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ABSTRACT

As the scale of the networks continually expands, the detection of distributed denial of service (DDoS) attacks has
become increasingly vital. We propose an intelligent detection model named IGED by using improved generalized
entropy and deep neural network (DNN). The initial detection is based on improved generalized entropy to filter
out as much normal traffic as possible, thereby reducing data volume. Then the fine detection is based on DNN to
perform precise DDoS detection on the filtered suspicious traffic, enhancing the neural network’s generalization
capabilities. Experimental results show that the proposed method can efficiently distinguish normal traffic from
DDoS traffic. Compared with the benchmark methods, our method reaches 99.9% on low-rate DDoS (LDDoS),
flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows
while reducing the time by 17%, 31% and 8%.
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1 Introduction

With the rapid advancement of network technologies [1], the landscape of DDoS attacks has
has expanded dramatically in both magnitude and sophistication. These sophisticated assaults pose
formidable challenges, precipitating disruptions in service delivery, exacerbating network latencies, and
engendering comprehensive exhaustion of computational resources. Consequently, the imperative to
promptly and accurately detect DDoS attacks has emerged as a pivotal aspect in maintaining the
integrity and functionality of networked systems, which underscores the critical need for advanced
detection methods. Fig. 1 shows a DDoS attack scenario where the attacker launches a DDoS attack
on some important servers by manipulating multiple puppet machines [2]. These DDoS attacks come
from different puppet machines, and each puppet machine may execute different types of DDoS
attacks.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051194
https://www.techscience.com/doi/10.32604/cmc.2024.051194
mailto:bkzhao@nudt.edu.cn


1852 CMC, 2024, vol.80, no.2

Figure 1: Example of DDoS attacks

Nowadays DDoS detection techniques can be categorized into three types: statistic-based methods
[3], machine-learning-based methods [4], and deep-learning-based methods [5]. The statistic-based
DDoS detection methods adjust the threshold by enhancing entropy to identify and filter DDoS
attacks [6]. However, their relative simplicity in model design and paucity of extracted features
contribute to a limitation in achieving high detection accuracy. Therefore, a deep learning-based
approach was proposed by training a model from a compact representation of the input data and
applying a random threshold method to detect DDoS [7–9]. While machine learning and deep learning
methods boast superior accuracy in detection tasks, they are encumbered by a heightened degree of
implementation complexity and a sluggish detection pace [10], which does not meet the real-time
requirements of the network [11]. Therefore, some scholars currently detect DDoS by combining
statistics and deep learning methods [12,13]. Nonetheless, a commonality above these methods
lies in their reliance on the information entropy, which is insufficient in dynamically adapting the
entropy value to effectively discern and counteract DDoS attacks [6,14]. With the persistent escalation
in network bandwidth and transmission velocities [15,16], current DDoS detection methods often
struggle to keep pace with the constantly evolving attack techniques employed by attackers, which
are difficult to achieve high accuracy and real-time performance.

In response to the aforementioned challenges, we propose a dual-phase strategy, which consists
of an initial detection model based on improved generalized entropy and a fine detection model based
on DNN. By synergistically harnessing the rapid computational prowess of the generalized entropy
methods and the heightened precision offered by DNN to filter as much normal traffic as possible in
the initial detection model, followed perform precise DDoS detection in the fine detection model. The
main contributions of this work are as follows:

(1) Feature extraction and extension of captured traffic. Firstly, feature extraction of traffic is
performed by utilizing the importance of traffic features to reduce the dimensionality of traffic
data, which can effectively reduce the time and memory overhead of neural network training.
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Then, feature expansion based on one-hot coding technique with threshold is performed to
solve the issue of data irregularity.

(2) The initial detection model is proposed, which adopts the generalized entropy method to fully
learn the characteristic distribution law of DDoS attacks. The generalized entropy is further
improved to realize the parameter self-training process by introducing the threshold value to
automatically optimize the model parameters.

(3) Research on DNN precision detection model containing a discard layer. This design enables the
DNN to randomly omit neurons during each training iteration with a predefined probability.
By doing so, it introduces stochasticity into the learning process, effectively curtailing the
likelihood of overfitting and reducing the time consumption.

2 Background
2.1 Generalized Entropy

Generalized entropy constitutes a broader extension of information entropy [17]. The formulation
for calculating the generalized entropy associated with IP address x = (x1, x2, . . . , xn) is given below:

Hα (x) = − 1
1 − α

log2

(
n∑

i=1

pi
α

)
(1)

The probability of pi being xi, pi ≥ 0 and pi satisfies
n∑

i=1

pi = 1 in Eq. (1). α denotes the generalized

entropy index, α ≥ 0, α �= 1. By taking the derivative of α in Eq. (1), Hα (x) is a non-increasing function
under the condition that α ≥ 0, α �= 1. The maximum generalized entropy value H0 (x) = log2 (n) is
obtained when α = 0 or p1 = p2 = . . . = pi. At this time, the IP address x is maximally decentralized.
The generalized entropy converges to the information entropy when α → 1, Eq. (2) can be obtained.
The minimum information entropy value H∞ (x) = 0 can be obtained when α → ∞, at which time
the IP address x is maximally centralized in xi.

H1 (x) = −
n∑

i=1

pi log2 (pi) (2)

The high probability events have more influence on the value of generalized entropy from Eq. (1)
when α > 1. Flooding DDoS attacks have more influence on the value of generalized entropy. The
low probability events have more influence on the value of generalized entropy from Eq. (1) when
0 < α < 1. LDDoS attacks have more influence on the value of generalized entropy.

2.2 DNN

DNN comprises an input layer, multiple hidden layers, and an output layer. The ReLu function
[18] and the Sigmoid function [19] activation functions in DNN, and their formulas are given below:

F (x) = max (0, x) (3)

S (x) = 1
1 + e−x

(4)
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The dropout layer discards neurons with probability of p, the formula for the dropout rate r(K) of
the K-th layer is given below; r(K) obeys the Bernoulli Distribution:

r(K) ∼ Bernoulli (p) (5)

The formula of loss function is given:

L
(
ŷ, y

) = −
m∑

i=1

(
yi log

(
ŷi

) + (1 − yi) log
(
1 − ŷi

))
(6)

3 Our Method

We propose a DDoS detection model based on improved generalized entropy and DNN, named
IGED, and the model framework is shown in Fig. 2.

Figure 2: Framework of IGED

The IGED framework consists of a feature extraction and expansion module, an improved
generalized entropy initial detection module, and a DNN fine detection module. The feature extraction
and expansion module preprocesses the traffic data. The initial detection model is to pre-screen
potential DDoS attack traffic and mark it as suspicious traffic, which helps to reduce the burden
of the fine detection module. The fine detection model is to improve the accuracy and reliability of the
detection through a more complex DNN for in-depth detection of suspicious traffic.

3.1 Feature Extraction and Expansion

Different traffic features are extracted separately for the initial and fine detection models because
of their different design concepts and objectives. In addition, the traffic features need to be expanded
for better detect DDoS attacks.
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3.1.1 Feature Extraction

The initial detection module need to have both a high degree of detection accuracy and expedited
processing speed. Therefore, only a few important features in the traffic data are taken to realize the fast
calculation of generalized entropy. The features extracted for the initial detection module are shown
in Table 1.

Table 1: Features of traffic analysis based on generalized entropy

Traffic feature Detailed description

Src IP Source IP address
Dst IP Destination IP address

DDoS attacks are characterized by large data size and many data features, so it is necessary to
reasonably screen the traffic features. Consequently, the employment of DNN within the fine detection
module emerges as a choice, capitalizing on its capability to enhance accuracy. The features extracted
for the fine detection module are shown in Table 2.

Table 2: Input features based on DNN detection model

Feature name Detailed description

Src IP Source IP address
Dst IP Destination IP address
Src port Source port
Dst port Destination port
Protocol Protocol
Flow duration Flow duration
Tot Fwd Pkts Number of forward packets
Tot Bwd Pkts Number of backward packets
TotLen Fwd Pkts Forward packet size
TotLen Bwd Pkts Backward packet size
Flow IAT Mean Average time between two packets sent in a flow
Fwd Pkts/s Number of positive packets per second
Bwd Pkts/s Number of backward packets per second
Pkt len mean Average length of packets
SYN flag Cnt Number of packets with SYN
PSH flag Cnt Number of packets using PSH
ACK flag Cnt Number of packets with ACK
URG flag Cnt Number of packets with URG
Pkt size avg Average packet length
Active mean Average time stream is active before becoming idle
Idle mean The average time stream is idle until activated
Label Traffic labels
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3.1.2 Feature Expansion

Since the traffic features contain string type fields such as “Src IP” and “Dst IP” which cannot
realize the corresponding computation in neural networks, the one-hot-encoding technique is used to
reconstruct the “Src IP” and “Dst IP” fields. One-hot-encoding is known as one-bit efficient encoding
that encodes N different IP addresses in the dataset using N columns. Each IP address has its own
independent column and only one of them is valid at any given time. Essentially, the one-hot-encoding
technique transforms the dataset by expanding its original K feature columns into a new format
consisting of K + N different binary columns.

Due to the large amount of data and the multitude of different IP addresses in DDoS attacks, using
One-hot-encoding directly will lead to the addition of too many columns of data. Consequently, an
improvement to the conventional one-hot-encoding technique has been introduced by incorporating
a threshold criterion. Under this modification, only those IP addresses that occur with a frequency
meeting or exceeding the predefined threshold undergo one-hot-encoding; IP addresses with occur-
rences falling below this threshold are directly classified as “Other IP”. The results with the threshold
value set to 2 can be shown in Table 3.

Table 3: Example of one-hot-encoding in a dataset

IP address 18.219.193.20 18.219.9.1 Other IP

18.219.193.20 1 0 0
172.31.69.28 0 0 1
172.31.69.25 0 0 1
18.219.9.1 0 1 0
18.219.193.20 1 0 0
18.219.9.1 0 1 0

3.2 Initial Detection Model Based on Improved Generalized Entropy

To tackle the issue of artificially set parameters in generalized entropy, we propose an initial
module that incorporate a parameter self-training procedure. The framework is shown in Fig. 3.

Figure 3: Framework of the initial detection model

The parameter self-training process entails dividing both the training and test datasets into
g groups, subsequently computing the generalized entropy for each group’s “Src IP” and “Dst
IP” attributes sequentially by employing Eq. (1). The threshold is set using the smallest calculated
generalized entropy value from the data groups in the training set that contain DDoS attacks.
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Proceeding to the test set, each group’s generalized entropy measurement is compared against this
established threshold. If the generalized entropy exceeds the predetermined threshold, the data group
is devoid of DDoS assaults, indicative of a more decentralized distribution of IP addresses. Conversely,
should the generalized entropy fall below the threshold, it raises a flag suggesting the potential presence
of a DDoS attack within that data group, indicating to a concerning centralization of IP addresses.
Setting group g and the parameter α in Eq. (1) repeatedly and calculating the precision rate of the
data groups larger than the threshold. Recording the parameter α and group g when the maximum
value of the precision occurs for the last time that ensures that there is a maximum recall under the
maximization of the precision.

The DDoS initial detection algorithm based on improved generalized entropy is shown in
Algorithm 1.

Algorithm 1: DDoS initial detection
Input: DDoS training set G and DDoS test set D after feature extraction and expansion; Divide
G and D into groups g, g ≤ n; Parameter α in Eq. (1), α ≤ m; The optimal value of parameters
(α, g, T) is denoted as Ans; Threshold T ; The i-th group of generalized entropy value ti in G, i =
1, 2, . . . , g; The i-th group of generalized entropy value di in D, i = 1, 2, . . . , g; Precision P;
Output: Suspicious DDoS dataset S
1: for g ← 1 to n do
2: if Ans unchanged then
3: break
4: end if
5: for α ← 0 to m do
6: for i ← 1 to g do
7: use Eq. (1) to calculate ti for G
8: end for
9: T = max

(
t1, . . . , tg

)
10: for i ← 1 to g do
11: use Eq. (1) to calculate di for D
12: if di > T then
13: di is normal traffic
14: else
15: di is suspicious
16: end if
17: end for
18: calculate P
19: if P = 1 then
20: Ans = (α, g, T)

21: else
22: utilize Ans = (α, g, T) to filter D
23: output S
24: end if
25: end for
26: end for
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3.3 Fine Detection Model Based on DNN

Considering the real-time demands of network attack detection, this paper designs a five-layer
structure of DNN. The model commences with an input layer accommodating a dimensionality of K
+ N. Two dropout layers are introduced and each configured to randomly deactivate neurons with
a probability of p = 0.2. One hidden layer containing 40 neurons. These intermediate layers use
the ReLu as their activation function. Culminating in one-dimensional output layer employing the
Sigmoid activation function. In the constructed DNN, the learning rate is 0.01 and the loss function
used is binary cross entropy. The framework of the fine detection model is shown in Fig. 4.

Figure 4: Framework the fine detection model

As a result, the DDoS fine detection algorithm based on DNN can be obtained as shown in
Algorithm 2.

Algorithm 2: DDoS fine detection
Input: DDoS training set G and test set S; DNN B with dropout layers; Number of iterations E;
Loss function L; The number of S is n; The j-th data detection result in S is flagj, j = 1, 2, . . . , n;
Output: Detection results W for DDoS test set S, W = (w1, w2, . . . , wn);
1: for i ← 1 to E do
2: DNN B ← training set G
3: calculate L by using Eq. (10)
4: if L is the current minimum value
5: save B
6: end if
7: end for
8: for j ← 1 to n do
9: flagj ← B ← j
10: if flagj then
11: j is a DDoS attack
12: else
13: j is normal traffic
14: end if
15: end for
16: return W

Firstly, the DNN is trained using the training set, and then input the suspicious dataset filtered by
the initial detection model into the trained DNN to realize the accurate judgment of DDoS attacks.
From Algorithm 1, we can get that the main computational cost of improving the generalized entropy
is in the feature and iterative computation, so the computational complexity is o(G), where G is the
size of the training set data. The size of the dataset filtered by Algorithm 1 is of size n. From Algorithm
2, we know that the main computational cost of the deep neural network model depends on the size
of the data samples, so the computational complexity of the deep neural network model is o(n). So
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the computational complexity of the deep neural network model is based on the improved generalized
entropy and is o(G).

4 Experiments and Results

All experiments are done by using TensorFlow framework, and the Linux system used for
experiments is Intel(R) Core(TM) i7-4720HQ CPU @ 2.60 GHz, GPU is NVIDIA GeForce GTX
950 M with 16 GB RAM.

4.1 Datasets

To evaluate the efficiency of the model for DDoS attack detection, three datasets are used for the
experiments. The information about three datasets are shown in Table 4.

Table 4: DDoS datasets information

Dataset Training set Test set Total

Benign DDoS Benign DDoS

Mixed-type DDoS 5057362 1035845 1264340 258962 7616509
LDDoS 221021 45252 55239 11329 332841
CICDDoS2019 46091 8443 10772 2329 68510

The mixed-type DDoS dataset is derived from the Kaggle competition platform which consists of
various types of DDoS attacks and normal traffic from the public datasets CSE-CIC-IDS2018-AWS,
CICIDS2017, and CIC DoS dataset (2016).

The LDDoS dataset is derived from data that is tagged with LDDoS label within the CSE-CIC-
IDS2018-AWS dataset.

CICDDoS2019 is a dataset containing various DDoS attacks. Since the number of DDoS attacks
in this dataset far exceeds the number of normal traffic, to make it have the same division ratio as the
other two datasets, we choose to use all the normal traffic data and take some DDoS attack traffic
from the CICDDoS2019 dataset according to the corresponding ratio to build the dataset we need.

The three datasets are labeled as “DDoS” and “Benign”, incorporating a total of 84 features. The
LDDoS dataset comprises 332,841 pieces of traffic data, the mixed-type DDoS dataset contains a total
of 76,165,090 pieces of traffic data, while the CICDDoS2019 holds 68,510 pieces of traffic data. 17%
of the traffic data across these datasets are flagged as “DDoS” and 83% of the traffic data are flagged
as “Benign”. The experiments were conducted by dividing the three datasets into a training set and a
test set in the ratio of 8:2, respectively.

4.2 Evaluation Metrics

We choose four metrics to evaluate the performance of the proposed DDoS attack detection
model: accuracy (ACC), precision (P), recall (R), and F1-Score (F1). The relevant formulas are as
follows:

ACC = TP + TN
TP + TN + FP + FN

(7)



1860 CMC, 2024, vol.80, no.2

P = TP
TP + FP

(8)

R = TP
TP + FN

(9)

F1 = 2
R ∗ P
P + R

(10)

TP, FN are defined as actual normal traffic is classified as normal traffic, DDoS attack; TN, FP
are defined as actual DDoS traffic are classified as DDoS attack, normal traffic.

4.3 Initial Detection Model Experiment

Due to the processed CICDDoS2019 dataset in this paper is small and belongs to the same type as
the mixed-type dataset, both of which contain a variety of DDoS attacks, we only use the mixed-type
dataset and the LDDoS dataset for our experiments in the initial and fine detection modules, and use
all three datasets in the control experiments.

Since the directional nature of traffic transmission, where “Src IP” and “Dst IP” are correspon-
dent, “Src IP” and “Dst IP” in each traffic data is viewed as a tuple. The generalized entropy is then
computed for all tuples within the defined window size and the specific steps are shown in Algorithm 1.
The effect of the group numbers g and α in Eq. (1) on the precision of detection is further researched
to obtain the best model parameters. The thresholds of the model are first calculated and then the
validity of the model is examined.

4.3.1 Calculate the Optimal Model Thresholds

Fig. 5 illustrates the impact of partitioning the training set into g groups and α as per the
formulation in Eq. (1) in both mixed-type DDoS and LDDoS datasets. In particular, it is noted that
the thresholds decrease more at α = 1 in Fig. 5 when the generalized entropy degrades to information
entropy. When 0 ≤ α < 1 or α > 1, α and the threshold are negatively correlated from Fig. 5. In
addition, compared to the LDDoS attack dataset, the DDoS attack thresholds on the mixed-type
DDoS dataset have a larger range of values, which indicates that the mixed-type DDoS dataset has a
higher complexity of DDoS attacks.

Figure 5: Validity of the initial detection model
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4.3.2 Validity of the Initial Detection Model

In order to validate the efficacy of the improved generalized entropy method on the test set, the
experimental procedure commences with computing the generalized entropy value for each data group
within the test set and then compares it with the thresholds of the corresponding parameter calculated
in Fig. 5. The test set’s traffic is classified accordingly through this process and the precision and recall
of the test results are obtained. Calculations reveal that with model parameters set at g = 100, α = 3,
the outcome yields an precision of P = 1 and a recall of R = 0.3235 by employing Algorithm 1. At this
point, the validity is performed in the mixed-type DDoS dataset that successfully filters out 409,646
pieces of normal traffic data from the test set while the information entropy method (α = 1) only
exclude 74,347 pieces of normal traffic data. Consistently, an analogous experiment was conducted
on the LDDoS dataset, following the identical method, leading to a congruent conclusion. With the
generalized entropy optimal parameters g = 50, α = 6, it effectively filters out 11,958 pieces of normal
traffic data from the test set while information entropy approach exclude merely 49 pieces of normal
data. Compared to the information entropy method (α = 1) and other generalized entropy methods
with values of g and α, the model has better results which are shown in Tables 5 and 6 in filtering more
normal traffic when the model takes the optimal parameters on both DDoS datasets.

Table 5: Generalized entropy parameters in the mixed-type DDoS dataset

g α P R Filtered data

100 1 1 0.0588 74373
100 3 1 0.3235 409646
1000 1 1 0.0028 3522
1000 2 1 0.0710 89806
10000 1 0 0 0
10000 20 1 0.0001 173

Table 6: Generalized entropy parameters in the LDDoS dataset

g α P R Filtered data

50 1 1 0.0009 49
50 6 1 0.2727 11958
100 1 0 0 0
100 20 1 0.1143 6313
150 1 0 0 0
150 20 1 0.0755 4169

Drawing from the analysis and findings above, it can be inferred that the P of the initial detection
model reaches optimum value of 1, which can greatly optimize the parameters automatically and then
reflect the distribution of DDoS attacks to achieve the filtering of traffic. However, its R is low, that
stills shows a large amount of normal traffic in the traffic detected as DDoS attacks. So it’s necessary
to use the fine detection model to accurately detect the suspicious DDoS attack traffic.
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4.4 Fine Detection Model Experiment

The test set comprises potentially containing DDoS attacks, having undergone initial screening by
our detection algorithm. The related information is shown in Table 7. In addition, the early stopping
method [20] is added to the training process of each model to stop the training when ACC on the
validation set does not increase compared to the first 10 rounds of training.

Table 7: Suspicious DDoS dataset information

Dataset Training set Test set Total

Benign DDoS Benign DDoS

Mixed-type DDoS 5057362 1035845 854694 258962 7206863
LDDoS 221021 45252 43281 11329 320883

This section undertakes a series of comparative experiments aimed at validating the efficacy of the
model’s feature expansion method based on the One-hot-encoding technique. Leveraging the dataset of
suspected DDoS attack traffic, these experiments employ Algorithm 2, varying the One-hot-encoding
thresholds to scrutinize its impact on DDoS detection capabilities. The results are shown in Tables 8
and 9. The experiment regards the dataset when the threshold is 0 as the original dataset without
feature processing in Section 3.1, which contains all the features. In addition, the smaller the threshold
of the feature extraction and expansion model is taken, the more features are expanded. An excessive
count of features will impede detection speed; whereas a limited features will easily cause the model
ignoring the features related to the IP address so that reducing the accuracy. Therefore, the thresholds
are appropriately selected for comparison One-hot-encoding according to the size of the dataset.

Table 8: Comparison of different thresholds on results in the mixed-type DDoS dataset

Threshold Time/s ACC P R F1

0 842.7 0.9864 0.9343 0.9711 0.9522
7500 1064.9 0.9981 0.9972 0.9893 0.9932
10000 559.4 0.9991 0.9951 0.9988 0.9969
15000 480.9 0.9982 0.9958 0.9915 0.9937
20000 419.6 0.9985 0.9952 0.9940 0.9946

Table 9: Comparison of different thresholds in the LDDoS dataset

Threshold Time/s ACC P R F1

0 200.9 0.9797 0.8895 0.9735 0.9296
50 255.9 0.9980 0.9987 0.9893 0.9940
100 40.1 0.9998 0.9991 0.9997 0.9994
150 30.5 0.9975 0.9944 0.9915 0.9907
200 25.9 0.9978 0.9996 0.9844 0.9920
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In summary, based on the performance metrics corresponding to each threshold, a threshold of
10,000 is selected for the mixed-type DDoS attack dataset while a threshold of 100 is selected for the
LDDoS dataset. The model are compared with the K-nearest neighbor method (KNN) [21], decision
tree (DT) [22], random forest (RF) [22], extreme gradient boosting(XGBoost) [23], and long short-term
memory network (LSTM) [24]. The results are shown in Tables 10 and 11.

Table 10: Comparison of different fine detection models in the mixed-type DDoS dataset

Model Time/s ACC P R F1

KNN 20136.5 0.9930 0.9691 0.9820 0.9755
DT 97.9 0.9724 0.9323 0.8660 0.8979
RF 224.5 0.9868 0.9577 0.9480 0.9528
XGBoost 332.2 0.9910 0.9649 0.9712 0.9680
LSTM 36300.8 0.9861 0.9701 0.9478 0.9587
This paper 559.4 0.9991 0.9951 0.9988 0.9969

Table 11: Comparison of different fine detection models in the LDDoS dataset

Model Time/s ACC P R F1

KNN 110.7 0.9788 0.9190 0.9278 0.9233
RF 5.0 0.9936 0.9767 0.9773 0.9771
XGBoost 19.2 0.9913 0.9771 0.9592 0.9680
LSTM 1078.1 0.9952 0.9899 0.9751 0.9824
This paper 40.1 0.9998 0.9991 0.9997 0.9994

The designed DNN model is better than other models in terms of ACC, P, R and F1, which all
reach more than 99.9% in Tables 10 and 11. It is only lower than DT, RF, and XGBoost models in
terms of time metric. In summary, the DNN model has excellent practical usability.

4.5 Comparison Experiment

To evaluate the effectiveness of the model based on improved generalized entropy and DNN,
as well as to show the superiority of the improved generalized entropy method, we added the
CICDDoS2019 dataset for comparison experiments that contain the proposed model, the detection
model based on DNN, and the detection model [13] based on information entropy and DNN. The
results of the experiments are shown in Tables 12–14. To accurately compare the evaluation metrics,
all models perform metrics evaluation based on the original dataset.

The ACC, P, R and F1 of IGED reach 99.9% while the time overhead on three datasets are reduced
by 31%, 17% and 8% compared with other models from Tables 12–14 which are all better than the
other models. The improved generalized entropy is better than other methods for filtering the initial
traffic, which can filter more normal traffic and reduce the data size of the fine detection module and
the use of DNN is more accurate than other fine detection methods. Therefore, the superiority of the
DDoS attack detection method with improved generalized entropy and DNN is proved by the results
of the comparison experiments.
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Table 12: Comparison of different detection models in the mixed-type DDoS dataset

Model Time/s ACC P R F1

DNN 1220.3 0.9899 0.9562 0.9860 09708
Entropy and DNN 813.3 0.9984 0.9976 0.9907 0.9941
IGED 559.4 0.9995 0.9999 0.9993 0.9996

Table 13: Comparison of different detection models in the LDDoS dataset

Model Time/s ACC P R F1

DNN 48.4 0.9990 0.9992 0.9950 0.9971
Entropy and DNN 49.7 0.9991 0.9990 0.9958 0.9974
IGED 40.1 0.9998 0.9993 0.9998 0.9996

Table 14: Comparison of different detection models in the CICDDoS2019 dataset

Model Time/s ACC P R F1

DNN 69.8 0.9994 0.9985 0.9993 0.9972
Entropy and DNN 22.8 0.9986 0.9968 0.9940 0.9995
IGED 20.9 0.9998 0.9996 0.9996 0.9996

5 Conclusion

In this paper, we propose an intelligent DDoS detection method IGED based on improved
generalized entropy and DNN. Firstly, we propose an improved generalized entropy method to initial
screening traffic in order to reduce data size. Then we propose a DNN-based method for further precise
detection of suspicious traffic. Experimental results show that the proposed method can filter more
normal traffic, which provides both improved accuracy and enhanced timeliness for swift response
and mitigation of attacks.

Although the detection method proposed in this paper successfully identifies DDoS attack
behavior, its discriminative capability is currently limited to generalized attack detection, falling short
of precisely categorizing different types of DDoS attacks. Therefore, in future work, we should focus
on devising an innovative detection model that, while maintaining efficient real-time responsiveness,
can conduct deeply granular multi-classification of DDoS attacks. By employing more advanced
algorithms and deep learning methodologies, the objective should be twofold: not just to augment
the accuracy in identifying established attack patterns, but also to bolster the model’s adaptability and
predictive efficacy against emerging attack tactics and their variants, thereby securing its long-term
viability.

Acknowledgement: The authors would like to express appreciation to the National Natural Science
Foundation of China, the Natural Science Foundation of Fujian Province, and the Major Science
and Technology project of Fuzhou for their financial support. The authors would like to thank the
editor-in-chief, editor, and reviewers for their valuable comments and suggestions.



CMC, 2024, vol.80, no.2 1865

Funding Statement: This work is supported by the National Natural Science Foundation of China
(Grant Nos. U22B2005, 62072109), the Natural Science Foundation of Fujian Province (Grant
No. 2021J01625), and the Major Science and Technology Project of Fuzhou (Grant No. 2023
-ZD-003).

Author Contributions: Study conception and design: Yanhua Liu, Baokang Zhao; data collection:
Xiaofeng Wang; analysis and interpretation of results: Xiaofeng Wang, Yuting Han; draft manuscript
preparation: Ximeng Liu, Hui Chen. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Data openly available in a public repository. The data that support
the findings of this study are openly available at https://www.kaggle.com/devendra416/ddos-datasets
(accessed on 19/04/2024).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Liu, Z. Liu, X. Liu, and W. Guo, “A web back-end database leakage incident reconstruction frame-

work over unlabeled logs,” IEEE Trans. Emerg. Top. Comput., vol. 11, no. 1, pp. 237–252, 2022. doi:
10.1109/TETC.2022.3198080.

[2] D. Tang, Y. Yan, C. Gao, W. Liang, and W. Jin, “LtRFT: Mitigate the low-rate data plane DDoS attack
with learning-to-rank enabled flow tables,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 3143–3157, 2023.
doi: 10.1109/TIFS.2023.3275768.

[3] R. Fuladi, T. Baykas, and E. Anarim, “The use of statistical features for low-rate denial-of-service attack
detection,” Ann. Telecommun., vol. 132, no. 1, pp. 1–13, 2024. doi: 10.1007/s12243-024-01027-3.

[4] W. I. Khedr, A. E. Gouda, and E. R. Mohamed, “FMDADM: A multi-layer DDoS attack detection and
mitigation framework using machine learning for stateful SDN-based IoT networks,” IEEE Access, vol.
11, pp. 28934–28954, 2023. doi: 10.1109/ACCESS.2023.3260256.

[5] D. Kumar, R. Pateriya, R. K. Gupta, V. Dehalwar, and A. Sharma, “DDoS detection using deep learning,”
Proc. Comput. Sci., vol. 218, no. 1, pp. 2420–2429, 2023. doi: 10.1016/j.procs.2023.01.217.

[6] M. J. Santos-Neto, J. L. Bordim, E. A. Alchieri, and E. Ishikawa, “DDoS attack detection in SDN:
Enhancing entropy-based detection with machine learning,” Concurr. Comput., vol. 36, no. 11, pp. e8021,
2024. doi: 10.1002/cpe.8021.

[7] S. Aktar and A. Y. Nur, “Towards DDoS attack detection using deep learning approach,” Comput. Secur.,
vol. 129, no. 9, pp. 103251, 2023. doi: 10.1016/j.cose.2023.103251.

[8] M. Alduailij, Q. W. Khan, M. Tahir, M. Sardaraz, M. Alduailij and F. Malik, “Machine-learning-
based DDoS attack detection using mutual information and random forest feature importance method,”
Symmetry, vol. 14, no. 6, pp. 1095, 2022. doi: 10.3390/sym14061095.

[9] J. Pei, Y. Chen, and W. Ji, “A DDoS attack detection method based on machine learning,” J. Phys.: Conf.
Ser., vol. 1237, no. 3, pp. 032040, 2019.

[10] M. Zhang, W. Zhang, and K. Fan, “Application layer DDoS detection model based on data flow
aggregation and evaluation,” Commun. Inf. Process.: Int. Conf., vol. 289, pp. 37–45, 2012. doi:
10.1007/978-3-642-31968-6.

[11] N. Aslam, S. Srivastava, and M. Gore, “A comprehensive analysis of machine learning-and deep learning-
based solutions for DDoS attack detection in SDN,” Arab. J. Sci. Eng., vol. 49, no. 3, pp. 3533–3573, 2024.
doi: 10.1007/s13369-023-08075-2.

https://www.kaggle.com/devendra416/ddos-datasets
https://doi.org/10.1109/TETC.2022.3198080
https://doi.org/10.1109/TIFS.2023.3275768
https://doi.org/10.1007/s12243-024-01027-3
https://doi.org/10.1109/ACCESS.2023.3260256
https://doi.org/10.1016/j.procs.2023.01.217
https://doi.org/10.1002/cpe.8021
https://doi.org/10.1016/j.cose.2023.103251
https://doi.org/10.3390/sym14061095
https://doi.org/10.1007/978-3-642-31968-6
https://doi.org/10.1007/s13369-023-08075-2


1866 CMC, 2024, vol.80, no.2

[12] Z. Liu, C. Hu, and C. Shan, “Riemannian manifold on stream data: Fourier transform and entropy-
based DDoS attacks detection method,” Comput. Secur., vol. 109, no. 10, pp. 102392, 2021. doi:
10.1016/j.cose.2021.102392.

[13] L. Zhang and J. Wang, “DDoS attack detection model based on information entropy and dnn in sdn,” J.
Comput. Res. Dev., vol. 56, no. 5, pp. 909–918, 2019.

[14] A. Alfatemi, M. Rahouti, R. Amin, S. ALJamal, K. Xiong and Y. Xin, “Advancing DDoS attack detection:
A synergistic approach using deep residual neural networks and synthetic oversampling,” arXiv preprint
arXiv:2401.03116, 2024.

[15] K. Jiang, Y.D. Qiu, and H. C. Zheng, “ICMPv6 DDoS attack detection method based on information
entropy and LSTM,” J. Comput. Eng. Appl., vol. 57, no. 21, pp. 148–154, 2021.

[16] Q. Liu, P. F. Li, and Z. J. Fu, “Secure controlling method for scalable botnets,” Chin. J. Netw. Inf. Secur.,
vol. 9, no. 1, pp. 42–45, 2023.

[17] D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, “Performance and features: Mitigating the low-rate
TCP-targeted DoS attack via SDN,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 428–444, 2021. doi:
10.1109/JSAC.2021.3126053.

[18] D. Tang, S. Wang, B. Liu, W. Jin, and J. Zhang, “GASF-IPP: Detection and mitigation of LDoS attack in
SDN,” IEEE Trans. Serv. Comput., vol. 16, no. 5, pp. 3373–3384, 2023. doi: 10.1109/TSC.2023.3266757.

[19] E. Koo and H. Kim, “Empirical strategy for stretching probability distribution in neural-network-based
regression,” Neural Netw., vol. 140, no. 1990, pp. 113–120, 2021. doi: 10.1016/j.neunet.2021.02.030.

[20] K. Bian and R. Priyadarshi, “Machine learning optimization techniques: A survey, classifica-
tion, challenges, and future research issues,” Arch. Comput. Methods Eng., pp. 1–25, 2024. doi:
10.1007/s11831-024-10110-w.

[21] G. G. Priya, S. H. Shriram, S. Jeeva, G. S. Priya, and K. Balasubadra, “Detection of distributed denial of
service (DDOS) attack using logistic regression and K nearest neighbor algorithms,” Int. J. Intell. Syst.
Appl. Eng., vol. 12, no. 16s, pp. 503–508, 2024.

[22] M. S. I. Alsumaidaie, K. M. A. Alheeti, and A. K. Alaloosy, “An assessment of ensemble voting approaches,
random forest, and decision tree techniques in detecting distributed denial of service (DDoS) attacks,” Iraqi
J Electri. Electroni Eng, vol. 20, no. 1, pp. 16–24, 2023.

[23] N. F. Rozam and M. Riasetiawan, “XGBoost classifier for DDOS attack detection in software defined
network using sFlow protocol,” Int. J. Adv. Sci., Eng. Inf. Technol., vol. 13, no. 2, pp. 718, 2023. doi:
10.18517/ijaseit.13.2.17810.

[24] A. Thangasamy, B. Sundan, and L. Govindaraj, “A novel framework for DDoS attacks detection
using hybrid LSTM techniques,” Comput. Syst. Sci. Eng., vol. 45, no. 3, pp. 2553–2567, 2023. doi:
10.32604/csse.2023.032078.

https://doi.org/10.1016/j.cose.2021.102392
https://doi.org/10.1109/JSAC.2021.3126053
https://doi.org/10.1109/TSC.2023.3266757
https://doi.org/10.1016/j.neunet.2021.02.030
https://doi.org/10.1007/s11831-024-10110-w
https://doi.org/10.18517/ijaseit.13.2.17810
https://doi.org/10.32604/csse.2023.032078

	IGED: Towards Intelligent DDoS Detection Model Using Improved Generalized Entropy and DNN
	1 Introduction
	2 Background
	3 Our Method
	4 Experiments and Results
	5 Conclusion
	References


