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ABSTRACT

Discovering floating wastes, especially bottles on water, is a crucial research problem in environmental hygiene.
Nevertheless, real-world applications often face challenges such as interference from irrelevant objects and the
high cost associated with data collection. Consequently, devising algorithms capable of accurately localizing
specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge. To
solve this problem, this paper proposes an object discovery by request problem setting and a corresponding
algorithmic framework. The proposed problem setting aims to identify specified objects in scenes, and the
associated algorithmic framework comprises pseudo data generation and object discovery by request network.
Pseudo-data generation generates images resembling natural scenes through various data augmentation rules, using
a small number of object samples and scene images. The network structure of object discovery by request utilizes the
pre-trained Vision Transformer (ViT) model as the backbone, employs object-centric methods to learn the latent
representations of foreground objects, and applies patch-level reconstruction constraints to the model. During
the validation phase, we use the generated pseudo datasets as training sets and evaluate the performance of our
model on the original test sets. Experiments have proved that our method achieves state-of-the-art performance
on Unmanned Aerial Vehicles-Bottle Detection (UAV-BD) dataset and self-constructed dataset Bottle, especially
in multi-object scenarios.
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1 Introduction

Localizing floating waste in nearshore environments, such as rivers, lakes, and sandy areas, holds
significant importance in environmental monitoring, with broad applications across various real-
world scenarios [1–4]. Although UAV-BD [5] and Floating Waste (FloW) [6] datasets have gathered
floating waste data from various scenes, they still fall short of encompassing all types of floating waste
encountered in real-world scenarios. Given the significant variations in the shapes of floating waste
and the diverse nearshore environments, these tasks often require the collection of field data, leading
to inevitable data collection costs.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052656
https://www.techscience.com/doi/10.32604/cmc.2024.052656
mailto:fubf2314852600@gmail.com


1408 CMC, 2024, vol.80, no.1

To reduce these high costs, some researchers have focused on unsupervised object detection or
unsupervised object discovery methods, utilizing the robust generalization capabilities of unsupervised
approaches to identify and locate floating waste. Considering that these tasks emphasize the localiza-
tion of waste over its specific categorization, this paper adopts the research paradigm of unsupervised
object discovery to address this issue.

Unsupervised object discovery aims to find potential objects by analyzing visual features. Recent
unsupervised object discovery methods use pre-trained models to extract image features and utilize
feature similarity for object localization [7,8]. Some researchers develop graph construction methods
[9,10], while others utilize trainable self-supervised structures to refine object features [11,12]. It is
noteworthy that the majority of existing methods tend to discover all objects in an image. However,
practical applications often necessitate targeted object discovery; meanwhile, real-world scenes fre-
quently encompass many irrelevant objects [13]. These present additional interference with the object
discovery capacity of prevailing unsupervised methods, thereby challenging models when tasked with
identifying specific objects.

To tackle the challenges above, this paper introduces the problem formulation of object discovery
by request, designed to meet the practical requirements for identifying specific objects in the real world.
Moreover, we provide a corresponding algorithmic framework. Object discovery by request aims to
identify specific objects in actual scenes while disregarding other objects present in the scene. The
proposed algorithmic framework consists of pseudo data generation and object discovery by request
network. Pseudo data generation commences by augmenting a limited set of object samples, incorpo-
rating cropping, deformation, and color variation operations, thereby simulating various objects that
may exist in actual environments. These augmented objects are subsequently blended with background
images to enhance the fidelity of the synthesized images, making them closely resemble real-world
scenes. For object discovery by request network, we propose three modules: Suspected Foreground
Discovery (SFD), Object-Centric Learning (OCL) and Background Representation Learning (BRL).
While SFD module extracts the image feature, OCL module learns the feature of the foreground object
by request, and BRL module completes the background feature. Experimental results demonstrate
that this approach can achieve state-of-the-art performance on UAV-BD and Bottle dataset, especially
for multi-object discovery tasks (shown in Fig. 1). We summarized the contributions of this work as
follows:

1) In response to the practical demand for discovering floating waste in nearshore environments,
this paper proposes an object discovery by request problem setting, which enables the model to
locate multiple specific objects in natural scenes under an unsupervised paradigm. Moreover,
this paper proposes a corresponding algorithm framework, including pseudo data generation
and object discovery by request network.

2) This paper introduces a simple and effective pseudo dataset generation method capable
of generating a synthetic dataset suitable for model training. This method is achieved by
augmenting a small quantity of foreground object data and employing a synthesis approach
that combines foreground object data with background images.

3) This paper proposes an object discovery by request network consisting of SFD, OCL, and BRL
modules. Based on these three designs, our model can learn specified object representations in
a latent space while preventing the model from confusing background and irrelevant objects.
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Figure 1: Comparison of the state-of-art method called FOUND (second line) and ours (third line) on
UAV-BD with single (left) and multi (right) objects. We circled wrong activations of FOUND in blue

2 Related Works
2.1 Unsupervised Object Discovery & Detection

Unsupervised object discovery and detection methods aim to localize objects within images in the
absence of explicit supervision [14,15]. These researches typically involve preprocessing steps, using
feature extractor to obtain visual feature from images. Early methods [16] relied on machine learning
algorithms such as Support Vector Machines (SVM) [17], k-Nearest Neighbors (kNN) [18], and
decision trees [19] to identify objects based on pixel-level correlations within images. With the advent of
Convolutional Neural Networks (CNNs), researchers [20–22] began utilizing neural network to extract
hierarchical features from images. Some researches employed CNNs to generate candidate bounding
boxes [23–25], which were evaluated for their likelihood of containing foreground objects. Recently,
the introduction of ViT (Vision Transformer) architecture has led to novel ideas in unsupervised object
discovery and detection tasks [26–28]. ViT models leverage self-attention mechanism to capture long-
range dependencies in tokens, allowing for feature extraction across different scales [29]. Current
researches, such as LOST (Localizing Objects with Self-Supervised Transformers) [9] and Cut-and-
LEaRn (CutLER) [30], leverage the property of self-supervised method to localize objects in different
datasets.

However, existing researches often focus on identifying all objects present in images, neglecting the
specific requirements of real-world applications where only certain objects are of interest [31,32]. To
solve this problem, LOST [9] pioneered the introduction of graph construction, leveraging normalized
cut (N-cut) to locate interested objects within images. TokenCut [10] improved N-cut mechanism,
enhancing the attention map’s focus on objects that significantly differ from the scene. FOUND [12]
proposed a learnable network architecture, further increasing the distinction between background
and interested objects. Nevertheless, these methods still have difficulty in achieving the goal of
customizing objects of interest. To address this gap, recent research [31] has introduced the concept of
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“request”, which aims to localize specific objects in images based on user-defined criteria and leverage
multiple iterations to achieve targeted object recognition. By associating this concept with our practical
application scenarios, this paper proposes a problem formulation of object discovery by request and a
corresponding algorithmic framework.

2.2 Object-Centric Learning

To localize specified objects within images, we explore a feature learning method capable of learn-
ing representations for individual objects. Object-centric learning (OCL) method is acknowledged as
a form of unsupervised learning that specializes in acquiring representations of individual objects
within images [33,34]. One prevalent architecture within OCL method is slot attention [33], which
projects input images into a lower-dimensional latent space and learns object representations through
image reconstruction. Early research [34] has demonstrated the capacity to acquire representations
of individual objects on toy datasets, such as Compositional Language and Elementary Visual
Reasoning (CLEVER) and Multipurpose Motion and Video (MOVi) datasets. Recent developments
in OCL research have focused on acquiring object representations in real-world settings. For instance,
DINOSAUR [35], built upon the pre-trained DINO [36] model, enables models to learn object-centric
latent space representations under an unsupervised paradigm and accomplish object segmentation
tasks. Bi-level Optimized Query Slot Attention (BO-QSA) [37] enhances the slot attention structure to
facilitate object segmentation in single-object scenarios. Therefore, this paper incorporates the OCL
method into the object discovery by request framework, enabling the model to autonomously learn
representations of objects of interest within images under an unsupervised paradigm.

3 Problem Formulation of Object Discovery by Request and Pseudo Dataset Generation
3.1 Object Discovery by Request Problem Setting

As one of the foundational research areas in computer vision, object discovery methods find
extensive applications in real-world scenarios. Presently, most approaches globally discover all objects
within a scene, potentially leading to oversights in multi-object environments. Furthermore, practical
applications often demand finer-grained and dynamically evolving object categories, posing challenges
for existing methods to maintain robust performance. In light of the constraints inherent in practical
object discovery tasks, we propose two assumptions:

• Limited Scene Variability: Within a given practical application context, despite potential
dynamic changes in the scene’s objects, the overarching scene categories and stylistic attributes remain
relatively consistent.

• Limited Object Category Variability: In practical application contexts, the requisite object
categories may exhibit variability or expansion, yet the overall object category maintains a degree
of stability.

Based on the aforementioned assumptions and in response to the variability of object categories
in real-world scenarios, this paper proposes the problem formulation of object discovery by request
to address the challenges of object discovery in authentic scenes. Object discovery by request aims to
discover the specified objects in real-world under the limitation of scene collection. Simultaneously,
this paper introduces the corresponding framework for object discovery by request, comprising two
key components: pseudo data generation and object discovery by request network. Pseudo data
generation uses a limited number of object samples and scene images to synthesize dataset, while the
algorithm employs an object-centric learning structure within an unsupervised paradigm to learn the
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representations for specified object. In cases where the appearance and categories of objects change,
this method can swiftly generate datasets corresponding to the variable categories using data synthesis
methods and retrain the model within an unsupervised paradigm.

Detailed explanations of pseudo data generation and object discovery by request network will be
provided in Sections 3.2 and 4, respectively.

3.2 Pseudo Dataset Generation

Fig. 2 shows the complete process of pseudo data generation, including three different augment
rules for background images and foreground objects. The synthetic images in pseudo dataset are
represented as I = f (bck)+β × f (obj), where bck and obj represent the samples of background images
in real-world and the samples of foreground objects need to be discovered, f denotes different data
augmentation rules and β represents the the opacity of foreground objects. Our pseudo data generation
method first applies data augmentation separately to obj and bck, then combine them together using
the hyperparameter β = 0.6. The bottom of Fig. 2 displays three different data augmentation rules
applied to foreground objects and background images, respectively.

Figure 2: Illustration of pseudo data generation. The upper part shows the complete process of
generation and the lower part presents different augment rules of foreground objects (RandPaste,
AugColor and AugReal) and background images (RandPaste, Inpaint and PaintPaste)

For foreground objects, three augmentation techniques are employed: RandPaste, AugColor, and
AugReal (proposed in this paper). RandPaste involves two operations, object cropping and random
positioning, which crop object samples and paste them randomly onto scene images for data synthesis.
AugColor includes both appearance augmentations [38,39] and random positioning to enhance the
visual diversity of object samples, improving the extensibility of the synthesized data. AugReal builds
upon AugColor by further augmenting the appearance and deformity of object samples to more closely
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mimic the natural appearance of objects in real-world scenes. Additionally, it expands the positioning
of object samples to better align with real-world settings.

For background images, given that scene samples may contain distracting objects, this method
applies a cropping operation to remove these objects and employs three rules for image completion:
RandPaste, Inpaint [40], and PaintPaste (proposed in this paper). RandPaste resizes the surrounding
regions and fills the cropped area with them. Inpaint uses interpolation methods based on surrounding
pixels to complete the cropped area. PaintPaste combines the first two approaches by initially filling
the cropped area with random surrounding regions and then using interpolation methods to smooth
out the filled area.

Utilizing the aforementioned pseudo data generation method, we can quickly generate the
required pseudo datasets across various real-world scenarios, alleviating the costs associated with
data collection. To validate the performance of our algorithm framework, this paper constructs
corresponding pseudo datasets and testing environments based on the UAV-BD [5] dataset and a
self-collected Bottle dataset, as shown in Table 1. For the UAV-BD dataset, we randomly selected
200 scene samples and 10 object samples from 16,258 images in the training set for pseudo data
synthesis, resulting in a total of 5000 synthesized images. The test environment was evaluated using
the provided UAV-BD test set, which comprises 6944 bottles across 5081 images. For the self-collected
Bottle dataset, we randomly sampled 58 scene samples in different environments and 5 bottle samples
to generate 790 pseudo data images, while the remaining 479 images were used as the test set.

Table 1: The parameters of scene/object samples, amount of pseudo datasets and test sets on UAV-BD
and bottle dataset

Dataset name Amount of scene
sample

Amount of object
sample

Amount of
synthesized images

Amount of test
set

UAV-BD 200 10 5000 5081
Bottle 58 5 790 479

4 Object Discovery by Request Network

The overall architecture of our method is shown in Fig. 3. The framework contains a Vision
Transformer (ViT) based feature extractor, Suspected Foreground Discovery (SFD) module, Object-
Centric Learning (OCL) module and Background Representation Learning (BRL) module, can be
used to discover specified objects in real-world under unsupervised learning.

This section is organized as follows: we first briefly review the ViT and SFD module in Section 4.1.
Then we describe the OCL and BRL module in Sections 4.2 and 4.3. Finally, we introduce the training
& evaluation pipelines in Section 4.4.
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Figure 3: Illustration of the whole architecture of our method. Using the synthetic images from
Pseudo data generation, SFD module initially divides the foreground areas, OCL module learns
the representation of objects by request, and BRL module reconstructs the whole image to achieve
unsupervised object discovery

4.1 ViT and SFD Module

The ViT module, originally introduced by [36], employs a transformer architecture to process
images by segmenting them into non-overlapping patches. In our method, we utilize a pre-trained
ViT model trained on ImageNet as a feature extractor. This model partitions the input image I of
dimensions H × W into K × K non-overlapping image patches. Leveraging the transformer network,
we derive N = HW/K2 tokens (On) representing patches and a class token (Ocls) containing global
representation. Our ViT-based feature extractor comprises 12 stacked encoder blocks, each comprising
a feedforward network and a multi-head self-attention mechanism. The tokens extracted from the final
block serve as inputs for the SFD, OCL, and BRL modules.

The SFD module draws inspiration from current researches (Ncut [41] and TokenCut [10]),
utilizing N tokens extracted by ViT to construct a graph G = (V × E), where N tokens serve as
nodes and E represents the similarity matrix among N tokens. In order to partition V into two subsets,
background B and foreground O, Ncut [41] proposes the following energy function E:

E = S (O, B)

S (O, V)
+ S (O, B)

S (B, V)
(1)

where the function S measures the similarity between two sets. Through the minimization of the
objective function E, the score of each token is derived based on the second smallest eigenvector. To
ensure the comprehensive allocation of all objects to the foreground set, we implement a secondary
top-k selection procedure based on token scores, thereby ensuring the complete classification of all
objects into foreground region Maskfore.
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4.2 Object-Centric Learning Module

For OCL module (shown in Fig. 4), our method employs the tokens extracted by the ViT module
as input, enabling the model to learn the latent space representation of foreground objects within the
scene. Unlike previous object-centric methods that directly utilize all tokens as input, our OCL module,
considering the complexity of visual features in real-world scenes, initially filters all tokens through
the SFD module. This selection process retains tokens that potentially contain foreground objects as
input, facilitating the model’s expedited learning of the latent space representation of objects under
guidance.

Figure 4: Illustration of OCL design, including guided slot-attention and contrastive learning mecha-
nism for slots

We input patches potentially containing foreground objects into a guided slot-attention block
upon obtaining them. This block encompasses Attention and Gated Recurrent Unit (GRU). The
Attention component computes the dot product between patches to derive a relevance matrix. The
GRU module, proposed by [33], employs a learnable recursive function to update slots, thereby
individually disentangling objects in the image into separate slots. The specific formulation is as
follows:

St = z × St + (1 − z) × Update
(
Attn

(
Ofore

))
(2)

where S represents the vector representation of slots, t denotes the number of iterations for guided
Slot-Attn, z represents the adaptable gating parameters, Ofore means tokens representing foreground
objects, Attn represents the self-attention mechanism and Update denotes the function that aligns the
correlation matrix of patches with the dimensions of slots. Through multiple iterations, the Guided
Slot-Attn module maps the suspected foreground patches obtained by SFD module to different
regions in the latent space and obtains corresponding latent representations S.

Since the input patches contain some background and irrelevant objects, Guided Slot-Attn can
only decouple features into different slots but cannot identify whether the slot corresponds to the
object to be discovered by request. Therefore, we introduce a self-supervised mechanism for the slots
by computing the Info Noise Contrastive Estimation (InfoNCE) loss function between the current
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slot and slots from other images, as detailed below:

lossinfonce = −
B∑

b=0

L∑

i=0

log
exp (Sbi × Sbi/τ)

∑L

j=0 exp
(
Sbi × Sbj/τ

) (3)

where τ denotes the temperature coefficient, B represents the batch size for training model, and L
signifies the maximum number of potentially present objects in images. Sbi corresponds to the slots of
the current image, while Sbj denotes the set of slots for all images in the same batch. By minimizing
loss inf lossnce, this model further amplifies the distributional differences in the latent space between
the specific objects to be discovered and other objects/background.

To find out the slots representing background and irrelevant objects, we use the cosine similarity
to measure the distances between slots:

Disi = 1
BL − 1

BL∑

j=0, i �=j

∥∥Si, Sj

∥∥2

2
(4)

where Disi means the average distances between Si and other slots in one batch. We use the average
value Disi = 1/BL

∑BL

j=0 Disj to measure whether slots represent specific objects that need to be
discovered, and filter out slots that represent background and irrelevant objects in the subsequent
image reconstruction process, ensuring that the model focuses exclusively on the objects by request
and better learns their latent space representation.

4.3 Background Representation Learning Module

For BRL module (shown in Fig. 5), tokens from various modules are sequentially embedded into
image patches, which are then utilized for image reconstruction via Transformer Decoder. Using cross-
attention mechanism, we build a mapping between slots and patches, enabling our model to utilize slots
representing objects for patch reconstruction. Through reconstruction loss, our model discovers and
reconstructs the targeted objects.

Figure 5: Illustration of BRL module, including background patch filling, suspected background
backfilling, image token padding and transformer decoder
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During token filling stage, we proceed with the following three steps: background patches filling,
suspected background backfilling, and image token padding. In the first step, tokens identified as
background in SFD module are filled into image patches. Secondly, by computing the Dis for each
slot, areas corresponding to slots representing background/irrelevant objects are backfilled using patch
features extracted by ViT. Thirdly, the remaining regions are filled with image tokens representing
global features extracted by Multi-layer Perceptron (MLP) layers. The mathematical formulations of
the three steps are delineated as follows:

Obpf = On × (
1 − f bi

(
Maskfore × On

))

Osbb = Obpf + On × f bi

(
Attn

(
slot−, Ofore

))
(5)

Oitp = f rand (Osbb) + MLP (On) × (
f bi

(
Ofore

) − f bi

(
Attn

(
slot−, Ofore

)))

where f bi performs the binary matrix operation on input features and f rand represents the drop
out operation on patch features. Attn computes the correlation matrix between slots and Ofore. slot
represents the sequence of slots where Dis > Dis, while MLP refers to a multi-layer convolutional
network used for extracting global image representations. Through these operations, our method
reduces the difficulty of model reconstruction and fills foreground object regions with Image tokens
representing global features. This enables our model to utilize slots to guide the reconstruction of
foreground objects in Transformer Decoder, facilitating better learning of the features of objects by
request.

For Transformer Decoder, we take Oitp and S as inputs, utilizing S to guide this module to
reconstruct representations Orecov that conform to foreground objects, and calculates L2 loss with patch
features On from the pre-trained model, as described below:

lossrecov = ‖Orecov, On‖2
2

lossfinal = lossrecov + αlossinfonce (6)

where lossfinal is the final loss for model training, which includes the self-supervised contrastive
loss lossnce from SFD module and the patch reconstruction loss lossrecov from BRL module, with a
hyperparameter α = 0.2. With the aforementioned objective loss function, our method can further
distinguish slots while reconstructing features, guiding the model to learn the representations of
foreground objects by request more efficiently.

4.4 Training and Inference Pipeline

We freeze the pre-trained ViT module parameters as in previous works [9,10,12]. During the
training stage, all the tokens from ViT module are first fed into SFD module to obtain suspect
foreground area Maskfore. Afterward, tokens representing foreground objects are fed into OCL module,
where objects are learned into different slots through slot attention [33], and a self-supervised
contrastive mechanism is used to determine whether slots belong to the object of interest. On the
other hand, tokens representing background are input into BRL module, undergo token filling, and
along with the slots, are input into Transformer Decoder. Reconstructed patch features are ultimately
obtained, and reconstruction loss is computed based on tokens obtained from pre-trained models.

During the inference stage, we use the slot-attention maps as foreground offsets to refine the
heatmaps of foreground objects. The refined heatmaps are input into the multi-object localization
head to derive the ultimate bounding boxes. It is noteworthy that, given the unsupervised nature of the
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object discovery task, which aims at localizing foreground objects irrespective of their categories, the
resulting bounding boxes are inherently class-agnostic.

5 Experiment

In the experiment section, this paper outlines the evaluation metrics and implementation details
in Section 5.1. Then, we validate the challenges inherent in the object discovery by request problem
and the effectiveness of pseudo data generation in Section 5.2. Next, this paper presents experimental
comparisons and visualization results for the object discovery by request problem setting, along
with comparative methods in Section 5.3. Furthermore, we verify the effectiveness of different data
augmentations and each module in Section 5.4.

5.1 Evaluation Metrics and Implementation Details

Evaluation Metrics. We conducted evaluations on two benchmark datasets employing two com-
mon metrics: mean Intersection over Union (mIoU) and Correct Localization (CorLoc), as delineated
below:

mIoU = TP
FP + FN + TP

Corloc = TP
FP + TP

(7)

where the objects by request are considered positive samples while all other objects and background
are regarded as negative samples. TP represents the count of correctly identified positive samples,
FP denotes the number of false positives, TN signifies the count of correctly identified negative
samples, and FN indicates the number of missed positive samples. For the CorLoc metric, we refine it
into two measurements: CorLocall and CorLocmulti. CorLocall represents the localization measurement
across the entire test dataset, while CorLocmulti represents the localization measurement in multi-object
environment.

Given the objective of addressing real-world object discovery by request in this paper, our
proposed method and the comparative approaches are trained on synthetic datasets and evaluated
for performance on the test sets in real scenes.

Implementation Details. Our method is implemented on PyTorch framework and trained on one
NVIDIA TITAN X GPU, with the system environment running on Ubuntu 18.04. The training
parameters of our method are shown in Table 2. For training, we use the pre-trained DINO [36] model
as ViT backbone, utilizing an AdamW optimizer with 0.05 weight decay and 2e-4 learning rate. For
inputs, we resize them to 224 × 224 resolution and set the batch size to 8. Regarding model parameters,
we configured the top-k filtering ratio in SFD module to 25%, the maximum number of slots in OCL
module to 4, and the iteration number for guide slot-attention to 3. Additionally, we set the random
mask in BRL module to 20% and the number of transformer blocks to 4.
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Table 2: The parameters of training process of our method

Parameters Epoch Learning
rate

Image size Batch size Tok-k ratio
in SFD

Slot
number

Random
mask in BRL

Training
setting

100 2e-4 224 8 25% 4 20%

5.2 Challenges in Object Discovery by Request & Effectiveness on Pseudo Dataset Generation

In this section, we quantitatively demonstrate the challenges of object discovery by request and
underscore the imperative nature of pseudo dataset generation to tackle this problem.

In Table 3, experiment results of YOLO [42] and Bottle [12] models on UAV-BD dataset are
presented under both general and object discovery by request settings. Under the general setting,
models are trained on the train set and evaluated on the test set. However, under the object discovery
by request setting, models are trained on a pseudo dataset composed of limited data samples and scene
images synthesized from real-world scenarios and then evaluated on the test set in the real world. As a
supervised model, YOLO experiences an 11.8% decrease in detection performance for specific objects,
while as an unsupervised paradigm, FOUND witnesses a 26.9% decrease in the discovery performance
of specific objects. This indicates the challenging nature of the proposed object discovery by request
problem.

Table 3: Experiments on YOLO and FOUND models under general settings (odd rows) and object
discovery by request settings (even rows)

Model Training setting CorLoc50
all CorLoc75

all

YOLO UAV-BD train set 92.9 87.4
YOLO Pseudo dataset 85.3 (7.6↓) 34.2 (53.2↓)
FOUND UAV-BD train set 83.5 56.0
FOUND Pseudo dataset 56.6 (26.9↓) 21.9 (34.1↓)

Table 4 presents the results of YOLO and FOUND models under object discovery by request
setting, which only pre-trained on ImageNet or fine-tuned with pseudo dataset. The experiments
on UAV-BD dataset shows that both supervised and unsupervised-trained models exhibit significant
improvement in the discovery performance of specific objects after fine-tuning with pseudo dataset
(YOLO: 41.6%↑, FOUND: 33.5%↑), which reveals the effectiveness of pseudo dataset generation in
object discovery by request research.
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Table 4: Experiments on YOLO and FOUND models with fine-tune operation (even rows) or not (odd
rows) under object discovery by request settings

Model Fine-tune setting CorLoc50
all CorLoc75

all

YOLO Without fine-tune 43.7 5.8
YOLO Fine-tune 85.3 (41.6↑) 34.2 (28.4↑)
FOUND Without fine-tune 23.1 1.5
FOUND Fine-tune 56.6 (33.5↑) 21.9 (20.4↑)

5.3 Results and Comparison on Object Discovery by Request

In this section, we compare our method with several state-of-the-art unsupervised approaches
(LOST [9], TokenCut [10] and FOUND [12]). Table 5 presents the comparative results across UAV-
BD and Bottle datasets. On UAV-BD dataset, our method exhibits improvements of 2.1% and 2.9% in
the metrics of CorLoc50

all and mIoU50. Notably, there is a significant enhancement of 3.7% observed
in CorLoc50

multi metric, which focuses on multi-object localization. On Bottle dataset, our method
demonstrates significant improvements compared to state-of-the-art methods (CorLoc50

all: 2.1%↑,
mIoU50: 3.5%↑). These results underscore the effectiveness of our method in discovering specified
objects within real-world scenarios under unsupervised setting. Even in scenarios with multiple target
objects present, our method maintains high performance on object discovery.

Table 5: Experiments on YOLO and FOUND models under general settings (odd rows) and object
discovery by request settings (even rows)

Method Training setting UAV-BD Bottle

Model Network
weight

Fine-
tune

CorLoc50
all CorLoc50

multi mIoU50 CorLoc50
all CorLoc50

multi mIoU50

ViT Train on
ImageNet

w/o fine-
tune

38.2 37.7 34.5 21.9 19.8 19.2

LOST ViT
model

Unable 42.5 41.7 40.1 23.5 21.4 19.4

Token
Cut

ViT
model

Unable 49.3 45.8 42.9 35.6 32.6 30.5

FOUND DINO
model

Pseudo
dataset

56.6 51.6 50.2 37.3 34.6 32.4

Ours DINO
model

Pseudo
dataset

58.6 56.2 53.6 38.1 36.5 34.0

Fig. 6 illustrates the visualization results of our method on UAV-VD and Bottle datasets. Our
method adeptly localizes the objects by request (bottles and cans) across various real-world environ-
ments, including foliage, sandy terrain, and bodies of water. Furthermore, in complex multi-object
scenarios, our method reliably accomplishes the localization of multiple target objects.
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Figure 6: Visualization results on UAV-BD and bottle dataset

5.4 Ablation Studies

In this section, we evaluate the effectiveness of pseudo dataset, the inner modules of our method
and hyper-parameters in network on UAV-BD dataset.

Effectiveness on Pseudo Dataset. To independently validate the effectiveness of background
augmentation and object augmentation, we fixed the augmentation rules of object and background
separately and generated corresponding pseudo datasets. Subsequently, YOLO models are trained
on these pseudo datasets and evaluated on the test set of UAV-BD. Table 6 presents the results of
YOLO models trained on the pseudo datasets with background rule RandPaste, while Table 7 shows
the results of YOLO models trained on the pseudo datasets with object rule AugReal. Compared to
the random pasting operation (RandPaste) on object and background, our proposed augmentation
rules (AugReal and PaintPaste) significantly improve the performance of YOLO model on the test set
of UAV-BD, with CorLoc50

all increasing from 51.8% to 85.3%.

Table 6: Experiments of different foreground augment rules (background rules fixed RandPaste)

Object augment Background augment CorLoc50
all CorLoc75

all

RandPaste RandPaste 51.8 7.1
AugColor RandPaste 80.8 24.9
AugReal RandPaste 81.3 (29.5↑) 28.3 (21.2↑)

Table 7: Experiments of different background augment rules (object rules fixed AugReal)

Object augment Background augment CorLoc50
all CorLoc75

all

AugReal RandPaste 81.3 28.3
AugReal InPaint 84.6 31.3
AugReal PaintPaste 85.3 (4.0↑) 34.2 (5.9↑)
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Effectiveness on Modules. Next, we evaluate the inner modules of our proposed method. Tables 8–
10 present effectiveness validation experiments for SFD, OCL, and BRL modules based on UAV-
BD dataset. As shown in Table 8, compared to directly inputting patch features extracted by ViT
model into subsequent modules, the proposed supervised foreground selection, combined with the
graph construction of patch features and calculation based on the second smallest eigenvalue, can
significantly improve the localization performance for specific objects (29.2%↑). Table 9 shows that
comparing to the general object-centric method (slot-attention), the proposed guided slot-attention
and its corresponding contrastive loss function significantly improve performance (13.2↑). Table 10
conducts the ablation experiment on BRL module. The results show that the proposed supervised
background filling and image token padding have a certain improvement in performance (8.9%↑).

Table 8: Experimental verification on SFD module

Second smallest eigenvector Suspected foreground CorLoc50
all CorLoc50

multi

− − 29.4 21.9
+ − 43.1 40.6
+ + 58.6 (29.2↑) 56.2 (34.3↑)

Table 9: Experimental verification on OCL module

Guided slot-attention Contrastive loss function CorLoc50
all CorLoc50

multi

− − 45.4 41.9
+ − 55.6 55.1
+ + 58.6 (13.2↑) 56.2 (14.3↑)

Table 10: Experimental verification on BRL module

Suspected background backfilling Image token padding CorLoc50
all CorLoc50

multi

− − 49.7 46.5
+ − 57.4 55.9
+ + 58.6 (8.9↑) 56.2 (9.7↑)

Effect of Hyper-Parameters. Furthermore, we investigate the design of two hyperparameters: the
slot number for SFD module and the mask rate of BRL module (shown in Fig. 7). Results show
that when slot number = 4, mask rate = 25%, the performance of our method reaches its peak. Our
analysis suggests that the slot number represents the maximum number of objects to be discovered in
the image. When the slot number is less than the average number of objects to be discovered in the
image, the model’s performance deteriorates significantly. The mask rate indicates the proportion of
background that the model needs to generate during the reconstruction process. Results indicate that
appropriate background masking facilitates the model in better learning background features during
the background completion process.
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Figure 7: Ablation studies in slot number in OCL (left) and mask rate of BRL (right)

Regarding the real-time performance of our method, due to the use of N-cut (computed on Central
Processing Unit, CPU) to assist in calculating the similarity between tokens, the actual computational
efficiency of our model is lower than LOST [9] (close to Tokencut [10]). Compared to the methods like
FOUND [12] that require training, our method has lower time costs during the training phase and
lower real-time performance during the testing phase. However, this is not the main concern of our
algorithm at present. By deploying N-cut to Graphics Processing Unit (GPU), we hope to significantly
enhance the computational efficiency of our method.

6 Conclusion

This paper addresses the practical need to localize floating objects in real-world scenarios by
delineating the problem formulation of object discovery by request and presenting a corresponding
algorithmic framework. The object discovery by request problem aims to identify and localize specific
objects within real-world scenes without supervision. The algorithmic framework encompasses two
pivotal components: pseudo data generation and an object discovery by request network architecture.
Pseudo data generation involves the creation of diverse synthetic images resembling real-world scenes,
achieved through a limited set of object samples and scene images, along with data augmentation
techniques for model training. The object discovery by request network architecture comprises three
integral modules: SFD, OCL, and BRL. SFD module is responsible for extracting pertinent image
features, OCL module focuses on learning the latent representation of foreground objects and discern-
ing whether they are the specific objects of interest, while BRL module is tasked with reconstructing
patch-level features and imposing constraints on model training. Experiments demonstrate that the
proposed object discovery by request network, in conjunction with pseudo data generation, achieves
state-of-the-art performance on both the UAV-BD dataset and a self-constructed Bottle dataset.

Acknowledgement: The authors would like to acknowledge the School of Computer Science, Fudan
University for funding this work.

Funding Statement: The author received no specific funding for this study.

Availability of Data and Materials: Not applicable.



CMC, 2024, vol.80, no.1 1423

Conflicts of Interest: The author declares that the have no conflicts of interest to report regarding the
present study.

References
[1] W. C. Li, H. F. Tse, and L. Fok, “Plastic waste in the marine environment: A review of sources, occurrence

and effects,” Sci. Total Environ., vol. 566–567, pp. 333–349, Oct. 2016. doi: 10.1016/j.scitotenv.2016.05.084.
[2] A. Akib et al., “Unmanned floating waste collecting robot,” in Proc. TENCON, 2019–2019 IEEE Region

10 Conf. (TENCON), Kochi, India, 2019, pp. 2645–2650.
[3] N. Ruangpayoongsak, J. Sumroengrit, and M. Leanglum, “A floating waste scooper robot on water

surface,” in Proc. 17th Int. Conf. Control, Autom. Syst., Jeju, Republic of Korea, 2017, pp. 1543–1548.
[4] J. Niu, S. Gu, J. Du, and Y. Hao, “Underwater waste recognition and localization based on

improved YOLOv5,” Comput. Mater. Contin., vol. 76, no. 2, pp. 2015–2031, Aug. 2023. doi:
10.32604/cmc.2023.040489.

[5] J. Wang, W. Guo, T. Pan, H. Yu, L. Duan and W. Yang, “Bottle detection in the wild using low-altitude
unmanned aerial vehicles,” in Proc. 21st Int. Conf. Info. Fusion, Cambridge, UK, 2018, pp. 439–444.

[6] Y. Cheng et al., “Flow: A dataset and benchmark for floating waste detection in inland waters,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., Montreal, QC, Canada, 2021, pp. 10953–10962.

[7] K. J. Hsu, Y. Y. Lin, and Y. Y. Chuang, “Co-attention cnns for unsupervised object co-segmentation,” in
Proc. Int. Joint Conf. Artif. Intell., Stockholm, Sweden, 2018, pp. 748–756.

[8] Y. Z. Xu, C. Y. Chen, and C. T. Li, “SUVR: A search-based approach to unsupervised visual representation
learning,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Rhodes Island, Greece, 2023, pp. 1–5.

[9] O. Simeoni et al., “Localizing objects with self-supervised transformers and no labels,” in Proc. British
Mach. Vis. Conf., Virtual, UK, 2021, pp. 1–16.

[10] Y. Wang, X. Shen, S. X. Hu, Y. Yuan, J. L. Crowley and D. Vaufreydaz, “Self-supervised transformers
for unsupervised object discovery using normalized cut,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recog., New Orleans, LA, USA, 2022, pp. 14543–14553.

[11] Z. Li, L. Zhao, W. Chen, S. Yang, D. Xie and S. Pu, “Target-aware auto-augmentation for unsupervised
domain adaptive object detection,” in IEEE Int. Conf. Acoust., Speech Signal Process., Singapore, 2022,
pp. 3848–3852.

[12] O. Siméoni, C. Sekkat, G. Puy, A. Vobecky, É. Zablocki and P. Pérez, “Unsupervised object localization:
Observing the background to discover objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Vancouver, BC, Canada, 2023, pp. 3176–3186.

[13] J. Philbin, J. Sivic, and A. Zisserman, “Geometric LDA: A generative model for particular object discovery,”
in Proc. British Mach. Vis. Conf., Leeds, UK, 2008, pp. 1–10.

[14] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine, “Unsupervised object discovery: A
comparison,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 284–302, Jun. 2010. doi: 10.1007/s11263-009-0271-8.

[15] O. J.́ H´enaff et al., “Object discovery and representation networks,” in Proc. Eur. Conf. Comput. Vis., Tel
Aviv, Israel, 2022, pp. 123–143.

[16] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A survey,” 2021. doi:
https://arxiv.org/pdf/2110.11334.

[17] X. Wang, Z. Zhu, C. Yao, and X. Bai, “Relaxed multiple-instance svm with application to object discovery,”
in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015, pp. 1224–1232.

[18] O. Simeoni, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Unsupervised object discovery for instance
recognition,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., Lake Tahoe, NV, USA, 2018, pp. 1745–1754.

[19] Y. Zhao and Y. Zhang, “Comparison of decision tree methods for finding active objects,” Adv. Space Res.,
vol. 41, no. 12, pp. 1955–1959, Jul. 2007. doi: 10.1016/j.asr.2007.07.020.

[20] A. Joulin, F. Bach, and J. Ponce, “Discriminative clustering for image co-segmentation,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recog., San Francisco, CA, USA, 2010, pp. 1943–1950.

https://doi.org/10.1016/j.scitotenv.2016.05.084
https://doi.org/10.32604/cmc.2023.040489
https://doi.org/10.1007/s11263-009-0271-8
https://arxiv.org/pdf/2110.11334
https://doi.org/10.1016/j.asr.2007.07.020


1424 CMC, 2024, vol.80, no.1

[21] A. Joulin, F. Bach, and J. Ponce, “Multi-class cosegmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Providence, RI, USA, 2012, pp. 542–549.

[22] R. Chen, L. Pan, C. Li, Y. Zhou, A. Chen and E. Beckman, “An improved deep fusion cnn for image recog-
nition,” Comput. Mater. Contin., vol. 65, no. 2, pp. 1691–1706, Jun. 2020. doi: 10.32604/cmc.2020.011706.

[23] K. Tang, A. Joulin, L. J. Li, and L. Fei-Fei, “Co-localization in real-world images,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Columbus, OH, USA, 2014, pp. 1464–1471.

[24] M. Cho, S. Kwak, C. Schmid, and J. Ponce, “Unsupervised object discovery and localization in the wild:
Part-based matching with bottom-up region proposals,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Boston, MA, USA, 2015, pp. 1201–1210.

[25] X. Wang et al., “FreeSOLO: Learning to segment objects without annotations,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recog., New Orleans, LA, USA, 2022, pp. 14176–14186.

[26] S. Vaze, K. Han, A. Vedaldi, and A. Zisserman, “Generalized category discovery,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recog., New Orleans, Louisiana, USA, 2022, pp. 7492–7501.

[27] Z. Lin, Z. Yang, and Y. Wang, “Foreground guidance and multi-layer feature fusion for unsupervised object
discovery with transformers,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., Waikoloa, HI, USA,
2023, pp. 4043–4053.

[28] S. Kara, H. Ammar, F. Chabot, and Q. C. Pham, “Image segmentation based unsupervised multiple objects
discovery,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2023, pp. 3276–3285.

[29] A. Dosovitskiy et al., “An image is worth 16 × 16 words: Transformers for image recognition at scale,” in
Proc. Int. Conf. Learn. Rep., 2021, pp. 1–22. doi: 10.48550/arXiv.2010.11929.

[30] X. Wang, R. Girdhar, S. X. Yu, and I. Misra, “Cut and learn for unsupervised object detection and instance
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Vancouver, BC, Canada, 2023, pp.
3124–3134.

[31] C. Tang, L. Xie, X. Zhang, X. Hu, and Q. Tian, “Visual recognition by request,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recog., Vancouver, BC, Canada, 2023, pp. 15265–15274.

[32] M. Wei, X. Yue, W. Zhang, S. Kong, X. Liu and J. Pang, “OV-PARTS: Towards open-vocabulary part
segmentation,” in Neural Info. Processing Systems., New Orleans, Louisiana, USA, 2023, pp. 70094–70114.

[33] F. Locatello et al., “Object-centric learning with slot attention,” in Neural Info. Process. Syst., 2020, pp.
11525–11538.

[34] G. Singh, Y. F. Wu, and S. Ahn, “Simple unsupervised object-centric learning for complex and naturalistic
videos,” in Neural Info. Process. Syst., New Orleans, LA, USA, 2022, pp. 18181–18196.

[35] M. Seitzer et al., “Bridging the gap to real-world object-centric learning,” in Proc. Int. Conf. Learn. Rep.,
Kigali, Rwanda, 2023, pp. 1–43. doi: 10.48550/arXiv.2209.14860.

[36] M. Caron et al., “Emerging properties in self-supervised vision transformers,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 9650–9660.

[37] B. Jia, Y. Liu, and S. Huang, “Improving object-centric learning with query optimization,” in Proc. Int.
Conf. Learn. Rep., 2022, pp. 1–32.

[38] H. Zhang, Z. Wu, Z. Wang, Z. Chen, and Y. G. Jiang, “Prototypical residual networks for anomaly
detection and localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Vancouver, BC,
Canada, 2023, pp. 16281–16291.
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