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ABSTRACT

Autonomous driving technology has entered a period of rapid development, and traffic sign detection is one of
the important tasks. Existing target detection networks are difficult to adapt to scenarios where target sizes are
seriously imbalanced, and traffic sign targets are small and have unclear features, which makes detection more
difficult. Therefore, we propose a Hybrid Feature Fusion Traffic Sign detection algorithm based on YOLOv7 (HFFT-
YOLO). First, a self-attention mechanism is incorporated at the end of the backbone network to calculate feature
interactions within scales; Secondly, the cross-scale fusion part of the neck introduces a bottom-up multi-path
fusion method. Design reuse paths at the end of the neck, paying particular attention to cross-scale fusion of high-
level features. In addition, we found the appropriate channel width through a lot of experiments and reduced the
superfluous parameters. In terms of training, a new regression loss CMPDIoU is proposed, which not only considers
the problem of loss degradation when the aspect ratio is the same but the width and height are different, but also
enables the penalty term to dynamically change at different scales. Finally, our proposed improved method shows
excellent results on the TT100K dataset. Compared with the baseline model, without increasing the number of
parameters and computational complexity, AP0.5 and AP increased by 2.2% and 2.7%, respectively, reaching 92.9%
and 58.1%.
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1 Introduction

With the rapid development of computer technology, especially the substantial increase in
computing speed (FLOPS), complex assisted driving and driverless have entered people’s lives. Traffic
signs play an essential role in improving road safety and personal safety. This technology can identify
traffic signs in on-board cameras, including warning, speed limit, prohibition, and other signs, and
provide drivers with necessary information in advance.
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Because during driving, the size of traffic signs is inversely proportional to the driving distance.
Therefore, traffic signs become small targets at longer distances. To ensure that high-speed vehicles
have sufficient braking distance, longer-distance traffic signs need to be recognized. As shown in Fig. 1,
the average size of the traffic signs that can be identified in the traffic sign scene map captured by a
real on-board camera with a resolution of 2048 × 2048 is 40 × 40 pixels, accounting for approximately
0.04% of the entire image. Due to the low resolution and limited feature information of small targets,
these will bring great challenges to detection.

Figure 1: Small targets in traffic signs

Deep learning is a common method for modern target detection technology. It has more potent
feature extraction and expression capabilities, robustness, and high accuracy. Therefore, deep learning
algorithms have become the most commonly used technology in the current field of target detection.
Currently, target detection algorithms based on deep learning are divided into two categories: the
self-attention neural network based on Transformer [1] and the convolutional neural network (CNN)
based on convolution. However, the “pure blood self-attention neural network” is still in the research
stage and is difficult to use for real-time detection. Therefore, most deep learning target detection
algorithms are based on CNN. For example, the two-stage detector Faster R-CNN [2], the one-stage
detector SSD [3], and You Only Look Once (YOLO) [4], but when these algorithms are directly applied
to traffic sign data, the actual effect is often not good.

To improve the YOLO algorithm’s detection ability of traffic signs, we proposed the HFFT-YOLO
algorithm to locate and classify traffic signs. The algorithm is based on the YOLOv7 [5] framework,
which naturally possesses advantages for the detection of traffic signs due to its positive and negative
sample allocation strategy. This strategy effectively prevents accuracy loss caused by an imbalance
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between positive and negative samples. The HFFT-YOLO algorithm has achieved better performance
in the detection results of traffic signs.

The main contributions of this paper are summarized as follows:

• An efficient hybrid feature pyramid fusion structure has been proposed, which includes two
modules: the BiFormer-based self-attention Intra-scale feature interaction module and the
DAMO-YOLO-based Cross-scale Feature-fusion module.

• A regression loss CMPDIoU and regression loss function LCMPDIoU are proposed. It improves
the model’s ability to detect traffic signs, makes the model converge more stably, and is superior
to the current regression loss function in all aspects.

The rest of this paper is organized as follows: Section 2 introduces related work on CNN-
based traffic sign detection. Section 3 introduces the research content in detail. Section 4 describes
the experimental results. In Section 5, the content of this paper is summarized and conclusions are
presented.

2 Related Work
2.1 Traffic Sign Detection

Nowadays, target detection algorithms are widely used in the field of computer vision. According
to whether it is necessary to divide the region of interest (ROI), it is divided into a two-stage detector
and a one-stage detector. The two-stage detector has high detection accuracy, but is slow and is mostly
used for research. One-stage detectors are often used for real-time detection due to their fast detection
speed and good detection accuracy.

In traffic sign detection, Lai et al. [6] constructed a new traffic sign data set based on TT100K,
which includes various complex weather. At the same time, the downsampling multiple of YOLOv5
was adjusted, and the width of the detection layer was adjusted to obtain richer small target features.
The limitation of this method is that the clustering algorithm based only on Kmeans++ cannot pro-
vide suitable anchor boxes for the new detection head. The average accuracy of the proposed algorithm
STC-YOLO on the TT100K data set reached 89.9%. Mahaur et al. [7] proposed IS-YOLOv5 based on
YOLOv5 for small targets of traffic signs and traffic lights. By replacing standard convolutions with
depth-wise separable convolutions and improving the SPP (Spatial Pyramid Pooling) and PANET
(Path Aggregation Network), the overall performance is enhanced. Furthermore, a universal network
pruner has been proposed to significantly reduce the number of parameters and computational
complexity of the network while preserving its accuracy. The algorithm achieves an average accuracy
of 70.2% on the BDD100K data set. Liu et al. [8] proposed the UCN-YOLOv5 algorithm for the
complex and changeable environment of traffic sign detection. This algorithm enhances the feature
extraction capability of the network through U2net’s core module. It adds a lightweight receptive field
attention module LPFAConv to the detection head to represent a potential enhancement to receptive
field feature extraction. Li et al. [9] proposed a Sano-YOLOv7 algorithm, which introduced dynamic
convolution (ODConv) to replace the conventional convolution of the neck structure. By introducing
Gaussian Wasserstein distance (NWD) as the loss function, the sensitivity of small target detection
to small position deviations is reduced. The algorithm achieves an average accuracy of 87.1% on
the TT100K data set. Yang et al. [10] proposed an improved algorithm for YOLOv3 by introducing
a visual multi-scale attention module (MSAM) and adding new detection heads. This effectively
enhances the network’s recall capability for small objects. The algorithm achieved an average precision
of 96.5% on the TT100K dataset. However, the addition of the new detection heads has a significant
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impact on the conventional network, particularly increasing computational complexity and affecting
real-time performance. Xu et al. [11] proposed an improved YOLOv5 network model, proposed a
Hierarchical Classifier Module (HCM), and constructed a multi-frame information fusion module
that does not require training. This model significantly reduces the imbalance between traffic sign
types without changing the sample size. HCM (Hierarchical Classification and Re-prediction Method)
addresses the issue of uneven data distribution by re-predicting the traffic signs after classifying
them. This approach effectively improves the problem of uneven data allocation. The model achieved
an impressive average precision of 79.0% on the entire TT100K dataset, demonstrating excellent
performance. However, the “pseudo one-stage” approach significantly affects the real-time capability
of the algorithm. Wang et al. [12] designed an improved feature pyramid structure called AF-FPN
(Adaptive Feature Fusion Pyramid Network). This structure replaces the neck part of YOLOv5 and
reduces information loss during the feature map generation process, thereby enhancing the original
network’s multi-scale detection capability. In addition, an automatic learning data enhancement
algorithm is proposed to enhance the robustness of the model. This algorithm has fewer parameters
and computational complexity, and the average accuracy on the TT100K data set reaches 65.1%.
Zhao et al. [13] designed the YOLOv7-TS algorithm to solve the problem of missed detection of small
targets and low accuracy in traffic sign detection. By utilizing sub-pixel convolution combined with
the channel dimension’s upsampling capability and the Feature Map Extraction Module (FMEM),
the perception ability of small objects is effectively enhanced. The algorithm achieved an average
precision of 92.4% on the TT100K dataset. While the algorithm reduced the parameter count, it did
not result in faster inference speed. Zhang et al. [14] proposed a multi-scale traffic sign detection
algorithm called CR-YOLOv8. By introducing attention modules and improving the loss function,
the algorithm effectively balances the detection of objects at multiple scales. Based on the lightweight
YOLOv8 architecture, the algorithm achieved an average precision of 86.9% on the TT100K dataset.
It effectively reduced the detection accuracy discrepancies between different scales. Wei et al. [15]
introduced ConvNeSe, a lightweight detection model that utilizes separable convolutions. By adding
the reversed residual structure and ConvNeSe block, the problems of gradient disappearance and
structural information loss were avoided. The lightweight convolution utilized in the algorithm is based
on depth-wise separable convolution. However, it is regrettable that deep separable convolution does
not exhibit fast execution speed on GPUs. The algorithm achieved an average precision of 99.85% on
the GTSRB dataset.

In summary, the fusion of feature information at multiple scales has been proven to be a simple and
effective method to improve network performance. In addition, changing the optimization strategy of
the neural network is also one of the most effective methods. Therefore, this article optimizes YOLOv7
from these two aspects: network structure improvement and regression loss function optimization.

2.2 YOLOv7 Backbone Structure

YOLOv7 is currently one of the few one-stage detectors that can maintain high accuracy while still
maintaining detection speeds exceeding 30FPS. YOLOv7-tiny is suitable for edge GPUs, YOLOv7 is
suitable for regular GPUs, and YOLOv7-W6 is suitable for cloud GPUs. Each is designed for different
application scenarios. Fig. 2 shows the backbone network of YOLOv7.

The YOLOv7 consists of four parts, namely input, backbone, neck, and predicted head. For
the input of color images, they are uniformly adjusted to 640 × 640 pixels to meet the input size
requirements of the backbone network. CBS includes two-dimensional convolution layers, normal-
ization (BN), and SILU activation functions. ELAN includes multi-branch CBS, which improves
the information richness of the network through the fusion of multi-layer convolutions. The MP
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layer replaces the original pooling layer and is divided into multiple branches. There are not only
convolutional layers that change the step size, but also ordinary pooling layers with maximum pooling.
Through the fusion of the two, the selectivity of the feature map of the network is improved.

Figure 2: YOLOv7 backbone structure

2.3 Regression Loss IoU

The loss functions of the target detection task include classification loss and regression loss. The
two are combined into the loss of the entire network through a certain proportional relationship. L1
Loss, L2 Loss, and smooth L1 Loss [16] is the original regression loss. It calculates the loss directly
by calculating the difference X between the predicted value and the true value. The smooth L1 Loss
is described as formula (1). As the initial regression loss function, it makes a great contribution to the
positioning of network targets. However, when this kind of loss is used to calculate the regression loss,
the differences X are all independent, which is not valid for the four-corner coordinates of a box.

smoothL1 (x)

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise (1)

Therefore, Yu et al. [17] proposed a new calculation method called Intersection over Union (IoU),
which represents the ratio of the intersection to the union between the ground truth and the bounding
box. IoU resolves the issue of disconnected coordinates but also introduces new challenges. For
example, when the intersection is 0, it cannot reflect the distance between A and B. Currently, it is
not differentiable, and the gradient cannot be updated. Another example is that the IoU value cannot
reflect how the two boxes intersect. In response to these problems, scholars have introduced penalty
terms, such as GIoU, DIoU, CIoU, EIoU, and WIoU [18–21]. These loss functions supplement IoU
and take more comprehensive considerations. Fig. 3 shows the calculation method of standard IoU
and the performance of GIoU after adding penalty terms.

3 Methods
3.1 Intra-Feature Interaction BiFormer

BiFormer [22] is a variant of Transformer and is a global self-attention mechanism suitable
for computer vision. The self-attention mechanism has a wider receptive field than convolution. Its
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receptive field at the low level already includes the receptive field deep in the convolution block [23].
Although self-attention has such advantages, the rapidly growing “graph vector” for images will cause
the model to be unable to meet real-time requirements. This is why convolutional neural networks
remain the first choice for modern object detection algorithms.

Figure 3: IoU calculation method (Left) and GIoU have the same IoU but different intersection
situations (Right)

BiFormer introduces a novel Bi-level Routing Attention (BRA), which contains a region-level
crude extraction and a token-level fine extraction, reducing the computing resources consumed by
the self-attention mechanism while also meeting the characteristics of dynamic adaptive query. The
specific structure is shown in Fig. 4.

Figure 4: BRA mechanism

In the rough extraction stage, the entire image is divided into several areas of equal area. Then the
whole image is linearly mapped to Quary, Key, and Value (Q, K, V) according to pixels. After averaging
Q and K according to the assigned area, the adjacency matrix A∗ is obtained by matrix multiplication.
In layman’s terms, A∗ represents a rough extraction at the regional level. In the fine extraction stage,
the top four largest values and indexes in K and V are obtained through the gather method, namely
Key∗ and Value∗. They represent the most closely connected areas in K and V, respectively. The Q and
K∗ matrices are multiplied to obtain the adjacency matrix A, which represents the fine extraction after
the initial screening. Finally, the A and V∗ matrices are multiplied to get the same output as the input.



CMC, 2024, vol.80, no.1 1431

The entire process can be summarized as follows:

Q = XW q, K = XW k, V = XW v (2)

A∗ = Mean (Q) (Mean (K))
T (3)

K∗, V ∗ = gather (K, V , A∗) (4)

O = Attention (Q, K∗, V ∗) (5)

where W represents the linear mapping weight of Q, K, V , Mean represents the averaging operation,
gather represents the collection and merging of tensors, and Attention represents the calculation
method of the attention mechanism.

3.2 Efficient Hybrid Feature Fusion

Objects with a pixel area smaller than 32 × 32 pixels defined in the COCO dataset are small targets.
To effectively detect small targets in traffic signs, two main problems must be overcome. First, the RGB
information of traffic signs is too little, resulting in a lack of representative features. Second, in complex
background environments, small targets are easily confused with the background, making it difficult
to distinguish the two when extracting features of small targets. To solve these problems, the self-
attention mechanism can be integrated into the network. For the traffic sign detection task, adding the
attention module can improve the representation ability of the network model and effectively reduce
the interference of background environments [24].

On this basis, we combine the advantages of self-attention and propose an efficient hybrid
feature pyramid fusion structure. The proposed neck structure consists of two modules, the self-
attention Intra-scale feature interaction (B-AIFI) based on BiFormer, and the Cross-scale Feature-
fusion module (D-CCMF) based on DAMO-YOLO [25], as shown in Fig. 5.

Figure 5: Hybrid feature fusion module

As described in [26], in the Deformable-DETR detector, 49% of the calculation amount only
achieved an 11% improvement in accuracy, which contains a large amount of structural and parameter
redundancy. Lv et al. [27] analyzed the computational redundancy of the Cross-scale fusion Trans-
former encoder and designed a series of different decoder variants, proving that it is unnecessary to
fuse low-level information on concatenated Cross-scale features. Therefore, B-AIFI only processes
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high-level feature information from S5, and abandons the fusion of low-level information, improving
computing efficiency.

Based on the D-CMFF module, the feature information of different layers is mainly fused through
the Fashion module. The structure is shown in Fig. 6. The Fusion module integrates information from
different paths by parallel fusion using residual layers and N layers of reparameterized convolutions
(RepConv). Subsequently, the Concat method is employed to merge the fused information into new
feature maps.

Figure 6: Fusion module

In addition, we improve the efficiency of the D-CMFF module from two aspects. First, find the
optimal network depth and width. Since the FLOPs of the three feature map sizes are too different,
maintaining a unified feature channel will undoubtedly significantly increase the amount of calculation
and slow down the detection speed, which is contrary to real-time performance. Therefore, we adopt
the setting of different scale feature maps with different dimensions of channels. Performance with
the same and other channels as well as precision benefits from the Neck depth and width trade-offs
are compared, it can be concluded that when the depth N = 3 and the width is (96, 192, 384), it has
the highest AP. Table 1 shows the results, “Depth” denotes the repeat times on the bottleneck of the
fusion block. “Width” indicates the channel dimensions of feature maps. Second, design reuse paths to
improve the utilization rate of information at the end of the network. By summarizing the convergence
of positive samples during the network training process, we found that the number of positive samples
detected in the feature map of 20 ∗ 20 size is far less than the number of samples of 40 × 40 and 80 ×
80 size. This shows that in this detection task, the performance of the highest-level feature information
is at a disadvantage. Therefore, the end of the network enhances the highest-level features using reuse
paths.

Table 1: Ablation study on the depth and width of our neck

Depth (N) Width FLOPs AP0.5

3 (265, 512, 1024) 50.8 92.6
1 (256, 512, 1024) 26.6 92.3
3 (128, 256, 512) 21.8 92.0
2 (128, 256, 512) 16.3 92.2
3 (96, 192, 384) 17.5 92.8
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The entire fusion process can be summarized as:

Q = K = V = Linear (Patch (S5)) (6)

F5 = Reshape (Biformer (Q, K, V)) (7)

Output = D − CCFM ({S3, S4, F5}) (8)

where Linear represents a linear mapping of feature maps. Path means extracting feature maps into
blocks. Reshape means restoring the sequence matrix to the feature map standard format.

3.3 CMPDIoU

Currently, one-stage object detection networks based on CNN use IoU with an additional penalty
term as the confidence of the bounding box. Ma et al. [28] proposed an MPDIoU, which considers the
problem that the penalty term loses its effect when the predicted and the ground truth boxes have the
same aspect ratio but different widths and heights. After experimental testing, MPDIoU is the most
suitable solution for general detection tasks at this stage. It not only solves the above problems but
also optimizes the calculation method and improves the calculation efficiency. It can be summarized
as formula (9).

MPDIoU = IoU − d2
1

w2 + h2
− d2

2

w2 + h2
(9)

Although MPDIOU has better performance, the paper does not describe why w2, h2 are used as
the denominator. According to the source code of the paper, these two parameters are only related to
the size of the feature map finally output by the network. In common network, it generally represents
three sets of values, 20 × 20, 40 × 40, 80 × 80, which are a set of static parameters used to limit d1, d2

Therefore, we propose a new loss CMPDIOU and a new loss function based on this. The calculation
of CMPDIoU is summarized in Algorithm 1.

Algorithm 1: Intersection over Union with Continuous Minimum Points Distance
Input: The ground truth and predicted bounding box A, B ∈ S ∈ Rn

Output: LCMPDIoU = 1 - CMPDIoU
1: For A and B,

(
xA

1 , yA
1

)
,
(
xA

2 , yA
2

)
represent the coordinates of the top left corner and lower right

corner of A,
(
xB

1 , yB
1

)
,
(
xB

2 , yB
2

)
represent the coordinates of the top left corner and lower right corner

of B.
2: d2

1 = (
xB

1 − xA
1

)2 + (
yB

1 − yA
1

)2

3: d2
2 = (

xB
2 − xA

2

)2 + (
yB

2 − yA
2

)2

4: c1 = max
(
xA

2 , xB
2

) − min
(
xA

1 , xB
1

)
5: c2 = max

(
yA

2 , yB
2

) − min
(
yA

1 , yB
1

)
6: CMPDIoU = IoU − α ∗ (

d2
1 + d2

2

)
/
(
c2

1 + c2
2

)
, α = 0.01

For this type of data, small jitters in the bounding box will cause large loss fluctuations, which will
affect the convergence of the network and hurt parameter updates for small targets [29]. In Algorithm
1, when the bounding box and the ground truth box are relatively offset, different intersection
situations correspond to different c1 and c2. Therefore, the penalty term of CMPDIoU always changes
dynamically. It is not limited to the feature map size, and can effectively reduce the loss fluctuation of
the target, allowing the model to achieve better accuracy. The detailed results of the IoU comparison
experiment are shown in Table 2.
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Table 2: The impact of different IoU on detection accuracy

Methods AP AP0.5 APS APM APL

IoU 54.5 89.9 35.5 63.6 78.3
CIoU 55.4 90.7 36.8 64.0 79.6
WIoU 54.8 89.7 35.2 64.6 78.4
MPDIoU 55.7 91.3 37.7 64.3 79.9
CMPDIoU 55.6 91.6 37.8 64.4 80.1

Taking the YOLOv7 network as the basic model, CMPDIoU shows the best performance in
TT100K [30] compared to standard IoU and its advanced IoU. AP0.5 increased by 1.7%, 0.9%, 1.9%,
and 0.3%, respectively, and other indicators also increased by varying degrees.

4 Experiment
4.1 Experimental Data

All algorithms in this article are trained and verified through the TT100K [30] traffic sign data
set. The TT100K data set is an open-source traffic sign data jointly published by Tsinghua University
and Tencent. The data set contains 42.05% of small targets and 50.1% of medium targets, making it
a challenging data set. The data set has a total of 26,349 images in 128 categories with a resolution of
8192 × 2048 pixels, which are then cropped to 2048 × 2048 pixels as the original image for detection. In
addition, since the number of images in different categories in this data set is very unevenly distributed,
the top 45 categories with the largest number are generally used as training and validation data to
balance the sample differences in the data set. After screening, the total data volume is 9738, including
7790 training and verification data and 1948 test sets.

4.2 Experimental Metrics

All algorithms in this article follow the evaluation criteria of the COCO data set and mainly use
two performance indicators for evaluation: Recall rate and mAP with different thresholds. Precision
represents the probability that a positive sample in the prediction result is predicted correctly. The
recall rate represents the probability of correct recognition among all positive samples. The formulas
for calculating precision and recall are as follows:

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

TP indicates that the model predicts positive categories as positive, FP indicates that the model
predicts negative categories as positive, and FN indicates that the model predicts positive categories
as negative.

AP represents the average precision of a single category object, which combines the performance
of the model under different precision and recall rates. Corresponding to the area under the PR curve,
the Recall value is the horizontal axis and the Precision value is the vertical axis.
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AP =
∫ 1

0

p (r) dr (12)

mAP averages AP from the category dimension, so it is mostly used to evaluate the performance
of multi-classifiers. The formula for calculating mAP is as follows:

mAP =
∑

AP
Nclasses

(13)

It is worth noting that the COCO data set evaluation standards do not distinguish the difference
in naming between AP and mAP, and mAP is uniformly called AP. To maintain consistency with
the evaluation indicators of other related articles, the evaluation indicators of all algorithms in this
article are Recall, AP (AP0.5 : 0.95) , AP0.5, APS, APM , APL. Among these indicators AP and AP0.5 is the
most important indicator. AP refers to the average of IOU values ranging from 0.5 to 0.95 with a step
size of 0.05. AP0.5 represents the precision at the IOU threshold of 0.5. APS, APM and AP denote the
AP for small, medium, and large objects, respectively.

4.3 Experimental Environment and Parameters

All experiments in this article use the Windows 10 system to build the experimental platform on the
Pycharm code editor. The system uses Intel i9-13600 CPU@5.60 GHZ, 128 GB RAM, and NVIDIA
4090 GPU with 24 GB of video memory. PyTorch, TensorFlow and Keras are the most prominent deep
learning frameworks. In order to maintain consistency with the field of object detection, we choose the
PyTorch deep learning framework. The detailed experimental parameters are shown in Table 3 below.

Table 3: All algorithm experimental parameters

Component Name/value

Input image size 640 × 640 pixels
Epoch 300
Training batch size 20
Initial learning rate 1e−2

Min learning rate 1e−4

Momentum 0.937
Learning rate decay type cos
Optimizer SGD

4.4 Experimental Results and Analysis

4.4.1 Ablation Experiment

To demonstrate the positive impact of each improvement on the YOLOv7 traffic sign detection
algorithm, we designed a series of ablation experiments. First, a CMPDIoU regression loss function is
developed, which can stabilize model convergence and effectively prevent dangerous gradients caused
by jitter during medium and small target training. This method leads to an improvement of 0.9%
in terms of AP0.5 compared to the baseline. Secondly, the D-CMFF neck structure is proposed.
This method can fuse multiple path information, reuse high-level features, and enrich multi-scale
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information. This method leads to an improvement of 1.7% in terms of AP0.5 compared to the baseline.
Finally, B-AIFI is proposed, which has a larger receptive field and can effectively enhance the recall
rate of the model. This method improves recall and AP0.5 by 3.5% and 2.2% respectively compared to
the baseline. Compared with the baseline model, HFFT-YOLO has achieved significant improvements
in average recall and average precision. The detailed results of the ablation experiments are shown in
Table 4.

Table 4: Ablation experiment based on baseline

Methods CMPDIoU D-CMFF B-AIFI Recall AP AP0.5

60.5 55.4 90.7
� 61.4 55.6 91.6

YOLOv7 � 63.2 57.4 92.4
� � 63.2 57.5 93.2
� � � 64.0 58.1 92.9

4.4.2 Performance Comparison

To evaluate the detection performance of HFFT-YOLO with existing object detection algorithms,
we evaluate various algorithms, including SSD, YOLOv3, YOLOv5, YOLOv7, YOLOv8, and models
proposed by Liu et al. [8], Li et al. [9], Xu et al. [11], Wang et al. [12], and Zhao et al. [13]. Table 5
summarizes the evaluation metrics for each network, providing more comprehensive numerical results.

Table 5: Detection results of different networks

Methods Params (M) FLOPs (G) FPS AP AP0.5 APS APM APL

Liu et al. [8] 46.7 160.7 21 71.3 91.2 – – –
Li et al. [9] 35.7 – 90 – 88.7 – – –
Xu et al. [11] 89.5 – 23 79.0 – – – –
Wang et al. [12] 16.3 17.9 95 – 65.1 41.4 57.8 58.1
Zhao et al. [13] 34.7 – 37 – 92.4 – – –
SSD 26.3 100.4 80 44.4 78.6 18.7 57.2 78.8
YOLOv3 61.8 156.0 98 36.8 71.3 22.9 41.8 64.8
YOLOv5 51.6 114.9 87 52.2 85.0 35.0 60.3 77.6
YOLOv7 36.7 103.9 87 55.4 90.7 36.8 64.0 79.6
YOLOv8 43.7 165.6 75 54.0 88.3 31.0 63.5 83.6
Ours 36.2 100.9 76 58.1 92.9 40.7 66.4 78.3

Indeed, from Table 5, it is evident that the proposed HFFT-YOLO model has shown improved
performance compared to classical traffic sign detection networks. Compared YOLOv7, the HFFT-
YOLO algorithm not only does not increase the number of parameters and computational complexity
but also improves AP by 2.2%. In terms of small object detection, the model exhibits varying degrees
of improvement compared to the YOLO series algorithms. The most significant improvement is seen
in APS, which has increased by 3.9%, indicating a noticeable enhancement in the performance of
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small-scale traffic sign detection. Compared to other recently proposed traffic sign detection networks,
although Liu et al. [8] and Xu et al. [11] achieved AP values of 71.3% and 79.0%, respectively, a
large number of parameters and slower detection speed severely affect real-time detection. Although
Li et al. [9] and Wang et al. [12] managed to maintain fast inference speeds, their overall accuracy
levels reached only 88.7% and 65.1%, respectively. Although the model proposed by Zhao et al. [13]
achieves a certain balance between accuracy and speed, the inference speed of 37 frames per second
falls short in meeting the demands of vehicles moving at high speeds. Indeed, while HFFT-YOLO
may not exhibit significant improvements across all metrics, it still maintains an advanced position in
critical metrics such as AP, AP0.5, and FPS. What’s more important is that our algorithm achieves a
balance between speed and accuracy, which is a crucial factor in practical applications.

Fig. 7 shows the comparison between HFFT-YOLO and other networks during the training
process. The vertical axis represents the AP value when IOU = 0.5, and the horizontal axis represents
the number of training rounds. Because too frequent testing will seriously affect the progress of the
experiment, the program is set to save the test results of the current model on the training set every 10
rounds. This figure shows that our model is very smooth throughout the training process, has stronger
and faster learning ability in the early stage, and has stable convergence in the later stage. Compared
with other models, it achieves better results.

Figure 7: Comparison of AP between HFFT-YOLO and other single-stage networks

4.4.3 Data Detection Results

By selecting some samples that are difficult for the YOLOv7 network for comparative detection,
the comparison results are in Fig. 8. The first row is the inference results of YOLOv7 algorithm, and the
second row is HFFT-YOLO. The ground truth from left to right are w59, w59 and p5, p6, w59. What
is worth noting is that our algorithm has completed inference for targets that the original algorithm
cannot detect.

The HFFT-YOLO algorithm shows better accuracy and recall rate on traffic signs, especially the
recall ability has been greatly improved. These results provide strong evidence for the reliability and
accuracy of our algorithm in practical applications.
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Figure 8: Comparison of YOLOv7 and HFFT-YOLO algorithms

5 Conclusion

In this study, HFFT-YOLO is proposed to improve the application of YOLOv7 in traffic sign
detection. First, through B-AIFI, the problem of traditional convolution being limited in the shallow
receptive field is improved. Through the unique calculation method of the self-attention mechanism,
the feature maps are globally connected and actively promote the positioning ability of the model.
Secondly, D-CMFF is introduced to promote information interaction between feature layers through
multiple paths through the Fashion module. At the same time, combined with the reuse structure,
it deepens the fusion of advanced features and alleviates the problem of missed target detection. In
addition, we also designed a series of experiments to find the number and width of channels suitable
for traffic sign detection, which reduced a large amount of parameter redundancy and improved
calculation efficiency. Finally, a regression loss functionLCMPDIoU is proposed, which can ensure that the
penalty term can change dynamically during the training process. It changes the static characteristics
of MPDIoU, stabilizes the convergence ability of the model in the later stage, and improves the overall
performance of the model. The analysis of the experimental part shows that compared with some
standard models such as YOLOv7, HFFT-YOLO makes up for its weak shortcomings in small target
detection capabilities and shows more robust detection capabilities. However, in terms of FPS, our
model is only stronger than YOLOv8. This is due to the fact that the image information is more
extensive compared to the sequence information, resulting in increased computation time for the
B-AIFI module. Additionally, today’s hardware may have limited affinity towards the Transformer
architecture, further impacting the performance.

In addition to the above, our work also has certain limitations. Since the hard improvement of deep
learning requires more data, the algorithm only considers the traffic sign data of some cities in China
and ignores the data of other countries. This makes the algorithm lack generality. In addition, as a real-
time detector, the model still has parameter redundancy. Using distillation and pruning techniques to
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reduce the model and improve its real-time performance so that it can be deployed on small mobile
devices is our next research goal.
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