE). SMOTE algorithmically generates synthetic samples from the minority class, thereby
equalizing the distribution across different classes. This is achieved by interpolating between neigh-
boring examples, effectively augmenting the minority class to match the prevalence of the majority
class. The formula for creating a synthetic sample S is given by Eq. (1).

S = x + λ × (x′ − x) (1)

where x and x′ are samples from the minority class and λ is a random number between 0 and 1. This
technique enhances the model’s ability to learn from a balanced dataset, improving its generalization
capabilities across all classes. Fig. 3 demonstrates initial and balanced data using SMOTE technique.
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Figure 3: Applying SMOTE data balancing technique

3.4 Feature Extraction

In the feature extraction stage of our methodology, we employed the Time Series Feature
Extraction Library (TSFEL) to systematically distill relevant features from the ECG signals. TSFEL is
designed to automate the extraction of a comprehensive set of features, enabling the efficient analysis
of time-series data. It operates by calculating a diverse array of statistical, temporal, and spectral
features, thereby providing a multidimensional representation of the underlying characteristics of
the ECG signals. This approach facilitates the identification of distinctive patterns and anomalies
associated with various cardiovascular conditions. By leveraging TSFEL, we efficiently condensed
the raw ECG data into a feature set that captures the essential dynamics and intricacies of the heart’s
electrical activity. The extracted features serve as the input for the subsequent machine learning models,
significantly enhancing their ability to classify and predict different types of cardiac events with high
accuracy.

4 Proposed CNN-BiGRU Model with Attention Mechanism

The proposed CNN-BiGRU model with an attention mechanism is designed to leverage both
convolutional and recurrent neural networks for effective feature extraction and sequence learning
from ECG data, culminating in the classification of heartbeat types. This model architecture seamlessly
integrates convolutional blocks for spatial feature extraction, BiGRU layers for capturing temporal
dynamics, and an attention mechanism to emphasize salient features, leading to a fully connected layer
that drives the classification process. Fig. 4 demonstrates the proposed model for ECG classification.
In next sections, we outline the model components and the associated mathematical framework.

4.1 Input Layer

The model’s input comprises electrocardiogram (ECG) data, encapsulated as sequences capturing
the heart’s electrical activity over time. These sequences represent the foundational data from which
the model discerns patterns indicative of various cardiac conditions. The input to the model consists
of ECG data, represented as:

X = {x1, x2, . . . , xT} (2)

where T is the length of the ECG time series.
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Figure 4: Architecture of the proposed CNN-BiGRU network with attention mechanism

4.2 Convolutional Block

The Convolutional Block is designed to extract spatial features from the input data. It comprises
Conv1D layers, residual blocks, and dropout for regularization, iterated four times. The Conv1D layer
can be described as:

Fconv (x) = ReLU (W ∗ x + b) (3)

where W and b represent the weights and bias, and x is the input. The ReLU function introduces
non-linearity. Each residual block within the Convolutional Block follows the formula:

Fres (x) = Fconv (ReLU (BN (MaxPool (Fconv (x))))) (4)

where BN denotes batch normalization, and MaxPool is the max pooling operation. Dropout is applied
after the residual blocks to prevent overfitting:

Fdropout (x) = Dropout (Fres (x), 0.5) (5)

4.3 BiGRU Layer

The BiGRU layer in the proposed network architecture plays a crucial role in capturing the
temporal dynamics and dependencies within the ECG data, following the feature extraction performed
by the convolutional blocks. A Bidirectional Gated Recurrent Unit (BiGRU) combines two GRU
networks that process the data in opposite directions (forward and backward), allowing the model to
incorporate information from both past and future contexts relative to a given time step.

A single GRU cell updates its hidden state ht at each time step t based on the current input xt and
the previous hidden state ht−1. The update mechanism involves two gates: the update gate zt and the
reset gate rt. These gates control the degree to which the GRU cell updates its content and integrates
new input, respectively.
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Update gate:

zt = σ (Wzxt + Uzht−1 + bz) (6)

Reset gate:

rt = σ (Wrxt + Urht−1 + br) (7)

where Wz, Wr, Uz, and Ur are weight matrices, bz and br are bias vectors, and σ represents the sigmoid
activation function.

Candidate Hidden State:

The candidate hidden state h̃t is computed as follows, incorporating the input and the past hidden
state, modulated by the reset gate:

h̃t = tan h (Whxt + Uh (rtΘht−1) + bh) (8)

Final Hidden State Update:

Finally, the hidden state is updated by interpolating between the old state and the candidate state,
weighted by the update gate:

ht = ztΘht−1 + (1 − zt) Θh̃t (9)

Bidirectional Processing

The BiGRU layer consists of two GRU networks that process the input sequence in opposite
directions: one forward (

−−−→
GRU) and one backward (

←−−−
GRU). Each direction produces its own sequence

of hidden states:

Forward hidden states:
→
ht = −−−→

GRU
(

xt,
→
ht−1

)

Backward hidden states:
←
ht = ←−−−

GRU
(

xt,
←
ht−1

)

The final output at each time step t is the concatenation of the forward and backward hidden
states:

ht =
→
ht ⊕

←
ht (10)

where ⊕ denotes concatenation.

This bidirectional processing allows the network to utilize information from both the past and the
future when making decisions at any given point in the sequence, enhancing its ability to capture the
temporal dependencies within the ECG data effectively.

4.4 Attention Mechanism

The attention mechanism weights the importance of each time step’s features:

αt = exp (et)∑T

t=1 exp (ek)
(11)

et = vT tan h (Whht + ba) (12)
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where v, Wh, ba are learnable parameters, and ht is the hidden state from the BiGRU layer. The context
vector, c is calculated as the weighted sum of hidden states:

c =
∑T

t=1
αtht (13)

4.5 Fully Connected Layer

The context vector is then flattened and passed through dense layers and a dropout layer:

c =
∑T

t=1
αtht (14)

4.6 Output Layer

Finally, the SoftMax layer outputs the probability distribution over the heartbeat classes:

P (y|x) = SoftMax
(
W0Ffinal (x) + b0

)
(15)

where W0 and b0 represent the weights and bias of the output layer, and y is the classified heartbeat type.

In summary, the proposed CNN-BiGRU model with an attention mechanism represents a
sophisticated approach to ECG signal analysis, optimizing the extraction and processing of both
spatial and temporal features, ultimately enhancing the accuracy of heartbeat classification.

5 Results
5.1 Evaluation Parameters

In this research, we implemented a split of training and testing data to evaluate the performance of
our model using the MIT-BIH Arrhythmia Dataset. We selected 800 ECG recordings at random for the
training phase, with the remaining data allocated for validation of the model’s precision. Performance
was assessed through various indicators. Accuracy was determined by the ratio of accurately classified
instances to the overall count. To address class imbalance, we applied the F-score, integrating precision
and recall for a balanced assessment of accuracy. Precision quantifies the accuracy of positive
predictions, while recall measures the model’s capacity to capture all positive instances [27–29].

accuracy = TP + TN
TP + TN + FP + FN

(16)

precision = TP
TP + FP

(17)

recall = TP
TP + FN

(18)

F − score = 2 × recall × precision
recall + precision

(19)

Understanding the performance metrics involves recognizing true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), which depict the accurate and erroneous
classifications by the model.
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5.2 Experiment Results

The graph in Fig. 5 represents the progression of performance across 80 epochs in the proposed
model’s training phase. The results of this study underscore the efficacy of the proposed CNN-
BiGRU model with an attention mechanism in analyzing ECG data for the detection of cardiovascular
diseases. The incremental improvement in both training and validation accuracies over 80 epochs illus-
trates the model’s capacity to learn complex patterns inherent in ECG signals. Notably, the convergence
of training and validation accuracies, with a final training accuracy of 96.5% and validation accuracy
of 95.9%, signifies a robust generalization ability, minimizing the risk of overfitting. The employment
of SMOTE for class balancing and TSFEL for feature extraction further contributed to the model’s
performance. These results, particularly the high validation accuracy, affirm the potential of deep
learning architectures in enhancing diagnostic procedures for cardiovascular conditions, promising
significant implications for automated and precise ECG analysis in clinical settings.

Figure 5: Train and validation accuracy of the proposed model in 80 learning epochs

Fig. 5b delineates a compelling narrative of progressive model refinement, as evidenced by the
downward trajectories of both training and validation loss across 80 epochs. The consistent decrease
in loss rates underscores the model’s adeptness at learning from the ECG data, refining its predictions
with each epoch. The convergence of training and validation loss suggests a robust model that
generalizes well to new, unseen data, thereby mitigating the risk of overfitting. This trend is indicative of
the model’s effectiveness in detecting cardiac anomalies, validating the potential of the proposed CNN-
BiGRU architecture with an attention mechanism in advancing cardiovascular disease diagnostics.
The results underscore the model’s capacity for precise interpretation of complex ECG signals, a
critical step toward enhancing clinical outcomes through early and accurate detection.

Fig. 6 presents a comprehensive evaluation of the proposed CNN-BiGRU model’s performance
across multiple ECG leads, depicting confusion matrices for leads I to V6. These matrices highlight
the model’s adeptness in accurately classifying heartbeats into five distinct categories: Normal
(N), Supraventricular Ectopic (S), Ventricular Ectopic (V), Fusion (F), and Unknown (Q). The
predominance of high values along the diagonal for each matrix reflects the model’s commendable
accuracy and reliability in diagnosing various cardiac conditions. Notably, the matrices also reveal
some misclassifications, particularly between closely related heartbeat types, suggesting areas for
potential refinement. Overall, the consistent performance across different leads validates the model’s
robustness and its applicability in clinical settings for enhancing cardiovascular disease detection and
diagnosis.
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Figure 6: (Continued)
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Figure 6: Confusion matrices of the proposed model for each lead

Fig. 7 exhibits the classification prowess of the proposed model through a probabilistic confusion
matrix, delineating the predictive accuracies for five heartbeat categories: Normal (N), Supraventric-
ular Ectopic (S), Ventricular Ectopic (V), Fusion (F), and Unknown (Q). Notably, the model achieves
exceptional classification precision, with probabilities of correct predictions predominately above 0.9
for all categories, signifying a robust diagnostic capability. The minor probabilities of misclassification,
notably for Supraventricular beats, reflect the inherent challenge in distinguishing between certain
heartbeat types yet underscore the model’s substantial accuracy. This visualization encapsulates the
model’s efficacy in discerning and categorizing ECG signals, emphasizing its significant potential in
enhancing cardiac anomaly detection and contributing to the advancement of automated, precision-
driven cardiovascular healthcare solutions.

Fig. 8, titled “Performance Results,” graphically delineates the accuracy metrics across three
datasets: training, validation, and test, for five distinct heartbeat categories (N, S, V, F, Q). The bar
chart reveals that the training accuracy (blue bars) consistently surpasses 98% across all categories,
indicating the model’s profound learning capability. Validation accuracy (intense orange bars) and
test accuracy (green bars) also exhibit high levels, mostly hovering around the 98% mark, albeit with
a slight dip in category V, where they approach 96%. These results underscore the model’s exceptional
generalization ability, affirming its potential as a reliable tool for cardiovascular disease diagnosis.
The minimal discrepancy between training, validation, and test accuracies suggests that the model
maintains its robustness and efficacy across unseen data, essential qualities for practical clinical
application.
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Figure 7: Confusion matrix of the proposed model in 12-lead ECG classification

Figure 8: Performance results of the proposed CNN-BiGRU network with attention mechanism

Table 1 provides a comparative analysis of the proposed Ensemble CNN-BiLSTM Network
against recent state-of-the-art studies in ECG analysis. The proposed model, evaluated on the MIT-
BIH Arrhythmia database, achieves notable metrics with an accuracy of 98.4%, precision of 98.1%,
recall of 98%, and an F-score of 98%, positioning it at the forefront of ECG diagnostic methodologies.
This performance surpasses that of other recent approaches, such as the ensemble deep model by
Kokubo et al. and the multiscale joint recurrence quantification analysis by Sun et al., which reported
lower accuracies on different datasets. Notably, traditional models like the Naïve Bayes and Radial
Basis Functions by Srinivasan et al. demonstrate competitive results but fall short of the proposed
model’s benchmarks. The comparison underlines the proposed model’s superior ability to accurately
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diagnose cardiac conditions, affirming its potential for enhancing ECG-based diagnostics in clinical
settings.

Table 1: Results and comparison with state-of-the-art studies were analyzed

Proposed ensemble
CNN-BiLSTM network

MIT-BIH arrhythmia
database

Accuracy = 98.4%, Precision = 98.1%,
Recall = 98%, F-score = 98%

Ensemble deep model [30] MIT-BIH dataset Accuracy = 94.425%
Attention-based hybrid deep
learning model [31]

MIT-BIH dataset Accuracy = 97.4%, F-score = 93.2%

Inter-patient ECG arrhythmia
classification network [32]

MIT-BIH dataset Accuracy = 95.6%

Convolutional
Takagi–Sugeno–Kang-type
fuzzy network [33]

MIT-BIH dataset Accuracy = 97.33%, Precision
= 96.00%, Recall = 97.96%

Bimodal CNN [34] Chapman–Shaoxing ECG
dataset [35]

94.50% accuracy for the identification
of MI

Multi-modal stacking
ensemble [36]

Chapman–Shaoxing ECG
dataset [35]

Accuracy = 93.97%, Precision
= 93.7%, F1-score = 93.6%

Deep extreme learning [37] UCI-repository data [35] Accuracy = 96.15%
Radial basis functions [38] Own data Accuracy = 90.78%
Deep vanilla LSTM [39] UCI repository Statlog

(Heart) dataset [40]
Accuracy = 99.14%, Recall = 95%

6 Conclusion

This research paper culminated in the development and validation of an Ensemble CNN-
BiLSTM Network, showcasing exemplary diagnostic performance in the context of ECG analysis for
cardiovascular disease detection. Employing the MIT-BIH Arrhythmia database, our proposed model
achieved an impressive accuracy of 98.4%, alongside notable precision, recall, and F-score metrics,
unequivocally establishing its superiority over current state-of-the-art methods. Such achievements not
only highlight the robustness and efficacy of integrating convolutional and bidirectional long short-
term memory networks but also underscore the critical role of advanced deep learning architectures in
refining medical diagnostics. Comparative analysis with contemporaneous studies further validated
our model’s advanced capabilities, outperforming other approaches with significant margins. This
research advances the frontier of ECG interpretation technology, offering a promising tool for
healthcare professionals to enhance the accuracy and efficiency of cardiovascular disease diagnosis.
Beyond the immediate technical contributions, this work paves the way for future investigations into
deep learning applications within medical imaging and diagnostics, encouraging the exploration of
more complex models and diverse datasets. As we move forward, the potential integration of such AI-
driven tools in clinical settings could dramatically transform patient care, enabling early detection,
personalized treatment plans, and ultimately improving patient outcomes. This study serves as a
foundational step towards realizing the full potential of AI in healthcare, emphasizing the importance
of interdisciplinary collaboration to address the complexities of medical diagnostics.
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transformation based approach for deep learning,” PeerJ Comput. Sci., vol. 7, no. 1, pp. 1–18, 2021. doi:
10.7717/peerj-cs.386.

[3] A. Shoughi, M. Dowlatshahi, A. Amiri, M. Rafsanjani, and R. Batth, “Automatic ECG classification using
discrete wavelet transform and one-dimensional convolutional neural network,” Computing, vol. 106, no.
4, pp. 1227–1248, 2023. doi: 10.1007/s00607-023-01243-0.

[4] H. Rai and K. Chatterjee, “Hybrid CNN-LSTM deep learning model and ensemble technique for
automatic detection of myocardial infarction using big ECG data,” Appl. Intell., vol. 52, no. 5, pp. 5366–
5384, 2022. doi: 10.1007/s10489-021-02696-6.

[5] S. Dhyani, A. Kumar, and S. Choudhury, “Arrhythmia disease classification utilizing ResRNN,” Biomed.
Signal Process. Control, vol. 79, no. 13, pp. 104160, 2023. doi: 10.1016/j.bspc.2022.104160.

[6] Y. Jin et al., “A novel attentional deep neural network-based assessment method for ECG quality,” Biomed.
Signal Process. Control, vol. 79, no. 6, pp. 104064, Jan. 2023. doi: 10.1016/j.bspc.2022.104064.

[7] E. Elsedimy, S. AboHashish, and F. Algarni, “New cardiovascular disease prediction approach using
support vector machine and quantum-behaved particle swarm optimization,” Multimed. Tools Appl., vol.
83, no. 8, pp. 23901–23928, 2023. doi: 10.1007/s11042-023-16194-z.

[8] S. Dhyani, A. Kumar, and S. Choudhury, “Analysis of ECG-based arrhythmia detection system using
machine learning,” MethodsX , vol. 10, no. 10, pp. 102195, 2023. doi: 10.1016/j.mex.2023.102195.

[9] B. Omarov et al., “Artificial intelligence in medicine: Real time electronic stethoscope for heart diseases
detection,” Comput. Mater. Contin., vol. 70, no. 2, pp. 2815–2833, 2022. doi: 10.32604/cmc.2022.019246.

[10] M. Abubaker, “Detection of cardiovascular diseases in ECG images using machine learning and deep
learning methods,” IEEE Trans. Artif. Intell., pp. 1, 2022. doi: 10.1109/tai.2022.3159505.

[11] N. Salari et al., “Detection of sleep apnea using machine learning algorithms based on ECG signals:
A comprehensive systematic review,” Expert Syst. Appl., vol. 187, no. 2, pp. 115950, Jan. 2022. doi:
10.1016/j.eswa.2021.115950.

https://www.kaggle.com/datasets/mondejar/mitbih-database
https://doi.org/10.1038/s41591-023-02793-8
https://doi.org/10.7717/peerj-cs.386
https://doi.org/10.1007/s00607-023-01243-0
https://doi.org/10.1007/s10489-021-02696-6
https://doi.org/10.1016/j.bspc.2022.104160
https://doi.org/10.1016/j.bspc.2022.104064
https://doi.org/10.1007/s11042-023-16194-z
https://doi.org/10.1016/j.mex.2023.102195
https://doi.org/10.32604/cmc.2022.019246
https://doi.org/10.1109/tai.2022.3159505
https://doi.org/10.1016/j.eswa.2021.115950


358 CMC, 2024, vol.80, no.1

[12] Y. Zhang, S. Liu, Z. He, Y. Zhang, and C. Wang, “A CNN model for cardiac arrhythmias classification
based on individual ECG signals,” Cardiovasc. Eng. Technol., Jan. 2022. doi: 10.1007/s13239-021-00599-8.

[13] C. Song, Z. Zhou, Y. Yu, M. Shi, and J. Zhang, “An improved Bi-LSTM method based on heterogeneous
features fusion and attention mechanism for ECG recognition,” Comput. Biol. Med., vol. 169, pp. 107903,
Feb. 2024. doi: 10.1016/j.compbiomed.2023.107903.

[14] S. Din, M. Qaraqe, O. Mourad, K. Qaraqe, and E. Serpedin, “ECG-based cardiac arrhythmias detection
through ensemble learning and fusion of deep spatial-temporal and long-range dependency features,” Artif.
Intell. Med., vol. 150, no. 25, pp. 102818, Feb. 2024. doi: 10.1016/j.artmed.2024.102818.

[15] Y. Cheng, D. Li, D. Wang, Y. Chen, and L. Wang, “Multi-label arrhythmia classification using 12-lead ECG
based on lead feature guide network,” Eng. Appl. Artif. Intell., vol. 129, no. 8, pp. 107599, Mar. 2024. doi:
10.1016/j.engappai.2023.107599.

[16] J. Sun, “Automatic cardiac arrhythmias classification using CNN and attention-based RNN network,”
Healthc. Technol. Lett., vol. 10, no. 3, pp. 53–61, Apr. 2023. doi: 10.1049/htl2.12045.

[17] K. Liu, T. Liu, D. Wen, M. Zang, S. Zhou and C. Liu, “SRTNet: Scanning, reading, and thinking network
for myocardial infarction detection and localization,” Expert Syst. Appl., vol. 240, no. 10, pp. 122402, Apr.
2024. doi: 10.1016/j.eswa.2023.122402.

[18] Z. C. Oleiwi, E. N. AlShemmary, and S. Al-Augby, “Developing hybrid CNN-GRU arrhythmia prediction
models using fast fourier transform on imbalanced ECG datasets, mathematical modelling of engineering
problems,” Math. Model. Eng. Probl., vol. 11, no. 2, pp. 413–429, Feb. 2024. doi: 10.18280/mmep.110213.

[19] Z. Wang, S. Stavrakis, and B. Yao, “Hierarchical deep learning with generative adversarial network for
automatic cardiac diagnosis from ECG signals,” Comput. Biol. Med., vol. 155, no. 8, pp. 106641, Mar.
2023. doi: 10.1016/j.compbiomed.2023.106641.

[20] Y. Wang, G. Yang, S. Li, Y. Li, L. He and D. Liu, “Arrhythmia classification algorithm based on multi-
head self-attention mechanism,” Biomed. Signal Process. Control, vol. 79, no. 21, pp. 104206, Jan. 2023.
doi: 10.1016/j.bspc.2022.104206.

[21] T. Wang, J. Sun, and Q. Zhao, “Investigating cardiotoxicity related with hERG channel blockers using
molecular fingerprints and graph attention mechanism,” Comput. Biol. Med., vol. 153, pp. 106464, Feb.
2023. doi: 10.1016/j.compbiomed.2022.106464.

[22] M. Islam et al., “HARDC: A novel ECG-based heartbeat classification method to detect arrhythmia using
hierarchical attention based dual structured RNN with dilated CNN,” Neural Netw., vol. 162, no. 4, pp.
271–287, 2023. doi: 10.1016/j.neunet.2023.03.004.

[23] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Eng. Med. Biol.
J., vol. 20, no. 3, pp. 45–50, 2001. doi: 10.1109/51.932724.

[24] J. Li, I. Tobore, Y. Liu, A. Kandwal, and L. Wang, “Non-invasive monitoring of three glucose ranges based
on ECG by using DBSCAN-CNN,” IEEE J. Biomed. Health Inform., vol. 25, no. 9, pp. 3340–3350, Sep.
2021. doi: 10.1109/JBHI.2021.3072628.

[25] A. John, J. Sadasivan, and C. S. Seelamantula, “Adaptive Savitzky-Golay filtering in non-gaussian noise,”
IEEE Trans. Signal Process, vol. 69, pp. 5021–5036, 2021. doi: 10.1109/TSP.2021.3106450.

[26] E. Y. Abd Al-Jabbar, M. M. Mohamedsheet Al-Hatab, M. A. Qasim, W. R. Fathel, and M. A. Fadhil,
“Clinical fusion for real-time complex QRS pattern detection in wearable ECG using the Pan-Tompkins
algorithm,” vol. 12, no. 2, pp. 172–184, Jan. 2023. doi: 10.54216/FPA.120214.

[27] K. C. Siontis, P. A. Noseworthy, Z. I. Attia, and P. A. Friedman, “Artificial intelligence-enhanced
electrocardiography in cardiovascular disease management,” Nat. Rev. Cardiol., vol. 18, no. 7, pp. 465–478,
Feb. 2021. doi: 10.1038/s41569-020-00503-2.

[28] S. K. Saini and R. Gupta, “Artificial intelligence methods for analysis of electrocardiogram signals for
cardiac abnormalities: State-of-the-art and future challenges,” Artif. Intell. Rev., vol. 55, no. 2, pp. 1519–
1565, Apr. 2021. doi: 10.1007/s10462-021-09999-7.

[29] K. Nezamabadi, N. Sardaripour, B. Haghi, and M. Forouzanfar, “Unsupervised ECG analysis: A review,”
IEEE Rev. Bio. Eng., vol. 16, pp. 208–224, 2023. doi: 10.1109/RBME.2022.3154893.

https://doi.org/10.1007/s13239-021-00599-8
https://doi.org/10.1016/j.compbiomed.2023.107903
https://doi.org/10.1016/j.artmed.2024.102818
https://doi.org/10.1016/j.engappai.2023.107599
https://doi.org/10.1049/htl2.12045
https://doi.org/10.1016/j.eswa.2023.122402
https://doi.org/10.18280/mmep.110213
https://doi.org/10.1016/j.compbiomed.2023.106641
https://doi.org/10.1016/j.bspc.2022.104206
https://doi.org/10.1016/j.compbiomed.2022.106464
https://doi.org/10.1016/j.neunet.2023.03.004
https://doi.org/10.1109/51.932724
https://doi.org/10.1109/JBHI.2021.3072628
https://doi.org/10.1109/TSP.2021.3106450
https://doi.org/10.54216/FPA.120214
https://doi.org/10.1038/s41569-020-00503-2
https://doi.org/10.1007/s10462-021-09999-7
https://doi.org/10.1109/RBME.2022.3154893


CMC, 2024, vol.80, no.1 359

[30] A. Rath, D. Mishra, G. Panda, S. C. Satapathy, and K. Xia, “Improved heart disease detection from ECG
signal using deep learning based ensemble model,” Sustain. Comput.: Inform. Syst., vol. 35, no. 4, pp.
100732, Sep. 2022. doi: 10.1016/j.suscom.2022.100732.

[31] W. S. Admass, and G. A. Bogale, “Arrhythmia classification using ECG signal: A meta-heuristic improve-
ment of optimal weighted feature integration and attention-based hybrid deep learning model,” Biomed.
Signal Process. Control, vol. 87, no. 1, pp. 105565, Jan. 2024. doi: 10.1016/j.bspc.2023.105565.

[32] F. Zhou, Y. Sun, and Y. Wang, “Inter-patient ECG arrhythmia heartbeat classification network based on
multiscale convolution and FCBA,” Biomed. Signal Process. Control, vol. 90, no. 1, pp. 105789, Apr. 2024.
doi: 10.1016/j.bspc.2023.105789.

[33] C. J. Lin, H. Cheng, and C. L. Chang, “Automated detection of heart arrhythmia signals by using a
convolutional Takagi-Sugeno–Kang-type fuzzy neural network,” Sens. Mater., vol. 36, no. 2, pp. 639, Feb.
2024. doi: 10.18494/SAM4682.

[34] T. Yoon and D. Kang, “Bimodal CNN for cardiovascular disease classification by co-training
ECG grayscale images and scalograms,” Sci. Rep., vol. 13, no. 1, pp. 2308, Feb. 2023. doi:
10.1038/s41598-023-30208-8.

[35] J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo and C. Rakovski, “A 12-lead electrocardiogram database
for arrhythmia research covering more than 10,000 patients,” Sci. Data, vol. 7, no. 1, pp. 48, Feb. 2020. doi:
10.1038/s41597-020-0386-x.

[36] T. Yoon and D. Kang, “Multi-modal stacking ensemble for the diagnosis of cardiovascular diseases,” J.
Pers. Med., vol. 13, no. 2, pp. 373, Feb. 2023. doi: 10.3390/jpm13020373.

[37] A. Rehman et al., “HCDP-DELM: Heterogeneous chronic disease prediction with temporal perspective
enabled deep extreme learning machine,” Knowl.-Based Syst., vol. 284, pp. 111316, Jan. 2024. doi:
10.1016/j.knosys.2023.111316.

[38] S. Srinivasan, S. Gunasekaran, S. K. Mathivanan, M. B. Benjula Anbu Malar, P. Jayagopal and G. T.
Dalu, “An active learning machine technique based prediction of cardiovascular heart disease from UCI-
repository database,” Sci. Rep., vol. 13, no. 1, pp. 741, Aug. 2023. doi: 10.1038/s41598-023-40717-1.

[39] M. Bukhari et al., “A smart heart disease diagnostic system using deep vanilla LSTM,” Comput. Mater.
Contin., vol. 77, no. 1, pp. 1251–1279, Jan. 2023. doi: 10.32604/cmc.2023.040329.

[40] A. U. Haq, J. P. Li, M. H. Memon, S. Nazir, and R. Sun, “A hybrid intelligent system framework for the
prediction of heart disease using machine learning algorithms,” Mob. Inf. Syst., vol. 2018, no. 8, pp. 1–21,
Dec. 2018. doi: 10.1155/2018/3860146.

https://doi.org/10.1016/j.suscom.2022.100732
https://doi.org/10.1016/j.bspc.2023.105565
https://doi.org/10.1016/j.bspc.2023.105789
https://doi.org/10.18494/SAM4682
https://doi.org/10.1038/s41598-023-30208-8
https://doi.org/10.1038/s41597-020-0386-x
https://doi.org/10.3390/jpm13020373
https://doi.org/10.1016/j.knosys.2023.111316
https://doi.org/10.1038/s41598-023-40717-1
https://doi.org/10.32604/cmc.2023.040329
https://doi.org/10.1155/2018/3860146

	Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias
	1 Introduction
	2 Related Works
	3 Materials and Methods
	4 Proposed CNN-BiGRU Model with Attention Mechanism
	5 Results
	6 Conclusion
	References


