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ABSTRACT

Multi-modal fusion technology gradually become a fundamental task in many fields, such as autonomous driving,
smart healthcare, sentiment analysis, and human-computer interaction. It is rapidly becoming the dominant
research due to its powerful perception and judgment capabilities. Under complex scenes, multi-modal fusion
technology utilizes the complementary characteristics of multiple data streams to fuse different data types and
achieve more accurate predictions. However, achieving outstanding performance is challenging because of equip-
ment performance limitations, missing information, and data noise. This paper comprehensively reviews existing
methods based on multi-modal fusion techniques and completes a detailed and in-depth analysis. According to the
data fusion stage, multi-modal fusion has four primary methods: early fusion, deep fusion, late fusion, and hybrid
fusion. The paper surveys the three major multi-modal fusion technologies that can significantly enhance the effect
of data fusion and further explore the applications of multi-modal fusion technology in various fields. Finally,
it discusses the challenges and explores potential research opportunities. Multi-modal tasks still need intensive
study because of data heterogeneity and quality. Preserving complementary information and eliminating redundant
information between modalities is critical in multi-modal technology. Invalid data fusion methods may introduce
extra noise and lead to worse results. This paper provides a comprehensive and detailed summary in response to
these challenges.
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1 Introduction

In the real world, various modal information exists from the external environment and is
interrelated with each other to form a whole. Sources of multi-modal information include text, images,
video, audio, sensors, and so on [1]. When a method utilizes several data types to solve the problem,
it is a multi-modal method. Compared with the unimodal method, the multi-modal fusion method
can effectively utilize the complementary characteristics of multiple data streams to reduce the error
caused by poor data quality and the data noise between modalities, and it has rapidly become a
research hotspot in many fields. The main problem in various fields is how to fuse multi-modal
data more accurately and effectively and obtain better prediction accuracy. Although recent research
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demonstrates the benefits of fusing multi-modal data in different applications [2], fast and effective
multi-modal detection in real-world and complex environments is still challenging.

Multi-modal fusion technology has been applied in many fields, including autonomous driving,
smart healthcare, sentiment analysis, data security, human-computer interaction, and other applic-
ations [3,4]. For example, automatic driving vehicles are usually equipped with a set of sensors, such
as cameras and Light Detection and Ranging (LiDAR), to alleviate the perception difficulties of the
automatic driving system. Automatic driving vehicles can capture scenes with overlapping perspectives
to minimize visual blind spots by fusing the above multiple sensor data [5]. In smart healthcare, smart
healthcare systems frequently fuse multi-modal medical signals to provide a more accurate medical
diagnosis in most cases due to the complexity of diseases [0]. In the above scenarios, unimodal methods
are difficult to provide precise detection. First, each modal data has its inherent shortcomings and
limitations. For example, the data generated by the camera lacks depth information but has high
pixels. Although the LiDAR data has the depth information, the resolution is low. It cannot identify
long-distance data. Second, the unimodal task is not robust when a sensor fails or is blocked by an
object, while the multi-modal task can solve the above problem. Fig. | shows the schematic diagram of
unimodal and multi-modal architectures, respectively. Unimodal tasks only use a single data type as the
model’s input, while multi-modal tasks use two or more modal data as the input. The success of multi-
modal fusion technology in the above fields depends on the inherent properties of different modal data
and the high correlation and complementarity between them. When the unimodal information is lost,
another modality can supplement the missing information to obtain a more accurate detection result.

Prediction Prediction
Unimodal .
Model Multi -modal Model
Modality Modality Modality » Modality 3
Features Features Features Features
£ t £ f
Modality Modality | Modality » Modality 3
(a) Unimodal model (b) Multi-modal model

Figure 1: Model architecture

In recent years, researchers have proposed promising studies based on multi-modal fusion
technology. The early application can be traced back to an audio-visual speech task proposed in 1989
[7]. When the speech signal is degraded because of data noise, this method uses a neural network
to extract helpful information from the visual image and improves speech perception. Traditional
multi-modal methods mainly utilize the complementarity criterion and strong correlation between
modalities to maximize the consistency of different modal data. The most representative methods
are the co-training, the co-regularization, and related derived methods [8]. Compared with the early
traditional multi-modal methods, most current research enhances the modal fusion effect through
learning-based methods. The most popular method is based on deep learning, which is used for
multi-level abstract representation of data. Deep learning can accurately capture the characteristics
of multi-modal data and the complementary correlation between modalities. These deep learning-
based methods deal with generative and discriminant tasks by supervised and unsupervised training
strategies and have made significant progress in multi-modal methods. According to different fusion
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stages, the multi-modal fusion method has four main methods: early fusion, deep fusion, late fusion,
and hybrid fusion. Early and deep fusion are widely accepted since they can better retain the rich
information between modalities.

Although multi-modal fusion technology has achieved promising research results in many fields,
there are still the following challenges: 1) Multi-modal methods can solve most unimodal problems,
such as target occlusion and weather change, but it is hard to effectively utilize the information
of each modality due to the heterogeneity of multi-modal data. Invalid data fusion methods may
introduce extra noise and lead to worse results. 2) Due to the change in harsh environments or
equipment performance limitations, the data collected by different sensors are not synchronized in
a temporal or space domain. It is hard to collect data at the same time because the acquisition
cycle of each sensor is independent, and sensors have different perspectives when deployed. 3) The
Multi-modal model has more free weights than the unimodal model for capturing the data feature
structure in the learning-based methods, which results in excessive inference time for the training
model. In order to address the above problems, current research has proposed many fusion techniques,
such as representation, translation, alignment, co-learning, reasoning, generation, and so on [8,9].
Representation, translation, and alignment are the three most widely used core fusion technologies
for multi-modal tasks, which are detailed in this paper.

The existing survey on multi-modal fusion mainly focuses on introducing the development of
frontier technologies in their respective fields [6,10]. This is because multi-modal technology relies on
specific scenes and data quality. Unlike existing research, the survey describes multi-modal technology
from a new perspective. It explores common issues in various fields and expands on unknown fields.
The survey is more concerned with general multi-modal techniques and existing challenges. It provides
a comprehensive investigation for multi-modal research and focuses on multi-modal fusion methods,
techniques, and applications. Fig. 2 shows the structure of the survey paper. The survey discusses the
most up-to-date multi-modal fusion techniques based on deep learning. It provides an applicability
analysis of multi-modal technology in multiple application scenes by consulting plenty of literature.
The survey mainly addresses three key issues: 1) What are the multi-modal fusion methods, and how
are they different? 2) What are the multi-modal fusion techniques, and how do they work? 3) Which
multi-modal method should be selected for the best results in different application contexts? Finally,
it introduces existing challenges, future research directions, and potential solutions in multi-modal
fusion technology. The main contributions of this survey are as follows:

e The survey conducts a detailed analysis of multi-modal fusion techniques and focuses on deep
learning-based methods. It discusses the following four fusion stages: early fusion, deep fusion,
late fusion, and hybrid fusion. It also analyzes the applicability of multi-modal fusion methods.

e The survey discusses three fusion techniques in the multi-modal field, including data represen-
tation, data mapping, and data alignment.

e The survey introduces popular multi-modal datasets in different fields and compares existing
research. In addition, it discusses a series of open challenges and potential solutions in detail.

The organization of this paper is as follows: Section 2 describes the fusion methods, and Section 3
details the multi-modal fusion data. Section 4 explores multi-modal fusion techniques that can
enhance the effectiveness of data fusion. Section 5 introduces relevant multi-modal applications.
Finally, Section 6 discusses existing challenges and potential solutions, and Section 7 provides a
conclusion.
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Figure 2: The structure of the survey paper

2 Fusion Methods

This section introduces the multi-modal fusion methods. The taxonomy includes early fusion,
deep fusion, late fusion, and hybrid fusion, which are classified by the data fusion stage. This section
analyzes the model structure and the advantages or disadvantages of each model.

Early fusion is the data level fusion and usually occurs in the input stage of each branch. The raw
data is mapped to the same space through data alignment and translation technology, and then multi-
modal data is fused to obtain richer and more expressive data forms. The early fusion method can
quickly establish the corresponding relationship between modalities and effectively utilize the valuable
information from multiple modalities, but it has more computing requirements. Fig. 3 shows the early
fusion architecture, taking image and voice fusion as an example. In particular, several studies have
also included deep fusion in early fusion [! 1]. For a network with L + 1 layer, Eq. (1) describes the
early fusion method, where M, and M, represent two different modalities, f, stands for the feature
mapping of a neural network at layer /, / € {1, 2, ..., L}, £ and f,M’ are the feature mapping of the
two modalities M, and M, in the / layer of the neural network, respectively. 7',(-) represents the feature
transformation function in the neural network layer /. Let f;,, = £ @ f,'M*f , where /" & f}Mj represents
data fusion operations.

= (o (1 (o (1 w) »

Deep fusion occurs in the feature extraction stage. It mixes the multi-modal data in the feature
space to obtain the fusion features, compensates for the missing features by other modalities, and
then applies fusion features to perform classification or regression tasks in the prediction stage.
The fine granularity of the deep fusion method is coarser than the early fusion method [!2]. Thus,
the deep fusion method can reduce equipment performance requirements compared with the early
fusion method. However, it has dimension explosion problems. When the feature dimension reaches a
particular scale, the model’s performance will decline, and information loss will increase. As shown in
Fig. 4, the stage of deep fusion occurs in the backbone network. The deep fusion takes place at layer
[, Eq. (2) describes the deep fusion method.

fL =T ( Ty (TlMi ( ’ 'TlMi (fOMi)) ® T’Mj ( ' 'TIM/ (fOM/)))) ?
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Figure 4: An example of deep fusion

Late fusion is a decision-level fusion and occurs in the prediction stage. Each modality has
its separate branch for decision, and the final decision is made by fusing all the output of the
decision level. The late fusion can effectively utilize the network decision information of each modality
branch without considering the raw data fusion problem. However, the late fusion employs unimodal
information to predict the results. Such information may be accidentally skipped or falsely detected
under certain conditions due to the limitation of the data itself. In Fig. 5, the late fusion assigns a
separate network branch to each modality and fuses the respective prediction results. Late fusion is an
integration method that uses multi-modal information to optimize the final proposal. Eq. (3) describes
the late fusion method.
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Figure 5: An example of late fusion

Hybrid fusion generally fuses the decision-level information of one branch with the data-level or
feature-level information from other branches to establish a cascade relationship between multiple
modalities. In exceptional cases, the simple connection of multi-modal features or the methods based
on a single-level fusion cannot meet high accuracy and robustness, such as data noise and data loss.
Therefore, the existing research combines the advantages of early fusion, deep fusion, and late fusion
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to propose a hybrid fusion strategy [10]. Hybrid fusion combines the advantages of all three multi-
modal fusion methods. It makes up for the defects of the unimodal fusion method, but this method
will increase the model structure complexity and training difficulty. As shown in Fig. 6, hybrid fusion
is generally dominated by at least one branch, and other modal branches provide auxiliary information
to perform the final task.
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Figure 6: An example of hybrid fusion

Discussion on fusion methods. The above structure is the basic construction of multi-modal
network models. In fact, most multi-modal models are more complex than these basic models for
better data fusion. The most commonly used multi-modal fusion methods are Convolutional Neural
Network (CNN)-based and Transformer-based methods [13]. CNN can effectively prevent over-
fitting and reduce the number of parameters during image processing while preserving the original
features of the image. Cai et al. [14] add geometry information to the multi-modal model, which
maps multi-view image features into the BEV (bird’s-eye view) space to fusion multi-view image
features. Wu et al. [15] propose a virtual sparse convolution to design a fast yet effective backbone
network, VirConvNet (Virtual Sparse Convolution Network). This method can discard large amounts
of redundant voxels and tackle the noise problem. Although CNN has many advantages, it only focuses
on local information. Thus, CNN is unable to capture long-range dependencies.

In order to address the above problem, the Transformer-based method has received widespread
attention because it can utilize long-range dependencies to extract effective features. Transform-
ers solely use the attention mechanism and dispense with recurrence and convolutions entirely.
Liu et al. [16] propose a state-of-the-art transformer-based object detector, which applies knowledge
distillation and exemplar replay techniques in the multi-modal model. Another multi-modal method
combines the advantages of CNN and Transformer by careful design. Rong et al. [17] propose a
dynamic-static feature fusion strategy containing two modules: neighborhood cross-attention and
dynamic-static interaction. This strategy utilizes a dual pathway architecture to provide rich semantic
information. Although this method exacerbates the complexity of multi-modal models, it significantly
enhances the model accuracy.

Among the multi-modal methods, early fusion and deep fusion are used more frequently because
they have the smallest granularity. The smaller the granularity, the more practical information between
multi-modal data is captured. It usually brings more excellent performance. Although early fusion
and deep fusion performance is high, it lacks flexibility. When using new multi-modal data to replace
the input or expand the number of input channels, they can only retrain all models and require data
alignment. To maximize the role of different multi-modal fusion methods, researchers must select
appropriate ones according to different application scenes and existing data quality.
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3 Fusion Data

This section introduces popular multi-modal datasets classified by different application fields. We
have gone through 7000 papers for nearly three years and found the three most widely used fields of
multi-modal technology, including autonomous driving, smart healthcare, and sentiment analysis.

Autonomous driving is one of the most widely used areas of multi-modal fusion technology. The
automatic driving system uses multiple sensors (such as camera, LiDAR, and radar) to collect raw
data. It uses multi-modal fusion technology to fuse the collected data and complete the perception
task. In automatic driving, there are many datasets, as shown in Table 1. The most popular used
datasets are KITTI' [18], Waymo’ [19], and NuScenes’ [20]. KITTI is one of the most commonly used
object detection datasets in automatic driving, including 2D, 3D, and bird’s eye view detection tasks.
KITTTI has four high-resolution cameras, Velodyne laser scanners, and the most advanced positioning
system, collecting 7481 training images, 7518 test images, and corresponding point clouds. In the
detection task, KITTI usually uses average precision as the evaluation index for comparison. It has
three task levels: easy, mod, and hard. The public dataset of Waymo was collected by five radar
sensors and five high-resolution pinhole cameras. The dataset has 798 scenarios for training, 202
scenarios for validation, and 150 scenarios for testing. Waymo has four evaluation indexes: AP/L1,
APH/L1, AP/L2, and APH/L2. AP and APH represent two different detection indicators, and L1
and L2 represent objects with different detection difficulties. The NuScenes public dataset contains
1000 driving scenes, 700 for training, 150 for verification, and 150 for testing. Nuscenes must detect
ten categories, including traffic cones, bicycles, pedestrians, cars, buses, etc. When calculating the AP,
NuScenes uses the measurement based on the center distance instead of the traditional bounding box
overlap and uses AP and TP to evaluate the detection performance.

Table 1: Popular multi-modal dataset comparison on autonomous driving

Ref./Dataset/ LiDARs Cameras Annotated 3D boxes 2D boxes Traffic Harsh envi-
Year frames scenario ronment
[18] KITTI 2012 1 Velodyne 2 color, 2 15k 80 k 80 k Highway, -
HDL-64E grayscale Urban,
cameras Suburban
[19] Waymo 5 LiDARs 5 high- 230k 12M 99M Urban, Night, Rain
2019 resolution Suburban
pinhole
cameras
[20] NuScenes 1 Spinning 6 RGB 40 k 14M - Urban, Night, Rain
2019 32-beams cameras Suburban
LiDRA
[21] 2 VUX-1HA 2 front 144 k 70k 25M Highway, Night
ApolloScape laser scanners ~ cameras Urban,
2018 Suburban
[22] A*3D 2020 1 Velodyne 2 color 39k 230k - Urban Night, Rain
HDL-64E cameras
3D-LiDAR
(Continued)
Lwww.evlibsnet/datasets/kitti (accessed on 22/04/2024).
2http://www.waymo.com/open (accessed on 22/04/2024).

3github.com/nutonomy/nuscenes-devkit (accessed on 22/04/2024).
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Table 1 (continued)

Ref./Dataset/ LiDARs Cameras Annotated 3D boxes 2D boxes Traffic Harsh envi-
Year frames scenario ronment
[23] PandaSet 1 Mechanical Swide-angle 6k IM - Urban Night
2020 spinning LiDAR cameras
1 forward-
1 facing
Forward-facing long-focus
LiDAR camera
[24] Cirrus 2021 2 Lumiar Model 1 RGB camera 6 k 100 k - Urban Night
H2 LiDARS
[251H3D 2019 1 Velodyne 3 color 27k I.IM - Urban -
HDL-64E cameras
[26] Argoverse 2 VLP-32 7 high- 22k 993 k - Urban Night, Rain
2019 LiDAR resolution ring
cameras

2 front-facing
stereo cameras

[271 ONCE 2021 1 40-beam 8 high- 16 k 417k 769 k Urban, Night, Rain
LiDAR resolution Suburban
cameras

Smart healthcare uses wearable devices, the Internet of Medical Things (IoMT), and wireless
communication technology to diagnose intelligently. Due to the complexity of the disease, multi-modal
medical signals are needed for diagnosis in most cases, including Electrocardiogram (ECG), Blood
Pressure (BP), Arterial Blood Pressure (ABP), Electroencephalogram (EEG), Electrom-yography
(EMGQG), Magnetic Resonance Imaging (MRI) and so on. Different medical signals have different
characteristics to convey human physiology, so fusion of these medical signals can obtain better results
than using a single signal. The smart healthcare field has many public datasets, as shown in Table 2. The
more commonly used datasets include DEAP" [28], SEED" [29], and BRATS" [30]. DEAP is a multi-
modal dataset for analyzing human affective states and detecting mental disease, which records the
EEG and peripheral physiological signals of 32 participants by watching 40 one-minute-long excerpts
of music videos. Participants rated each video in terms of the levels of arousal, valence, like/dislike,
dominance, and familiarity. SEED included EEG and eye movement data of twelve participants and
EEG data of three other subjects. The above datasets can be used to research patients’ mental states
and stress. BRATS is a large-scale brain multi-modal MR brain tumor segmentation dataset, including
8160 MRI scans of 2040 patients. Each patient contains four modal MR images with T1, T1Gd,
T2, and T2-FLAIR. These images are obtained by various clinical protocols and scanners in various
medical institutions and are used to develop and test the latest brain tumor segmentation algorithm.

4http://www.eecs.qmul.ac.uk/mmv/datasets/deap/ (accessed on 22/04/2024).
Shttp://bemi.sjtu.edu.cn/seed/index. html (accessed on 22/04/2024).
Ohttp://www.braintumorsegmentation.org/ (accessed on 22/04/2024).
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Table 2: Popular multi-modal dataset comparison on smart healthcare

Dataset Year Datatype Scale Size  Task
DEAP [28] 2012 Imaging 32 participants — e Mental state
detection
SEED [29] 2015 Imaging 12 participants - e Mental state
detection
BRATS [30] 2015 Imaging 8160 MRI - e Tumor
segmentation
TCGA [31] 2015 Genomics, Imaging 33 distinct cancer 2.5P e Cancer research
11,000 patients
MedMD [32] 2023 Text, Imaging Over 5000 16 M e Modality
distinct diseases recognition

e Discase diagnosis
e Visual question

answering
e Report generation
CXR-Mix [33] 2023 Imaging 820,893 chest 668 k e Disease diagnosis
X-rays
PMC-VQA [34] 2023 Imaging, Text 227k VQA pairs 413k e Visual question
of 149 k images answering
SLAKE [35] 2021 Imaging 642 images 6k e Visual question
answering
VinDr-Mammo [36] 2023 Imaging 5000 50k e Level assessment
mammography e Finding
CXams annotations

Sentiment analysis is a new research field that aims to enable intelligent systems to perceive, infer,
and understand human sentiment. It has great commercial value, such as generating better marketing
strategies [37]. Many studies in this field use physiological signals, voice, text, facial expressions, and
body language better to capture human sentiment [38]. We summarized the most popular multi-modal
sentiment analysis datasets in recent years, as shown in Table 3. The most popular datasets include
POM '’ [39], CMU-MOSELF [40], and CH-SIMS’ [41]. POM collected 1000 film reviews from ExpoTV.
Each film review is a video of the speaker evaluating a specific film and the film rating given. The rating
is divided into 1 star to 5 stars, and the average length of the video is about 93 s. The dataset can be used
to study the persuasion level of social networks and identify people’s speech characteristics. There are
903 videos, 600 for training, 100 for verification, and 203 for testing. CMU-MOSEI is a large dataset
consisting of 3228 videos from more than 1000 online YouTube speakers (57% male and 43% female).
Every sentence in the dataset is marked as one of eight emotions: strong positive, positive, weakly
positive, neutral, weakly negative, negative, and strong negative. The CH-SIMS dataset contains
2281 refined video clips, collecting spontaneous expressions, head poses, occlusion, and lighting from

7Researchers interested in the dataset can contact Sunghyun Park (park@ict.usc.edu).
8https://www.amir-zadeh.com/datasets (accessed on 22/04/2024).
Ihttps://github.com/thuiar/MMSA (accessed on 22/04/2024).
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different films, TV series, and variety shows. It has both multi-modal and independent unimodal labels.
It allows researchers to study multi-modal sentiment analysis using the interaction between modalities,
and it supports the use of independent unimodal labels for unimodal sentiment analysis tasks. The
dataset has the following label types: positive, weakly positive, neutral, weakly negative, and negative.

Table 3: Popular multi-modal dataset comparison on sentiment analysis

Dataset Year Datatype Scale Source Language Topics
POM [39] 2016 Verbal, 1000 videos ExpoTV English ~ Movie reviews
Para-verbal,
Visual, audio
CMU-MOSEI [40] 2018 Text, Visual, 3228 videos YouTube English  Reviews, debate,
Audio consulting
CH-SIMS [41] 2020 Text, Visual, 60 videos Movies, TV Chinese = Spontaneous
Audio series, variety expressions,
shows various head
poses, occlusions,
illuminations
YouTube [42] 2011 Text, Visual, 47 videos YouTube English  Product reviews
Audio
MOSI [43] 2016 Text, Visual, 93 videos YouTube English  Opinions, stories,
Audio reviews
MuSe-CaR [44] 2021 Text, Visual, 291 videos  YouTube English  Vehicle review
Audio
MELD [45] 2018 Text, Visual, 13,000 TV English  Dialogues from
Audio utterances  series-friends TV series
from 1433
dialogues
MEMOTION 2 2022 Text, Visual 10,000 Reddit, English  Politics, religion,
[46] images Facebok sports
FACTIFY [47] 2022 Text, Visual 50,000 Tweeter English  Politics,
tweets governance
WESAD [4§] 2018 ECG, EDA, 15subjects Recorded - Wearable stress
EMG, from both a and affect
RESP, wrist- and a detection
TEMP, ACC chest-worn
device

4 Fusion Technologies

This section focuses on three core technologies of multi-modal fusion, which can improve the
effect of data fusion, including data representation, translation, and alignment. In order to improve the
multi-modal model performance, researchers need to preprocess the raw data using carefully designed
methods before the data is input into the model. Reasonable use of the above three technologies can
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significantly improve the prediction accuracy of the multi-modal model. Finally, we review the current
work in detail.

4.1 Data Representation

Cross-modal interaction and complementary information between different modalities are crucial
for multi-modal tasks, but the heterogeneity of multi-modal data makes it highly challenging. Current
research utilizes multi-modal representation learning to narrow the heterogeneity gap among different
modalities, which plays an indispensable role in the multi-modal field. A proper method of data
representation should contain essential information of data as much as possible and generate an
implicit vector to represent multi-modal information. The high quality of representation learning can
retain more practical information, and it helps to complete downstream tasks better. Multi-modal
representation learning must consider the data noise between modalities, data loss, real-time, and
efficiency. Bengio et al. [49] point out that good representation mainly has several characteristics,
including data smoothing, spatiotemporal correlation, data sparsity, natural clust-ering, etc. Com-
pared with unimodal, multi-modal representation learning faces many challenges, including data noise,
data heterogeneity, data missing, information redundancy, model complexity, etc. The quality of data
representation is crucial to multi-modal problems and is the basis of model training. According to the
strategy of integrating different modalities, the survey divides the multi-modal representation models
into two frameworks: joint representation and coordinated repress-entation. Table 4 summarizes
the advantages and disadvantages of each framework, and Fig. 7 shows the structure of joint and
coordinated representation.

Table 4: A summary of the advantages and disadvantages of each framework

Framework Characteristics Advantage Disadvantage
Joint representation  # modalities > # e Integrating information to e Cannot infer
representations reduce the number of separate  individual modality
representations
Coordinated # modalities = # e Maximize the cross-modal e Restricted by the
representation representations similarity or correlation number of modalities
e Improving multi-modal
contextualization
Slx, x2) Sixn) ~ 8(x2)

(©~0)@~0)

Coordinated

©~0)(@~0) (C~0)©-0)

(a) Joint representation (b) Coordinated representation

Figure 7: Structure of joint and coordinated representations
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Joint representation aims to project all unimodal representation to a shared semantic subspace and
fuse multi-modal features. It mainly deals with the task of training and reasoning with multi-modal
data. Common methods include addition, multiplication, and splicing [50]. Mainstream methods often
utilize neural networks to construct multi-modal joint representations. The deep neural network has
multi-layer properties, and each connected layer represents the data more abstractly. Thus, the last or
penultimate neural layer is usually used as the data representation. In order to construct a multi-modal
representation, each modality needs to start from several separate neural layers and then pass a hidden
layer to project modalities in the joint space. Finally, jointing the multi-modal representation can pass
multiple hidden layers or predict downstream tasks [51]. Mohammed et al. [52] propose a novel deep
multi-modal multi-layer hybrid fusion network (MMHFNet). MMHFNet simultaneously contains
complementary information of different modalities, vertically combines low-level features extracted
from the shallow layer with high-level features extracted from the deep layer, and fully uses spatial-
spectral information of different layers for multi-layer fusion. This method can adaptively generate
multi-modal joint feature representation, producing better performance in accuracy and robustness.

Furthermore, joint representation tends to preserve shared semantics while ignoring the specificity
information of modality. Thus, joint representation cannot guarantee complementary information
and constraint relationships among different modalities at the feature fusion stage. A practical
solution is adding extra regularization terms to facilitate the exchange of valuable information [53].
Regularization can discover the hidden correspondences and diversity of the multi-modal features
and adjust the weights of the fusion layer dynamically. Following this strategy, promising results have
emerged in many multi-modal applications, such as semantic and instance segmentation [54], gesture
recognition [55], and image-text retrieval [56].

Coordinated representation learns the individual representations of each modality and coordinates
modalities by defining the constraints. The popular coordinated methods are based on cross-modality
similarity and cross-modality correlation [57]. Cross-modality similarity is learning a common sub-
space by directly measuring the distance between the vectors of different modalities. The similarity
between two modalities can be calculated by the cosine similarity of two semantic vectors. It can be
denoted as Eq. (4), where yx and y, are the semantic vectors of two modalities.

T
R(K.P) = cos (yg.py) = — 2" — (4)
el el

Cross-modality similarity has a wide range of applications. Wu et al. [58] propose a Focal
Modality-Aware Similarity-Preserving Loss method to match pedestrian images across non-
overlapping camera views. It learns shared knowledge for cross-modality matching by cross-modality
similarity preservation. To further extract shared knowledge, they design a modality-gated node to
obtain the universal representation of both modality-specific.

Cross-modality correlation is to learn a shared subspace to maximize the correlation of different
modal representation sets. Cai et al. [59] propose a novel unsupervised image fusion network (DCS-
Fuse) to fuse infrared and visible images. To reduce information loss, they first learn the modal-
specific features of each modality and then calculate the correlation to guide the integration of
cross-modal features. Finally, this method utilizes these integrated features to reconstruct the fused
image. Coordinated representation can be used in many fields, such as emotion recognition [60].
The advantage of coordinated representation is that each modality can work independently. This
characteristic benefits cross-modality transfer learning and delivers information between different
modalities. Finally, the comparison of multi-modal representation methods is shown in Table 5.
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Table 5: The recent work on multi-modal representation
Ref. Year Modalities Framework Dataset Task Performance
[54] 2024 3D point Joint S3DIS, SUN Semantic mAP (S3DIS)
cloud, Text  representation RGB-D, and segmentation, =62.7
ScanNet instance mAP (SUN
segmentation, RGB-D) =37
and object mAP (Scan
detection Net) = 39.7
[55] 2024 Wireless Private dataset Human gesture Accuracy
signal, Visual recognition (cross-p) = 97.6
signal Accuracy
(cross-s) = 98.1
Accuracy
(cross-ps) =
97.4
[56] 2023 Image, Text MS-COCO Image-text Accuracy
retrieval problem (sentence) =
98.7
Accuracy
(Images) = 94.2
[58] 2020 RGBimages, Coordinated SYSU-MMO1  Address the mAP = 44.98
Infrared representation RGB-IR
image cross-modality
Re-ID problem
[59] 2023 Infrared TNO, Infrared and Qp (TNO) =
image, RoadScene, visible image 0.94
Visible image and M3FD fusion for visual  Qp (RoadScene)
object detection  =0.93
Qp (M3FD) =
0.95
[60] 2024 EEG, Eye SEED-CHN,  Emotion Accuracy
movement SEED-GER recognition (SEED-CHN)
signals =94.09
Accuracy
(SEED-GER) =
91.62

4.2 Data Translation

Data translation is used to interconvert between modalities. It can supplement the lost information

of the current modality with the information of another modality mapping and capture complemen-
tary information between different modalities. Multi-modal data translation techno-logies include
neural networks, graphical models, and generative adversarial networks. The neural network is a
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widely used method because of its learning ability. This method inputs the multi-modal data into
the neural network and maps the different modalities to the same semantic space. The graphical
model method stands for the data translation of different modalities as a graph structure. It maps
the different modalities to the same semantic space by utilizing the propagation and aggregation
ability of the graphical model. The generative adversarial network is a newly emerging method used
for data translation and uses the confrontation between generator and discriminator to complete the
translation process of multi-modal data. The generator is responsible for mapping the data of different
modalities to the semantic space. The discriminator is responsible for judging whether the generated
data is accurate. Finally, a better multi-modal data translation model is obtained by optimizing the
confrontation process between the generator and the discriminator [61].

The modalities generation methods of data translation include a grammar-based model, encoder-
decoder, and continuous generation model [9]. Grammar-based models rely on predefined syntax to
generate specific modalities. They first detect advanced concepts from the source modalities, such
as objects in the image and actions in the video. Then, these detection results are combined with
the predefined grammar to generate the target modality. Kojima et al. [62] propose a system that
detects human head and hand positions and combines detection results with the rule-based natural
language generator to describe human behavior in video. Mitchell et al. [63] use more complex tree-
based language models to generate syntax trees, which leads to more diverse descriptions. However,
this method cannot capture the relationship between spatial and semantics. Thus, Elliott et al. [64]
explicitly model the proximity relationship of objects to generate image descriptions. The encoder-
decoder method first encodes the source modalities as a potential representation, and then the decoder
uses the potential representation to generate the target modalities. The encoder-decoder model is
mainly used to generate text but can also generate images and sounds. Recurrent Neural Network
(RNN) or Long Short-Term Memory (LSTM) usually executes the decoder and uses the encoded
representation as the initial hidden state. Venugopalan et al. [65] use the pre-trained decoder LSTM
for image subtitle generation to improve performance. Rohrbach et al. [66] also explore various LSTM
architectures and utilize regularization techniques for video description tasks. Continuous generation
models are used for sequence conversion. It converts from source to target modalities, generating
the output online at each time step. It is mainly for text-to-speech conversion, audio-visual speech
generation, and so on [67-69]. Table 6 shows the comparison of multi-modal translation methods.

Table 6: The comparison of modalities generation methods in multi-modal translation

Ref. Year Modalities Method Dataset Task Contribute
translation

[70] 2019 Image, Text Grammar- VQA, COCO Visual question e Propose a novel

based answering caption embedding
module
[71] 2023 Image, Text SyViC Large-scale e A million-scale
pre-trained synthetic dataset SyViC
vision &

language models

(Continued)
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Table 6 (continued)

Ref. Year Modalities Method Dataset Task Contribute
translation
[72] 2024 Image, Text, Encoder- CMU- Multi-modal e Propose a novel
Audio decoder MOSI, sentiment Disentanglement
CMU- analysis Translation Network
MOSEI e Propose a two-step
translation method
[73] 2023 Image, Text, MOSI, Multi-modal e Propose a new
Audio MOSEI sentiment cross-modal approach
analysis e Propose a modality
reinforcement
cross-attention module
and noise-filtering gate
module
[67] 2023 SAR and Continuous  SENI12MS-  Multi-modal e Propose a novel
optical generation CR remote sensing  hierarchical spectral
images image cloud and and structure-
shadow removal preserving fusion
network
e Propose a deep
hierarchical
architecture with
stacked residual groups
[68] 2023 Image, Text LRS3-T, Speech-to- e Propose the first
CVSS-C speech textless audio-visual
translation speech-to-speech
translation model
AV-TranSpeech
e Collect a benchmark
dataset LRS3-T
[69] 2024 Text, Audio Private Speech synthesis e Propose METTS to
dataset synthesizing bilin-gual

emotional speech for
each monol-ingual
speaker

4.3 Data Alignment

Data alignment is used to find the corresponding relationship of elements in different modalities
from the same instance. It aligns the data of different modalities in time and space and realizes the
information interaction. For example, given an image and a phrase, we need to find the image region
corresponding to the phrase. From a data-driven perspective, multi-modal data alignment is used
to explore which elements are related, and it is essential for modeling the joint distribution across
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modalities. Although multi-modal technology has many advantages, its adverse effects cannot be
ignored. Fusing other modalities without constraints will bring data noise. This behavior will reduce
the gain of the multi-modal model or even lower than the prediction accuracy of the unimodal model.
Therefore, data alignment is one of the core issues in multi-modal research and has a wide range of
applications in many fields [74].

Data alignment can be summarized as explicit and implicit alignment [75]. Explicit alignment aims
to find the relationship between modalities and is mainly applied to voice-text alignment and image
or video positioning. In contrast to explicit alignment, implicit alignment learns how to align the data
latently during model training and is usually used as an intermediate step of another target task. It is
mainly used in cross-modality retrieval, visual automatic description generation, and visual question
answering [76]. Multi-modal alignment transforms the original space of modalities into a multi-modal
alignment space with constraints through functional changes. Let E, and E, denote the sets of source
entities and the corresponding target entities, where |E,| = |E,|. The multi-modal alignment method
aims to find all the aligned pairs P so that the ith entity in E| corresponds to the ith in E,, and Eq. (5)
describes P.

P ={(e,e,)le, = ey,e, € E,,e, € E}} ®)

Wang et al. [77] utilize classification techniques and entity types to remove visual noises and
compute a similarity matrix for alignment learning. It is denoted as Eq. (6), where E® and E¥ stand
for the structural embeddings of E, and E,, respectively. Sim is the similarity matrix. Sim; denotes the
cosine similarity between the ith entity in E, and jth in E,.

Sim = <E§S) , Eiﬂ) c R\Es\XlEH (6)

The loss of structural modality is denoted as Eq. (7), where & and 8 are the temperature scales
and N is the batch size.

1l (1 . 1 _
L= N Z (a log(l + Z eOtSllTlm[) 4 E log(l + z easlmm) —log (1 + ﬁSimii)) (7

m#i n#i

i=1

We further subdivide data alignment technology into discrete alignment and continuous align-
ment. The structure of discrete alignment and continuous alignment is shown in Fig. 8. Discrete
alignment is mainly used to determine the association between discrete elements in different modalities.
It is suitable for multi-modal tasks and can precisely segment the data into discrete elements, such as
cross-modality retrieval [78]. Some recent developments have integrated it with neural networks and
developed a convex relaxation method for effective learning to ease the computational difficulty [79].
The above methods are used for modal data that can be easily segmented. However, some continuous
signals and spatiotemporal data are difficult or impossible to segment. For these indivisible continuous
signals, the existing research proposes effective solutions based on adversarial training to solve the
continuous alignment problem. For example, Liu et al. [80] present a novel Enhanced Alignment
Fusion-Wasserstein Generative Adversarial Network (EAF-WGAN) for turbulent image restoration,
and Munro et al. [81] design self-monitoring adversarial alignment methods for multi-modal behavior
identity. Clustering methods can also group continuous data based on semantic similarity and cluster
continuous original video or audio features into discrete sets [82].
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(a) Discrete alignment (b) Continuous alignment

Figure 8: Structure of data alignment

Data alignment has long-term dependence and fuzzy segmentation problems. This is because of
the uncertain relationship between modalities. It may be one-to-one, many-to-many, or no correspond-
ing relationship. The data alignment method has the following challenges: 1) the length difference
between different modalities. 2) Semantic differences between different modalities. In response to the
above challenges, the recent work provides some practical solutions to fill in the missing information
and express the subtle difference in semantic information. It can solve the problems of length mismatch
and semantic difference [83]. There are also some multi-modal methods to align camera images and
point clouds by using attention learning. Chen et al. [84] design a cross-attention feature alignment
module to adaptively aggregate pixel-level image features of each voxel. Similarly, Li et al. [85]
dynamically capture the correlation between images and LiDAR features by utilizing the cross-
attention method in the fusion process. Table 7 shows the comparison of multi-modal data alignment
methods.

Table 7: The recent work on multi-modal data alignment

Ref.  Year  Modalities Network Dataset Task Performance
architecture
[74] 2024  Image, Text, Transformer- MET-Meme, Multimodal Accuracy (SA)
Context based MemeCap emotion =29.17
captions recognition Accuracy (SA)
=72.36
Accuracy (ID)
=44.24
[76] 2023  Image, Text, AKEE VTQA Visual text Accuracy =
Question question 60.62
answering
[78] 2024  Text, Adversarial ChEBI-20 Cross-modal ~ Hits10 =92.1
Molecule network molecule
(three fully- retrieval
connected
layers)
[80] 2023  Spatiotemporal SNAF Private Turbulent SSIM = 90.47
data dataset image VSI =98.76
restoration FSIM = 94.23

(Continued)
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Table 7 (continued)

Ref. Year  Modalities Network Dataset Task Performance
architecture
[85] 2022 LiDAR LearnableAlign Waymo 3D object AP/L1 =84.3
point clouds, (three fully- detection
Image connected
layers)

5 Fusion Applications

Multi-modal fusion technology is critical in many fields because of its rich information expression,
such as autonomous driving, smart healthcare, sentiment analysis, human-computer interaction,
intelligent education, etc. Fig. 9 shows the multiple fields using multi-modal techn-ology, where the
number of researches is represented by bubble size. We can observe from Fig. 9 that the number
of multi-modal researches has gradually increased in recent years. Then, we select the three most
widely used fields to introduce the related applications of multi-modal fusion technology, including
autonomous driving, smart healthcare, and sentiment analysis. First, we introduce the main tasks of
the three fields respectively and then analyze the methods based on multi-modal fusion technology in
each field.

2023 ~ [ ]
2022 + [ ]
2021 A
- ®
3
2020 + ®
2019 4 ®
2018 — ¥ T T T T 1
0 0.04 0.08 0.12 0.16 0.2 0.24
The ratio of multi -modal research
Autonomous driving Smart healthcare Sentiment analysis
Human-computer interaction Agriculture Social network
Industrial monitoring . Virtual reality Intelligent education

Figure 9: The summary of multi-modal applications in recent years

5.1 Autonomous Driving

Multi-modal fusion technology has made rapid progress in the perception task of autonomous
driving [86]. The typical architecture for an autonomous driving system is shown in Fig. 10, consisting
of three parts: Perception, Decision-making, and Performance. In order to ensure a solid and accurate
perception of the environment, autonomous vehicles are usually equipped with a set of sensors (such
as cameras and LiDAR). Multiple sensors are hoped to capture scenes with overlapping perspectives
to minimize blind spots. Most existing methods utilize the point cloud or image data captured by
LiDAR and camera to handle perception tasks, and they have achieved some results [87]. However,
many studies have shown that fusing multiple data streams can obtain more significant performance
advantages because of the complementary characteristics between data [88].
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Figure 10: The typical architecture for an autonomous driving system

In autonomous driving, multi-modal fusion technology is mainly used for object detection, seman-
tic segmentation, object tracking, and depth completion. Object detection and semantic segmentation
are the most common tasks. Object detection is a traditional computer vision task that aims to locate,
classify, and estimate directional boundary boxes in 3D space [89]. Identifying targets include cars,
pedestrians, traffic lights, and road markings. 3D object detection is used to predict object properties,
including locations, sizes, categories, etc. It can be described as Eq. (8), where a(-) stands for a set
with object states in a frame scenario, and o,, 0,, ..., 0, are the 3D objects. T,(-) is the 3D detection
function, and 8 is input data from the sensor.

a(019023~"a0n): Tdet(ﬂ) (8)

According to the existing research, semantic segmentation can be divided into 2D/3D semantic
and instance segmentation. 2D/3D semantic segmentation aims to predict the class label for per-pixel
and per-point. Instance segmentation jointly performs semantic segmentation and object detection
and expands the semantic segmentation task by distinguishing the categories of individual instances.
Semantic segmentation can deal with remote sensing data of autonomous driving, such as light
detection and ranging [90]. Object tracking is used to locate an object in continuous data frames [91].
Object tracking can deal with single-object and multiple-object tracking tasks and is often used in the
decision-making of autonomous driving vehicles. The purpose of depth completion is to up-sample
sparse irregular depth into dense regular depth. Depth completion can reduce the violent uneven
distribution of scanning points in LiDAR and is helpful to downstream perception tasks.

Deep neural networks can extract appearance and geometric features from the original image. It
is the most commonly used multi-modal data fusion method in autonomous driving. Vora et al. [11]
fuse the semantic features of image and LiDAR points to achieve better performance in the object
detection task. Meyer et al. [92] project 3D LiDAR point clouds feature into 2D images feature and
utilize CNN to fuse feature representations. Although this method is efficient and cost-effective, this
conversion is geometrically lossy, making it less effective for tasks that focus on scene geometry. On the
contrary, Wang et al. [93] directly fuse the pseudo point cloud generated by the image branch and the
original point cloud of the LiDAR branch to improve the accuracy of object detection. Although this
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camera-to-LiDAR projection has better environmental perception ability and higher robustness, this
conversion is semantically lossy. Thus, many methods adopt the bird’s-eye view (BEV) as the unified
representation of fusion [94]. BEV preserves both the geometric structure of LiDAR features and
the semantic density of camera features. Unlike the above methods, Huang et al. [95] use a cascaded
method to fuse features. They make good use of both original and high-level semantic information.

Most of the sensors are vulnerable to severe weather. There are several studies specifically used
to combat rainstorms, fog, and other extreme weather. These methods improve the robustness of
autonomous driving systems [96]. RadarNet is an early fusion method to learn the joint representation
of radar and LiDAR data for 3D object detection [97]. However, radar performance is affected by
adverse weather conditions, which leads to a sharp decline in prediction accuracy. Qian et al. [98] utilize
complementary LiDAR to solve this problem, which is less affected by the weather. They proposed a
two-stage deep fusion detector to improve the overall detection results. Many studies also propose a
late fusion method, which fuses the output of LIDAR point cloud and camera image branches to make
final predictions [99]. The survey summarizes some methods that ranked high in the object detection
task of KITTI benchmarking in Table &. The table shows that multi-modal research is not competitive
with unimodal research in easy tasks but performs well in hard tasks. The accuracy of the multi-modal
method is 79.39%, ranked first. Therefore, researchers should design appropriate multi-modal models
to improve prediction accuracy in a more complex environment.

Table 8: 3D object detection on KITTI cars

Method Year Fusion stage Car GPU Multi-modal
Easy Mod Hard
PI-RCNN [88] 2020 Early fusion 84.37 74.82 70.3 TITAN RTX Yes
EPNet [95] 2020 Deep fusion 89.81 79.28 74.59 TITAN Xp Yes
CLOC:s [99] 2020 Late fusion 88.94 80.67 77.15 - Yes
PFF3D [100] 2021 Early fusion 81.11 7293 67.24 - Yes
3D-CVE[101] 2020 Deep fusion 89.20 80.50 73.11 GTX 1080Ti Yes
3D DualFusion [102] 2022 Deep fusion 91.01 82.40 79.39 - Yes
MVX-Net (PF) [103] 2019 Early fusion 83.20 72.70 65.20 - Yes
MMEF [104] 2019 Deep fusion 86.81 76.75 68.41 - Yes
RolFusion [105] 2021 Deep fusion 88.09 79.36 72.51 GTX 1080Ti Yes
GLENet-VR [106] 2022 - 91.67 83.23 78.43 NVIDIA GeForce No
RTX 2080Ti
SE-SSD [107] 2021 - 91.49 82.54 77.15 TITAN Xp No

5.2 Smart Healthcare

A smart healthcare system involves many directions, including disease control and detection,
evaluation and care, healthcare administration, patient decision-making, and medical science
[108=110]. It can intelligently respond to the needs of the health environment. Some hospitals have
begun to use smart beds to sense the state of patients and dynamically adjust the correct angle and
posture. It can provide adequate care without nursing staff. Diseases are complex and often lead to
overlapping symptoms, so multi-modal medical signal fusion plays a vital role.
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Multi-modal data in the medical environment include electronic health records (EHRs), medical
imaging, wearable devices, genome data, sensor data, environmental data, and behavior data. As
shown in Fig. 11, medical image classification includes radiology, microscopy imaging, and visible
light imaging. Multi-modal technology allows real-time measurement and analysis of multiple signals
and considers different aspects of human physiology. It improves the perception experience and allows
missing data to be filled out while providing accurate disease detection and prediction insights for
customers and medical professionals.
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Figure 11: Multi-modal data for smart healthcare

Multi-modal technology has a wide range of applications in the medical field, including medical
image recognition, health monitoring, natural language processing (NLP), and disease diagnosis and
treatment. Medical image recognition has always been an essential topic in medicine, and it mainly
carries out medical diagnoses using different medical images, such as nuclear magnetic resonance,
X-ray, angiography, and ultrasound. Health monitoring monitors and analyzes the human body
through various types of data and can analyze a more comprehensive and accurate health status.
NLP mainly deals with clinical notes, reports, and records in the medical field. Medical personnel can
comprehensively understand the health status of patients and enhance personalized treatment plans
by incorporating NLP into the data fusion process. The multi-modal fusion method can provide more
comprehensive and targeted diagnostic results in disease diagnosis and treatment.

In [111], the author proposes an advanced multi-modal medical image fusion strategy by com-
bining non-subsampled contourlet transform (NSCT) and stationary wavelet transform (SWT)
techniques, which assist radiologists in performing surgeries. However, this method will result in
higher feature dimensions and make training the model more difficult. To address the above issue,
Albahri et al. [112] emphasize the role of feature selection in effective decision-making and improving
patient care. It can reduce dimensions and improve the accuracy of data fusion by identifying the
most relevant features. Similarly, Alghwinem et al. [113] utilize feature selection techniques to extract
the most relevant information from various data sources, and healthcare professionals can obtain
a more comprehensive understanding of the patient’s health status. This method emphasizes the
interpretability of feature selection. Myronenko et al. [114] propose a 3D multi-modal brain tumor
segmentation network that integrates a variational auto-encoder branch into a decoder. This method
effectively solves the problem of insufficient training data. However, the training data is not always
available in clinical practice. Thus, Zhou et al. [115] propose a novel brain tumor segmentation
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network, which utilizes available modalities to generate 3D feature-enhanced images of missing
modalities in the absence of one or more modalities. To address the ambiguity between categories in
brain tumor segmentation, Liu et al. [116] introduce a context-aware network called CANet, which
captures high-dimensional and discriminative features with context from convolutional space and
feature interaction maps. Furthermore, they propose a context-guided attention conditional random
field to fuse features selectively. Table 9 lists the multi-modal medical data fusion methods that have
ranked high in the benchmark in recent years.

Table 9: The recent work on multi-modal medical data fusion

Method Year Fusion stage Task Dataset Accuracy

MedVInT [33] 2023  Deep fusion = Medical visual question PMC-VQA 423
answering

SubOmiEmbed [117] 2022 Early fusion  Cancer type classification TCGA 96.3

Open-Flamingo [118] 2022 Deep fusion = Medical visual question PMC-VQA 264
answering

M2I2[119] 2022  Deep fusion  Medical visual question SLAKE 81.2
answering

BiomedGPT [120] 2023  Deep fusion  Medical visual question SLAKE 86.1
answering

BiomedCLIP [121] 2023  Deep fusion  Medical visual question SLAKE 85.4
answering

5.3 Sentiment Analysis

Sentiment analysis is an emerging field that has received significant concern, and it prefers
technology applications compared with autonomous driving and smart healthcare. It is applied
in many scenarios, such as public opinion analysis, psychological disease analysis, social media
monitoring, etc. Sentiment analysis is divided into narrative and interactive scenarios, as shown in
Fig. 12, and it aims to reveal people’s views, positions, or attitudes toward a topic, person, or entity.
Compared with the unimodal method, multi-modal sentiment analysis contains richer information,
such as text, visual, auditory, and physiological signals. It can infer the implied sentiment polarity
more accurately, like irony and exaggeration. In 2015, the multi-modal sentiment analysis survey report
showed that 85% of multi-modal systems are always more accurate than unimodal systems, with an
average increase of 9.83% [122]. Sentiment analysis includes sentiment polarity analysis, sentiment
category analysis, and emotion degree analysis. Sentiment polarity analysis is one of the most basic
tasks in multi-modal sentiment analysis.

Perez Rosas et al. [123] combine the features collected from all multi-modal data into feature
vectors to generate a vector for each sentence, and they use the support vector machine (SVM) classifier
to determine the sentiment classification of discourse. Like the above research, Zadeh et al. [124]
propose a tensor fusion network model, which can learn the dynamic changes within and between
modalities using an end-to-end method. This model uses an LSTM network with a forgetting gate to
learn time-dependent language representation. The multi-modal tensors are input into the sentiment
reasoning subnetwork to obtain the prediction results. Hu et al. [125] fuse multi-modal data at the
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syntactic and semantic levels and introduce comparative learning better to capture the differences and
consistency between sentiments and emotions.
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1 \I 1

1 N

: i

i i ' Depressed Guilty

! : ; (Negative) (Negative)

| st !
| " i
! i We weren’t i
| " Come on, !
i o we’re going to very i
i [ a ologize %a' enthusiastic !
: i polog - about him. i
| " !
: e e
| H i
i b I , :
| E ! Apologize for sepse youre i
I i trying to tell '
! Ix what? . I
| ' me something . i
: H !
r e et |
' . i . H
; Sentiment Happy i} Sentiment Surprised Neutral :
! (Positive) i : (Neutral) (Neutral) i

Figure 12: Narrative and interactive scenarios for multi-modal sentiment analysis

In order to reduce the computational complexity, Liu et al. [126] propose a method called Low-
rank Multi-modal Fusion (LMF), which uses low-rank tensors to perform multi-modal fusion. It
decomposes weights into low-rank factors and reduces the number of parameters. Han et al. [127]
divide the model into fusion and Mi maximization. The MI maximization module generates MI-
related losses to assist the fusion module in promoting the fusion effect and further improving
the accuracy of task prediction. Yu et al. [128] propose a self-supervised Self-MM network, which
divides the multi-modal sentiment analysis task into a multi-modal task and three independent
unimodal subtasks. Self-MM designs a label generation module based on a self-monitoring learning
strategy to obtain independent unimodal monitoring and adopt the sharing strategy to achieve
a bottom representation learning network for multi-modal tasks and different unimodal tasks.
Nojavanasghari et al. [129] adopt a late fusion method to train an unimodal classifier for the three
modalities and then average the confidence scores of each unimodal classifier for final prediction. We
compare the results of several methods in Table 10.

Table 10: The recent multi-modal fusion methods on sentiment analysis

Method Year Fusionstage Dataset Contribute Performance
UniMSE [126] 2022 Deep fusion ~ MOSI e Propose a Accuracy =
multi-modal 86.90
sentiment
knowledge-sharing
framework

e Introduce contrastive
learning between
modalities and
samples

(Continued)
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Table 10 (continued)

Method Year

Fusion stage

Dataset

Contribute

Performance

MMIM [128] 2021

SPECTRA [130]

MMML [131] 2023

SeMUL-PCD[132] 2023

MMLatch [133]

2022

ALMT [134] 2023

Hybrid fusion CMU-MOSI

2023 Early fusion

Deep fusion

Deep fusion

Deep fusion

Deep fusion

MOSI

CH-SIMS

CMU-MOSEI

CMU-MOSEI

CH-SIMS

Propose a
hierarchical MI
maximization
framework for
multi-modal
sentiment analysis
Propose the first-ever
speech-text dialog
pre-training model
for spoken dialog
understanding
Design a novel
temporal position
prediction task to
capture the
speech-text alignment
Compare different
fusion methods
Examine the impact
of multi-loss training
within the
multi-modality fusion
network

Propose a
Multi-modal
Distillation Loss
calibrates the fusion
network

Propose a neural
architecture for
captures top-down
cross-modal
interactions

The first time
explicitly tackles the
adverse effects of
redundant and
conflicting
information in
auxiliary modalities

F1 =284.00

Accuracy =
87.50

F1 =82.90

Accuracy =

88.62

Accuracy =
82.40

F1 =281.57

(Continued)
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Table 10 (continued)

Method Year Fusionstage Dataset Contribute Performance

e Devise a novel
Adaptive
Hyper-modality
Learning module for
representation
learning

VAE-AMDT [135] 2022 Deep fusion CMU-MOSI e Propose a VAE-based F1 = 84.20
adversarial
multi-modal domain
transfer for reduce
the distance
difference between
unimodal
representations

5.4 Discussion

In addition to traditional models, multi-modal techniques also play an essential role in Large
Language Models (LLMs). LLMs have larger scales, wider application scenes, stronger processing
capabilities, and higher prediction accuracy than traditional models. In the past year, MultiModal
Large Language Models (MM-LLMs) have undergone substantial advancements [136]. It uses cost-
effective training strategies to support the inputs or outputs of multi-modal data and preserve the
inherent reasoning and decision-making capabilities of LLMs. Several researchers extend LLM to
images and then obtain Large Vision Language Models (LVLMs). CLIP is a vital research achievement
of LVLMs [137]. This model uses contrastive learning methods to represent images and text in the same
embedding space and performs excellently in multiple tasks. Ramesh et al. [138] propose the DALL-E
model, which adopts the Transformer architecture and can effectively learn and express the semantic
relationship between text and images. The quality and diversity of the generated images are widely
recognized.

6 Open Challenges and Possible Solutions

For multi-modal problems, we should fully use the complementarity and redundancy between
multiple modalities to capture valuable information. However, multi-modal tasks are still challenging
because of the heterogeneity of data. In this section, we discuss the open challenges and potential solu-
tions of multi-modal technology. We hope to provide suggestions on how to improve the performance
of multi-modal tasks.

Dataset Quality. A critical bottleneck of multi-modal detection is the availability of high-quality
datasets. Most existing datasets have the following problems: small scale, unbalanced categories,
and marking errors. In order to increase the scale and richness of data, some datasets use partially
synthesized data to build datasets [139]. However, there may be a domain gap between synthetic
and real-world datasets. Although some methods exist to solve the gap between synthetic and real
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data, such as generative adversarial networks [140], the related method still needs further study. It is
noteworthy that the imbalance of the raw data may lead to the multi-modal model being dominated
by a certain modality. Thus, we should focus on the balance of data categories in the dataset. We can
also place multiple sensors in the same component to reduce parameter changes caused by turbulence
and jitter.

Information Loss. 1t is necessary to translate the multi-modal data format in the data fusion stage
because of the heterogeneity between different data types. This process will lead to the inevitable
loss of information. For example, some existing methods map 3D point cloud data to 2D BEV and
fuse the translated data with the existing 2D data [141]. The early fusion method can effectively use
the rich information between different modalities, but it makes the feature dimension tremendously.
The downstream task needs to reduce the dimension of the input data. This behavior leads to the
loss of information. Therefore, designing a representation method for high-dimensional data is very
important. Continuous convolution is a potential solution to extract the multi-scale convolution
feature map, which reduces the loss of geometric information by capturing local information [142].
Different data fusion stages have different degrees of information loss, so we can also consider using
the neural architecture search (NAS) technology to obtain the near-optimal neural structure and find
the appropriate fusion stage [143].

Modality Quantity. Most existing research performs fusion operations with two modalities. This
1s because more modalities will lead to excessive data noise and feature dimension. However, some
researches require high accuracy. For example, in autonomous driving, vehicles must accurately
identify their surroundings. Therefore, how to fuse three or more modalities is worth considering.
Researchers need to consider dimension explosion, data noise, and computational complexity at the
same time. The following content will explain the potential solutions of data noise and computational
complexity. For the dimension explosion problem, we need to find a method to reduce the number
of features while avoiding too much information loss. The current research has provided many
dimensionality reduction methods. The most commonly used methods are principal component
analysis (PCA) and Gaussian Process Latent Variable Model (GPLVM), as well as many related
variants [144]. However, they are only applicable to multi-modal tasks with several modalities. Feature
filtering or clustering methods may be a potential solution. Another method is continuously testing
the data of different dimensions in the calculation. We can use the results generated by the calculation
to verify and adjust repeatedly until the best feature scheme is found.

Error Accumulation. The effective fusion of multi-modal data can obtain higher prediction
accuracy, while the wrong fusion method will inject too much data noise. The continuous accumulation
of data noise leads to the model performance degradation. Data noise is inevitable during the data
fusion stage because of the heterogeneity of different modalities and information differences. We divide
data noise into internal noise and external noise. Internal noise refers to the noise of data itself, also
known as characteristic noise. Common noise reduction methods can be summarized as filtering-
based, partial differential-based, and low-rank matrix-based methods. External noise refers to the
noise generated during the multi-modal data fusion stage. At this time, researchers should consider
the data quality and select effective data alignment methods and data fusion structures to reduce the
data noise. Some studies use data translation technology to convert multi-modal data with each other
and unify the data of different modalities [145]. We can further optimize on this basis.

Real-Time Guarantee. The multi-modal model needs to process more data than the unimodal
model. Thus, the multi-modal model has more parameters and higher computational complexity. It
is hard to satisfy the application scenarios with high real-time requirements. Real-time is one of the
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main factors considered in multi-modal methods. Most public benchmarks have taken speed as the
evaluation index [146]. We can simplify the model structure to reduce the computational com-plexity
by exploring the pruning and quantization techniques of the model. In addition, some compression
strategies can also effectively improve the efficiency of multi-modal model training and also be used
as a potential research direction.

Dynamic Environment. In general, multi-modal data is collected dynamically so that the data
distribution will change over time. When the data distribution changes, the traditional method based
on deep learning can only retrain the model to adapt to the new data distribution. However, retraining
the model requires a lot of computing resources and time, which is unrealistic. Therefore, we can add
historical data as training samples to predict the changing trend of data in the model training stage and
design a multi-modal deep learning model in the way of incremental learning to increase the accuracy
of the model prediction.

Time Synchronization. Time synchronization refers to ensuring that the fused multi-modal data are
aligned in time and space, and it is the most important and challenging. Currently, many algorithms
are used to solve the data alignment problem [147]. Most multi-modal data only have a short time
dimension, which limits the need to learn the long-term interaction model. When dealing with long-
term sequences, capturing the semantic association information between modalities with the increased
number of sequences is challenging. A potential solution is to use similarity measurement and
knowledge graphs to reduce semantic differences and complete the data alignment tasks. On the other
hand, the collected multi-modal data may generate misalignment due to the time deviation between
sensors. Therefore, we can design a caching mechanism to deal with data latency.

7 Conclusion

Multi-modal fusion technology is rapidly emerging as the dominant research approach due to
its superior perception and judgment abilities. In complex environments, multi-modal data fusion
technology can effectively leverage its strengths to enhance accuracy and reduce ambiguities by
integrating multiple sources of information. It is crucial to fuse all multi-modal information to
maximize the advantages of multi-modal data fusion and push model precision to its upper bound.
This paper summarizes the related work on multi-modal fusion technology in multiple fields. We
focus on finding the appropriate multi-modal fusion technology to obtain better performance and
provide an intuitive suggestion for researchers. We first compare the four fusion stages of multi-modal
methods and introduce the three core technologies that can improve the effect of data fusion in detail.
Next, we discuss the related applications of multi-modal technology by comparing the existing research
methods. Finally, we analyze the existing open challenges and propose potential directions for multi-
modal fusion technology.
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