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ABSTRACT

Indoor localization systems are crucial in addressing the limitations of traditional global positioning system (GPS)
in indoor environments due to signal attenuation issues. As complex indoor spaces become more sophisticated,
indoor localization systems become essential for improving user experience, safety, and operational efficiency.
Indoor localization methods based on Wi-Fi fingerprints require a high-density location fingerprint database, but
this can increase the computational burden in the online phase. Bayesian networks, which integrate prior knowledge
or domain expertise, are an effective solution for accurately determining indoor user locations. These networks use
probabilistic reasoning to model relationships among various localization parameters for indoor environments
that are challenging to navigate. This article proposes an adaptive Bayesian model for multi-floor environments
based on fingerprinting techniques to minimize errors in estimating user location. The proposed system is an off-
the-shelf solution that uses existing Wi-Fi infrastructures to estimate user’s location. It operates in both online
and offline phases. In the offline phase, a mobile device with Wi-Fi capability collects radio signals, while in the
online phase, generating samples using Gibbs sampling based on the proposed Bayesian model and radio map to
predict user’s location. Experimental results unequivocally showcase the superior performance of the proposed
model when compared to other existing models and methods. The proposed model achieved an impressive lower
average localization error, surpassing the accuracy of competing approaches. Notably, this noteworthy achievement
was attained with minimal reliance on reference points, underscoring the efficiency and efficacy of the proposed
model in accurately estimating user locations in indoor environments.
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1 Introduction

Indoor localization systems play a pivotal role in helping address the limitations of traditional
global positioning system (GPS) in indoor environments. Indoor localization systems play an integral
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part in providing viable navigation alternatives that overcome traditional GPS’s shortcomings for
indoor navigation purposes. These systems can be categorized into a group of general/traditional
localization techniques, a group of short-range wireless technologies that depend on the general
techniques, and also emerging optimization techniques.

Many traditional localization techniques, such as angulation, proximity sensing, dead reckoning,
lateration, fingerprinting, and hybrid approaches, are used to navigate objects in either indoor or
outdoor environments [1]. Angulation and lateration are two techniques to determine the target
position based on forming triangles from known points to the target. The former is a distance-based
method that uses the time of arrival (TOA) way, and received signal strength, whereas the latter is
a direction-based method that uses the angle of arrival (AOA) way. Angulation requires at least two
available access points (APs) while lateration accuracy is reduced in an obstacle’s environment. The
proximity sensing technique uses the coordinates of APs to determine the mobile location. It is a
simple, cheap, and straightforward scheme to evaluate the span of mobile relative to AP location.
However, the accuracy of this technique is limited to radio coverage of APs.

Dead reckoning (DR) uses sensors within an inertial measurement unit (IMU) to track movement.
The main advantage of DR is its simplicity of distance; however, it suffers from accumulative errors.
Regarding the fingerprinting technique, it consists of two phases (offline and online (radio map)
phases) to collect received signal strength and compare them, and then determine the closest required
location. The fingerprinting accuracy increases as the number of used APs increases. However, more
reference points (RPs) highly raise labor work costs, in addition, this scheme requires regular radio map
updates. Concerning hybrid approaches, two or more of the abovementioned positioning techniques
can be combined to improve accuracy. Some combinations provide more accuracy than others for
example, the combination of proximity sensing with other techniques is much more inaccurate than
lateration or angulation.

In addition to the general techniques mentioned above, some technologies that depend on the
general techniques can be grouped into short-range indoor localization wireless technologies which
are used for tracking and navigating objects and humans. These technologies are either radio-based
technologies such as Wi-Fi, Bluetooth, RFID, and ZigBee, or non-radio-based technologies such as
visible light communication (VLC) [2]. These wireless technologies utilize various communication
protocols and signal strength to offer precise positioning information in various indoor environments.
However, RF-based technologies suffer from poor control accuracy in the areas with multi-devices due
to the low positioning accuracy of meter level. Whereas, although the VLC method is characterized
by long-life expectancy, immunity to humidity, low power consumption, low cost, and high speed
modulated signals, VLC suffers from strict line of sight (LOS) requirements.

Besides, emerging optimization techniques do not depend only on general techniques but also
on algorithms and artificial intelligence (AI). It includes machine learning (ML), deep learning, and
particle swarm optimization (PSO), which are revolutionizing navigation to optimize and improve
localization accuracy. For instance, ML represents an impressive solution in indoor localization
systems [3]. Initially, fingerprinting involves creating an individual “fingerprint” of an indoor radio
frequency environment by collecting and analyzing signal strength data from sources, such as Wi-Fi
APs or Bluetooth low energy (BLE) beacons located throughout an environment [4]. This signature
can then be mapped. ML algorithms then utilize these fingerprints to interpret and learn from
them, enabling a system to predict user locations based on observed signal characteristics [5]. One
key benefit of fingerprinting techniques is their ability to accommodate complex signal propagation
patterns within indoor spaces, allowing more precise indoor localization. Several algorithms require
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the computation of the covariance matrix to analyze the data in a dataset. The covariance matrix is a
mathematical matrix that summarizes the variances and covariances within a set of vectors, offering
valuable insights into the relationships between variables. In order to do the tasks mentioned, a larger
dataset is required. Additionally, every ML model must undergo validation and testing, necessitating
another set of datasets. Therefore, a large dataset is necessary.

Bayesian networks allow the integration of prior knowledge or domain expertise into the model,
especially when data is limited. Incorporating prior information helps make more informed predic-
tions, compensating for the scarcity of data [6]. Bayesian inference represents an effective solution
for accurately determining indoor user locations. Through Bayesian inference, this system utilizes
probabilistic reasoning to model relationships among various localization parameters for indoor
environments that are challenging to navigate and provide an effective navigation solution [7]. A
network of sensors connected by Wi-Fi APs or other wireless signals is used in an offline calibration
phase to gather data for analysis. These data, including received signal strength (RSS) measurements,
are then utilized to generate a detailed radio map, which serves as the foundation for creating
the Bayesian network. In the online phase, Bayesian networks adaptively respond to changing
environmental conditions by employing the Markov Chain Monte Carlo (MCMC) sampling technique
to estimate user locations.

Indoor localization methods based on Wi-Fi fingerprints require the creation of a high-density
location fingerprint database to meet high-precision positioning requirements; however, when dealing
with large areas or an increase in RPs, the computational burden of the online phase will increase
significantly. To address both of these problems, we propose a Bayesian model for a multi-floor
environment based on the fingerprinting technique. This article presents a comprehensive effort aimed
at minimizing the error in estimating user location and reducing RPs in multi-floor environments. The
contributions can be summarized as follows:

1. Proposing an adaptive Bayesian graphical model utilizing Wi-Fi deployment tailored for multi-
floor environments to achieve accurate estimation of the user’s location.

2. Utilizing a sample clustering algorithm to diminish the database size for estimating the user’s
location in the online phase.

3. Investigating and evaluating the proposed model with various factors: number of APs, number
of iterations, and initial values.

The remaining parts of this paper are structured as follows. Section 2 provides a brief review of
related work. Section 3 presents the proposed Bayesian model and explains the utilized clustering
algorithm. Section 4 presents real experiments conducted to test the proposed model and discusses
the results before concluding its assessment in Section 5.

2 Related Work

This section examines the ever-evolving landscape of indoor localization systems, covering
methods like Wi-Fi and Bluetooth positioning, fingerprinting techniques, and other applications. The
work in this section serves as the cornerstone for research efforts. It illustrates its dynamic nature-
driving us toward significant contributions in an emerging field like indoor localization research.

In [6,8,9], researches focused on technologies of Wi-Fi and Bluetooth for indoor positioning. As
popular indoor localization techniques, these technologies leverage existing wireless infrastructure.
Study in [6] has explored using Wi-Fi signal strength for 3D indoor positioning, often relying on
Bayesian networks to process the data. Experiments were conducted using fingerprinting techniques,
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which collect received signal strength indicators from each AP during an offline training phase and
then use this information in the online localization phase, can effectively estimate user location data.
In [8], only one fixed AP is used with non-reconfigurable antennas, and no complex algorithms to
measure RSS are employed. The algorithm measured RSS and mapped it back to an approximate
location within a room by estimating RSS from direct LOS signals and first-order reflection signals
off walls and surfaces. In [9], an indoor positioning system utilizing a k-means clustering algorithm
(KLIP) is introduced for better characterizing indoor environments and further advancing position
estimation using Bayesian inference. Large-scale real-world scenarios composed of Bluetooth low-
energy-enabled devices are demonstrated.

In [10–14], data analysis and advanced Wi-Fi Techniques are presented, in which, it is shown
that analyzing collected Wi-Fi data can provide valuable insights for improving localization accuracy.
The research in [10] identified distinct power distribution models for Wi-Fi devices based on their
environment (closed, open, and hybrid spaces). This analysis also explored the potential of service set
identifier (SSID) as a reliable landmark for APs. The work also introduced an algorithm for tracking
user movement based solely on the SSID information. Beyond basic signal strength, some studies
explore more advanced Wi-Fi techniques. For instance, the system in [11] utilizes multipath signals
(often considered noise) to estimate target location by building a geometric model and employing a
PSO algorithm. The proposed system differs from conventional localization algorithms, which view
multipath signals as enemies by employing only one receiver. It built a geometry model for jointly
estimating locations of targets and scatterers, such as furniture using time of flight differences between
reflection paths and direct path, followed by developing an algorithm utilizing PSO. The authors in
[12] utilized the RSS channel model with the PSO algorithm to design an indoor target localization
system in wireless sensor networks. Eight method combinations using random or regular points with
fixed or adaptive weights and region segmentation methods are investigated with this PSO algorithm
for target localization/tracking of 12, 24, 52, 72, and 100 particles each time. In another study [13], the
researcher used a PSO algorithm for Wi-Fi fingerprint-based indoor localization, employing a new
two-panel fingerprint homogeneity model to characterize fingerprint similarity to achieve improved
performance. Furthermore, experimental verification is carried out to demonstrate how effectively the
localization method operates. Accuracy in Wi-Fi-based indoor localization is severely limited by signal
instability. To overcome this limitation, the authors in [14] introduced an interval random analysis
approach for uncertain Wi-Fi localization that employs an interval random parameter lognormal
shadowing model for radio map enhancement and adaptive Bayesian comprehensive learning PSO
for location estimation accuracy enhancement.

As alternative techniques and network options, studies in [15–17] have been carried out. In [15],
the authors compared two main localization techniques, fingerprints (real and synthetic) and ranging
schemes, to identify likely locations. They also investigated four localization techniques (k-nearest
neighbor (KNN), trilateration, multilayer perceptron, and long short-term memory recurrent neural
network for indoor localization tasks using ZigBee networks: RSS indicator (RSSI). Tian et al. [16]
proposed a location and tracking system using a single Wi-Fi link based on channel state information
capable of real-time decimeter-level localization. Phase calibration and static path elimination are
accomplished by multiplying conjugate signals of different antennas; three-dimensional multiple signal
classification (MUSIC) algorithms are utilized to estimate the angle of arrival, time of flight, and
velocity estimations. In [17], the researchers presented a Wi-Fi based passive indoor positioning
system that does not require active user involvement or additional interfaces on devices under test.
Properly deploying Wi-Fi Sniffers within their area of interest is of utmost importance to optimize
system accuracy. They proposed a modified Genetic Algorithm with an enhanced objective function
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to optimize deployment. These Wi-Fi Sniffers are used to quickly scan and collect RSSIs of devices
under test as Wi-Fi fingerprints; these fingerprints are then mapped onto RPs in the physical world
using weighted KNN methods for positioning.

3 Proposed Bayesian Model and Clustering Algorithm
3.1 Proposed Model

Structure of the proposed Bayesian model is determined based on the dependencies and relation-
ships between different variables in the indoor localization system. It is typically determined based on
domain knowledge and empirical observations. For example, the RSS from an AP is likely to depend
on the user’s location and the floor index, so these variables are connected in the Bayesian network. In
this study, openBUGS software was utilized, employing MCMC sampling techniques for estimating
the posterior distribution [18].

The proposed model consists of several nodes, including floor attenuation factor (FAF). Including
FAF within the model showcases our commitment to account for the intricacies of signal attenuation
across different floors, contributing to a more accurate and robust indoor localization system. The
proposed model draws inspiration from the first Bayesian network [19] and adaptive Bayesian [20], and
the proposed model contains seven main nodes, including AP coordination (x, y), user location (x, y),
sharing location, RSS, Euclidean distance, testbed dimension and FAF. Each node plays a pivotal role
in capturing the complex dynamics of indoor environments. Fig. 1 illustrates this proposed Bayesian
network designed for indoor localization using wireless local-area network (WLAN) technology.

Figure 1: Proposed Bayesian graphical model

The (Xi, Yi) denotes user’s location coordinates on the testbed, APj represents a fixed location of the
deployed jth AP (xj, yj) on floor levels, Dij indicates Euclidean distance between a fixed location of APj

(xj, yj) and user coordination (Xi, Yi), Lij is a sharing location which shares either X coordinate or Y
coordinate with an AP, Sij is the RSS at the user’s location (Xi, Yi), Fi represents the floor level, FAFt

is the floor attenuation factor where its value will only exist if there is no ceiling obstacle between (Xi,
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Yi) and AP locations, and αi is a weighted node within the proposed model. The explanation of these
nodes is as follows:

User location (Xi, Yi): Xi and Yi are continuous stochastic nodes that represent user coordinates
stand within any point of ith on any one dimension (L, W ), where i is an indicator for radio map size.
L and W refer to the length and width dimensions of the testbed, respectively.

Xi ∼ (0, L) , Yi ∼ (0, W) . (1)

APs location (xj, yj): xj and yi represent the fixed coordinates of the jth AP (xj, yj). These
coordinates are predefined before data collection, with j serving as an index representing the number
of APs in the building.

Euclidean distance Dij: it is a continuous stochastic node, which serves as a fundamental measure
in the proposed model, capturing the geometric proximity between the user and the respective APs’
locations, and it is given by the following equation:

Dij = log
(

1 + √
(Xi − xj) + (Yi − yj)

)
(2)

By considering Euclidean distance, this model can evaluate physical distances between users
and each AP-providing invaluable data for indoor localization with WLAN technology. Assuming a
multi-floor environment has an RSS of normal distribution, and its Euclidean distance will represent
lognormal distribution, one is added as the additional factor to avoid an invalid log function argument
value.

Sharing location Lij: this node represents the logical variable which becomes active when the user’s
location shares either the X coordinate or the Y coordinate with the AP within a 1-m proximity,
indicating a shared corridor. Specifically, the value of Lij is set to 1 if the user’s location (Xi, Yi) aligns
with the APj in the same corridor, and it is 0 otherwise. This inclusion in our model accounts for the
spatial relationships within the indoor environment, contributing to a more nuanced understanding
of user and AP positioning for improved accuracy in localization.

Li =
{

1 if Xi = xj or Yi = yj

0 if otherwise
(3)

RSS Sij: it is the continuous stochastic node which assigned to follow a normal distribution
Sij ∼ N (μ, τ), where the regression model serves as the mean of this distribution. The regression
model incorporates six parameters (b0, b1, b2, b3, b4, b5) and is influenced by five independent
variables (Dij, Lij, Fi, FAFt, αi). This statistical framework allows us to account for the variability in
RSS, incorporating diverse factors to enhance the precision and robustness of our indoor localization
system.

Sij ∼ N (μ, τ) (4)

μ ∼ N
(
b0j +

(
b1j∗Dij

) + (
b2j ∗ Lij

) + (
b3j ∗ Lij ∗ Dij

) + (
b4j ∗ Fi

) + (
b5j ∗ FAFt ∗ αi

))
, (5)

Sij ∼N
(
b0j +

(
b1j∗Dij

) + (
b2j ∗ Lij

) + (
b3j ∗ Lij ∗ Dij

) + (
b4j ∗ Fi

) + (
b5j ∗ FAFt ∗ αi

)
, τ

)
,

i = 1, . . . , n and j = 1, . . . , m (6)

Floor Level Fi: it is a discrete stochastic node represents floor level which is modeled as a random
variable following a discrete uniform distribution as given in expression (7), where K signifies the total
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number of floor levels. This distribution captures the stochastic nature of floor assignment, allowing
Fi to take values ranging from 0 to K.

Fi ∼ DisU (0, K) . (7)

Binary node αi: it is a constant value that takes only two values, either 0 if the RSS is obtained at
the location (Xi, Yi) and the jth AP were at the same floor or 1 otherwise.

In the OpenBUGS framework, where a discrete distribution is not available, we employed the
categorical distribution to model Fi. The categorical distribution is a discrete distribution and serves
as a generalization of the Bernoulli distribution, with a sample space s = 1, . . . , K. Therefore, it is
given by expression (8), indicating that Fi is drawn from a categorical distribution. This adjustment in
distribution accommodates the limitations of OpenBUGS and allows for the effective representation
of the random variable Fi within our Bayesian model.

Fi ∼ DCAT (0, K) . (8)

Initial values: For the initial values of our parameters, we follow a strategy where each parameter
bvj is assigned a random value, initially drawn from a normal distribution bvj ∼ N (μv, τv). These
initial parameters are crucial for initiating the burn-in samples in the initial stage of our Bayesian
model. The normal distribution provides a flexible and generic framework for the initial assignment,
accommodating the stochastic nature of the parameters and ensuring a diverse starting point for
the model’s exploration during the burn-in phase. This approach contributes to the convergence and
effectiveness of the subsequent Bayesian inference process.

b0j ∼ N (μ0, τ0) (9)

b1j ∼ N (μ1, τv1) (10)

.

.

.

bvj ∼ N (μv, τv) , v = 1, 2, . . . , 5. (11)

μv ∼ N (0.001) (12)

τv ∼ N (0.001, 0.001) (13)

3.2 Clustering Algorithm

A signal space clustering algorithm is used to reduce radio map size which was introduced in
[21]. Clusters often include many RPs, which lead to an increase in map size; therefore, the signal
space clustering algorithm provides a solution by merging adjacent points together and depending
on the signal space distance between two points within a radio map as specified by Manhattan
distance Eq. (14) as part of this clustering technique. The choice of using the Manhattan distance
in the clustering algorithm is primarily due to its suitability for high-dimensional spaces, such as the
signal space in indoor localization systems. It calculates the distance between two points as the sum of
the absolute differences of their coordinates. This makes it particularly effective in high-dimensional
spaces where Euclidean distance can be less discriminative due to the “curse of dimensionality”.

dn,n+1 = |Pi − Pi+1|, (14)
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where dn,n+1 indicates the distance between the first point Pi and second point Pi+1 in the radio map.

dn,n+1 =
M∑

i=1

∣∣sij − si, (j+1)

∣∣, (15)

where M is the number of APs, and Sij is the RSS at point jth measured from APth.

Calculate the two distances between three points: Pi, Pi+1 and Pi+2 as d1 (between Pi and Pi+1) and
d2 (between Pi+1 and Pi+2) using Eq. (15). Then, use either of these calculations to find the smallest
distance among them: If dn,n+1 is lower than dn+1,n+2, combine Pi, Pi+1 by taking their RSS mean.
Continue checking until all distances have been eliminated from consideration If not, move on to
the next point and check its distance again.

Sq = 1
2

m∑
1

|si + si+1|, (16)

where Sq is the new signal space of the point Pq located at
(
xq, yq

)
. The new point will have a new

coordination as well. The new coordination is calculated in Eq. (17).

p
(
xq, yq

) =
(

xi + xi+1

2
,

yi + yi+1

2

)
, (17)

where (xi, yi) and (xi+1, yi+1) point coordination at Pi and Pi+1, respectively.

The following pseudocode provides a step-by-step description of the signal space clustering
algorithm. The result is a reduced radio map that preserves the essential characteristics of the signal
space while reducing its size for more efficient computation.

Algorithm 1: Signal Space Clustering
Input: Radio map R with points Pi each with coordinates (xi, yi) and signal space Si Output: Reduced
radio map R′ with points Pq each with new coordinates (xq, yq) and new signal space Sq

1: for each point Pi in R do
2: calculate dn,n+1 using Eq. (15)
3: if dn,n+1 < dn+1,n+2 then
4: merge Pi and Pi+1 into a new point Sq

5: calculate new signal space Sq for Pq using Eq. (16)
6: calculate new coordinates (xq, yq) for Pq using Eq. (17)
7: add Pq to updated radio map R′

8: else
9: move to the next point Pi+1

10: end if
11: end for
12: return R′

The complexity analysis reveals that the algorithm’s time complexity is influenced by the number
of points in the radio map, with calculations taking O(n2) time, and space complexity being O(n).
Thus, the algorithm reduces the radio map size by merging adjacent points, potentially enhancing
computational efficiency during online phases. Besides, the algorithm can be resilience to noise and
outliers, which is attributed to its utilization of the Manhattan distance metric.
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4 Experimental Implementation and Analysis
4.1 Experimental Preparation

Measurement experiments were conducted on both the ground floor and first floor of a multi-
floor building, covering an area with dimensions of 52 × 22 square meters. To facilitate wireless
connectivity, eight APs operating at a frequency of 2.4 GHz were strategically positioned, with four
APs on each floor. The 2.4 GHz has a longer range, compared to 5.2 GHz, which is often used due to
its wider coverage and ability to penetrate obstructions. The building features concrete and glass outer
walls, and some internal walls are constructed with plaster partition boards. Fig. 2 shows the ground
and first-floor structure. The APs were deployed at different locations throughout the building to
emphasize diverse placements. The final AP locations were chosen based on optimizing signal coverage
to encompass most areas on each floor. Symmetrically distributing the APs has been found, through
previous investigations, to minimize the error in determining user location.

Figure 2: Floor plan: ground and first floor

In the offline phase, the Wi-Fi scanner initiates a search for available APs and records data
at each reference point. The collected data consists of 30 samples obtained through a 360-degree
rotation at one-second intervals for each AP. Once all necessary information is gathered, a radio map
is constructed for online use. This radio map is developed by collecting RSS for each coordinate of the
RPs on both the ground and first floors.

The proposed Bayesian model is implemented using the OpenBUGS software during the online
phase. This software employs Bayesian inference through Gibbs sampling to estimate the user’s
location. The estimation relies on the posterior distribution generated using the MCMC sampling
technique.

The comprehensive radio map includes all calibration locations measured on both floors. There-
fore, to get accurate estimations in a multi-floor environment, FAF clustering is utilized to address the
limitations of FAF. The system’s accuracy depends on the FAF, which varies across places. RSS could
impact FAF, which is associated with signal propagation. FAF was measured at three different places
(right side, corridor center, and left side) for both building floors. The measurements were taken at
vertically aligned and symmetrical places, gathering 500 samples at a rate of one sample per second.
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FAF is determined using Eq. (19). Table 1 displays the three places categorized according to their FAF
as: right side, left side, and corridor of the building.

RSSGF = 1
n

n∑
i=1

RSSn, RSS1F = 1/n
n∑

i=1

RSSn, (18)

FAFR = RSSGF − RSS1F , (19)

where RSSGF , RSS1F represent the average received signal strength on the ground floor and first floors,
respectively. The variable n represents the number of collected samples.

Table 1: Statistics impact of APs

Number of APs 4 5 6 7 8
Ground floor AP1, AP2 AP1, AP2 AP1, AP2, AP3 AP2, AP3, AP4 AP1, AP2, AP3, AP4
First floor AP7, AP8 AP6, AP7, AP8 AP5, AP7, AP8 AP5, AP6, AP7, AP8 AP5, AP6, AP7, AP8
Maximum 14.39 9.59 6.39 4.98 4.93
Mean 8.20 5.34 3.13 2.30 1.82
Minimum 0.47 1.38 0.08 0.02 0.06

A marked variance in FAF was noticed across different locations and floor levels within the
building. To account for these variations and provide an optimal experimental setup, an average FAF
value of 35 dB was considered in this study.

Accurate evaluation of indoor localization errors is vital to improving positioning systems and
increasing the overall reliability of location-based services. Localization error (LE) refers to the
difference between the predicted location

(
xp, yp

)
and the actual location (xa, ya). Also, the average

LE (ALE) is determined as the submission of localization error divided by the total testing points (TP)
according to the following formula:

LE =
√(

xp − xa

)2 + (
yp − ya

)2
, (20)

ALE =
TP∑
1

√(
xp − xa

)2 + (
yp − ya

)2

TP
. (21)

These formulas quantify the accuracy of the localization system by measuring the spatial discrep-
ancies between predicted and actual locations, offering a comprehensive assessment of performance
across multiple TP.

4.2 Performance Analysis

The mobile user’s location is inferred using OpenBUGS, employing a Bayesian network and
Gibbs sampling. The user’s location, represented as (Xi, Yi, Fi), is denoted as NA in the radio map,
signifying the location to be estimated. Fig. 3 visually presents an example of posterior probability
density function of three variables: “X i” in Fig. 3a, “Y i” in Fig. 3b, and “Fi” in Fig. 3c for the tenth
sequence point (X (10), Y (10) and F (10)) in the radio map. A posterior distribution that resembles a
bell-shaped curve suggests that the Monte Carlo (MC) chain has reached convergence. In other words,
the three random variables are converged at a specific level, indicating that creating samples of over
100,000 iterations does not yield significant findings.
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Figure 3: Tracing three variables of a predicted location (a) X (10), (b) Y (10), and (c) F (10)

Fig. 4 shows the estimated positions of three random variables corresponding to an unknown
location, denoted as (X (10), Y (10), and F (10)), which are depicted based on node statistics. For F
(10), the percentiles, including the 2.5th and 97.5th, along with the mean and median, all align at 1.0,
reinforcing the consistent estimation. The start value, sample size, and lack of deviation in the standard
error contribute to the robustness of these findings. Moving to variable X (10) and variable Y (10),
representing the estimated X and Y coordinates, respectively, we observe similarly insightful results.
The mean values of approximately 36.49 for X (10) and 8.7 for Y (10) provide central tendencies for the
estimated positions. The standard deviations of approximately 2.682 and 2.435 for X (10) and Y (10)
signify the dispersion of the estimated coordinates. However, variable F (10) represents the estimated
floor level with the mean and standard deviations of approximately 1 and 0.0298, respectively.

Figure 4: Statistics prediction of unknown location

The MC error measures the statistical error or uncertainty associated with estimates obtained
through MC simulations. It provides an estimate of the standard error of the sample mean, which
reflects how much the sample mean is expected to vary across different samples drawn from the same
distribution. Lower MC errors suggest more precise and reliable estimates.

Additionally, the figure illustrates both the precise and approximated positions of these three
random variables, providing a visual comparison. The distance error of a single training data point
is also displayed, offering insights into the accuracy and effectiveness of the estimation process.
This comprehensive visualization facilitates a better understanding of the model’s performance in
estimating the user’s location. The estimated location results were obtained by running an MC
simulation for 100,000 iterations with initial 10,000 iterations of generated samples were designated as
the burn-in period. Variable X (10) has an estimated position with a distance error of 0.51 centimeter,
whereas variable Y (10) has a distance error of 1.3 m. Variable F (10) has an actual location with a 0
distance error.

4.2.1 The Effects of the Proposed Model

Number of APs: The number of APs dramatically impacts LE in a multi-floor environment. To
investigate its effects, a random selection of two or three APs on each floor was undertaken before
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gradually increasing them up to four per floor, as seen in Table 1. Thirty RPs were utilized during
this test. It provides statistics regarding the proposed model performance due to the number of APs
implemented in it.

Fig. 5 visually demonstrates a notable enhancement in the ALE as the number of APs increases
within the proposed model. The ALE exhibits a clear trend, with distances of 8.2, 5.3, 3.1, 2.3, and 1.8
m recorded for 4, 5, 6, 7, and 8 APs, respectively. This trend indicates a positive correlation between
the number of APs and ALE.

Figure 5: Localization error of different numbers of APs

Moreover, a closer examination reveals interesting insights into the model’s performance with
varying AP configurations. Surprisingly, the proposed model exhibited a higher maximum ALE of
14.39 m when utilizing 4 APs, compared to a significantly reduced error of 4.93 m with 8 APs. This
observation challenges the assumption that a higher number of APs invariably results in a reduction in
ALE. Notably, the lowest ALE, as achieved by the proposed model with 8 APs, is an impressive 1.8 m.
This achievement signifies an 80.55% reduction in ALE compared to the model’s performance with 4
APs. This highlights the importance of carefully considering the number of APs in system design, as
an increased count may not always guarantee improved system performance by obtaining low ALE.

Number of iteration effects: The localization error is influenced by the number of iterations,
impacting the generation of samples from the posterior distribution. Seven settings of iteration
numbers were employed to evaluate the ALE of the proposed model. As depicted in Fig. 6, the ALE
exhibited an increase in the first four settings (from 20,000 to 80,000 iterations), with a marginal
improvement in the last three settings (from 100,000 to 140,000 iterations). Notably, the lowest ALE
achieved by the proposed model is 1.8 m, observed with 100,000 iterations.

Figure 6: Localization error with various iteration numbers
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It is evident from the results that the ALE experiences significant improvement with a moderate
number of iterations, particularly in the initial sets. However, the gains in ALE become less pro-
nounced in the later sets, indicating diminishing returns with increased iterations. The lower ALE of
1.8 m achieved with 100,000 iterations is noteworthy, as it demonstrates a balance between ALE and
computational efficiency.

Settings (120,000 and 140,000), while achieving commendable ALE, show limited improvement in
ALE compared to the preceding settings and notably demand a higher number of iterations, potentially
affecting the computational cost of the proposed model.

Initial values effects: The initial values play a crucial role in initiating the generation of samples,
determined by the specified iteration number. However, the impact of the initial values diminishes as
the iteration numbers increase. The careful selection of initial values is paramount for achieving lower
ALE. In this test, a total of 100,000 iterations were utilized.

Table 2 presents the set of initial values employed to assess their influence on the system’s
performance. As illustrated in Fig. 7, each set of initial values results in a distinct ALE value. While
the observed effect of the initial values on ALE is relatively small, it remains an important factor to
consider in the overall evaluation of system performance.

Table 2: Specifications of different sets of initial values

Parameter Set 1 Set 2 Set 3 Set 4 Set 5

b0j 0 0.01 1 3 5
b1j 0 0.01 1 3 5
b2j 0 0.01 1 3 5
b3j 0 0.01 1 3 5
b4j 0 0.01 1 3 5
b5j 0 0.01 1 3 5
μ0 0 0.01 1 3 5
μ1 0 0.01 1 3 5
μ2 0 0.01 1 3 5
μ3 0 0.01 1 3 5
μ4 0 0.01 1 3 5
μ5 0 0.01 1 3 5
τj 1 0.1 0.01 0.001 0.0001

Furthermore, Table 3 highlights the lowest and highest ALE obtained, corresponding to sets 1
and 5, respectively. This emphasizes the significance of the initial values in influencing the system’s
performance, reinforcing the need for a thoughtful selection process in the pursuit of the lowest ALE.
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Figure 7: Localization error of various sets of initial values

Table 3: Statistics of localization error various sets of initial values

Set no. Set 1 Set 2 Set 3 Set 4 Set 5

Maximum 11.0 11.5 15.0 13.0 16.0
75 4.4 4.9 5.6 5.3 6.3
Mean 1.8 1.9 2.2 2.2 2.2
25 1.3 1.6 1.9 2.1 2.3
Minimum 0.4 0.5 0.6 0.4 0.5

4.2.2 Comparison between the Proposed Model and the State-of-the-Art

The proposed model underwent a comparative analysis against state-of-the-art models, including
references [5,7,9,14]. This comparative evaluation aims to assess the efficacy and performance of
the proposed model in indoor localization, providing insights into its relative strengths and capa-
bilities compared to existing methodologies. Table 4 comprehensively compares various localization
techniques, and each applied in distinct environments with varying dimension sizes, numbers of AP,
training points, and ALE. In [5], implemented in a vast 390, 976, 2952 sqft single environment,
employed 99, 244, and 123 APs with a resulting ALE of 2.85. In contrast, in [7], applied in a 36 m
× 50 m environment, it utilized 10 APs and 130 training points and achieved a lower ALE of 2.43.
Another technique [9], with a dimension size of 45 m × 16 m, deployed 14 APs and 148 training points,
resulting in an ALE of 2.78. In a more confined 1600 m2 space, a different technique in [14] employed
12 APs, 74 training points, and recorded an ALE of 2.30. The proposed method, designed for multi-
floor environments with a dimension size of 50 m × 22 m, utilizes 8 APs and 13 training points,
achieving a comparatively lower ALE of 1.83. This comparative analysis underscores the efficiency
of the proposed method, showcasing error reduction in estimating user locations across multi-floor
environments with fewer APs and training points.

In terms of computational efficiency, the real-time deployment of our proposed model for
indoor localization systems is mitigated through several strategic optimizations. Initially, our Bayesian
approach optimizes the inference process, facilitating swift localization updates. Through the utiliza-
tion of efficient algorithms and parallel processing techniques, our model achieves inference times
of mere seconds, even within intricate indoor environments. Additionally, our method adopts a
condensed representation of the radio map, thereby minimizing memory and computational demands
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during localization. This reduction in map size enables rapid retrieval and processing of pertinent
signal information, thereby further augmenting localization speed.

Table 4: Performance comparison between the proposed model and other works

Techniques Environment Dimension size No. of APs Training points LE

Cost-effective [5] 3-single 390, 976, 2952 sqft NA 99, 244, 123 2.85
Bayesian inference [7] Single 36 m × 50 m 10 130 2.43
Clustering and
Bayesian [9]

Single 45 × 16 m 14 148 2.78

Improved PSO [14] Single 1600 m2 12 74 2.30
Proposed Multi-floors 50 m × 22 m 8 13 1.83

Moreover, the proposed method demonstrates versatility, applicable to diverse scenarios such
as object tracking in warehouses for improved inventory management and aiding navigation in
complex environments like shopping malls, airports, or hospitals where traditional GPS systems
falter. Additionally, its utility extends to robotics, facilitating tasks or guiding autonomous robots;
however, its effectiveness in these contexts would hinge on factors requiring further validation
through theoretical and empirical means. Furthermore, the adaptability of the method allows for
potential application in various emerging fields, including smart city infrastructure development
and environmental monitoring. However, thorough testing and refinement are imperative to address
specific challenges and optimize performance in these novel contexts.

5 Conclusion

Indoor localization methods using Wi-Fi fingerprints require a high-density database, but this
can increase the computational burden in large areas or RPs. This article proposed a Bayesian model
to minimize errors in estimating user location and reduce the size of the radio map in multi-floor
environments. It is an off-the-shelf solution that uses existing Wi-Fi infrastructures to estimate user’s
location. The adaptive Bayesian network, integrated with a sample clustering algorithm, contributes
to a significant reduction in the radio map size, thereby optimizing the efficiency of the localization
system. The proposed model has undergone a comprehensive evaluation, considering factors such
as the number of APs, iteration counts, and initial values. The proposed model outperformed
current approaches in ALE, achieving 1.8 m. This impressive result was achieved with minimal RPs,
demonstrating the model’s efficiency and effectiveness in reliably estimating user locations in the
indoor environment. Future research should explore integrating emerging technologies like sensor
fusion to improve indoor localization systems’ robustness and accuracy. Investigating the Bayesian
model’s adaptability, scalability, energy-efficient algorithms, and real-time dynamic adjustments could
contribute to sustainable indoor localization solutions.
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