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ABSTRACT

To enhance the diversity and distribution uniformity of initial population, as well as to avoid local extrema in
the Chimp Optimization Algorithm (CHOA), this paper improves the CHOA based on chaos initialization and
Cauchy mutation. First, Sin chaos is introduced to improve the random population initialization scheme of the
CHOA, which not only guarantees the diversity of the population, but also enhances the distribution uniformity
of the initial population. Next, Cauchy mutation is added to optimize the global search ability of the CHOA in the
process of position (threshold) updating to avoid the CHOA falling into local optima. Finally, an improved CHOA
was formed through the combination of chaos initialization and Cauchy mutation (CICMCHOA), then taking
fuzzy Kapur as the objective function, this paper applied CICMCHOA to natural and medical image segmentation,
and compared it with four algorithms, including the improved Satin Bowerbird optimizer (ISBO), Cuckoo Search
(ICS), etc. The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA
delivers superior segmentation effects in image segmentation.
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1 Introduction

With the widespread application of various medical images in auxiliary medicine, computer-aided
diagnosis has attracted increasing attention [1]. In medical image processing, image segmentation
can effectively assist doctors in completing medical diagnoses or surgical treatments, especially for
patients with milder conditions. The main issues of early diagnosis with medical images included
blurred or imprecise localization of lesion regions [2]. At the same time, there may be significant gaps
in the professional level of doctors. Computer assisted medical image segmentation not only avoids
misdiagnosis caused by these gaps but also improves the efficiency of diagnosis and treatment [3]. To
enhance the accuracy and timeliness of medical image segmentation, academics increasingly apply
image thresholding and swarm intelligence optimization algorithm (IOA) in the field of multi-level
medical image segmentation [1,3].

Image thresholding divides an image into two or more non-overlapping regions according to
a vector of thresholds and the image’s gray level. While the length of the thresholds’ vector is 1,
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image thresholding can only divide the image into two regions: foreground and background. When its
length exceeds 2, the image is divided into more and better-defined regions. However, as the number
of thresholds increases, the corresponding calculations also rise exponentially, so swarm IOA is an
effective solution [4,5]. To facilitate the application of IOA in multilevel image segmentation, a variety
of objective functions to evaluate the segmentation quality are applied [6], including Kapur entropy,
Otsu, minimum cross-entropy [7,8], etc.

In the objective function selection, Li et al. [9] compared and analyzed the effectiveness of fuzzy
Kapur and Otsu based on the improved fuzzy Coyote Optimization Algorithm (IFCOA). Through
visual and quantitative data analysis of natural and medical image segmentation, it concluded that the
IFCOA based on fuzzy Kapur achieved better segmentation effect. Li et al. [10] improved the Satin
Bowerbird Optimizer (SBO) through various strategies and also applied fuzzy Kapur to perform multi-
level segmentation on plant images, by comparing the experimental results with the segmentation
effects of discrete Grey Wolf Optimizer (GWO) and fuzzy Coyote Optimization Algorithm (FCOA),
it was found that the ISBO has better segmentation performance. Rajinikanth et al. [11] analyzed and
compared the application of fuzzy Shannon, fuzzy Kapur and Otsu in multilevel image thresholding.
Based on the analysis and comparison of four benchmark medical image data sets (ETIS, ClinicDB,
Kvasir and CV2020), the fuzzy Kapur has better clinical application in accuracy, precision and sensi-
tivity. Similarly, Rajinikanth et al. [12] compared and analyzed the effectiveness of Kapur and Tsallis in
multi-level segmentation of grayscale and color images. Through extensive experimental comparisons,
both objective functions achieved better results and outperformed other similar methods. Wu et al. [13]
applied Kapur as the fitness function and compare it with seven other similar methods through
evaluation indices such as PSNR and FSIM. The experiments demonstrated that it has dependable
performance in multilevel image segmentation. Karakoyun et al. [14] transform the single objective
function commonly applied in Kapur and Otsu thresholding into multi-objective functions. Through
the experimental analysis of standard data sets, the multi-objective function is superior to other single
objective functions and can achieve better image segmentation quality. Renugambal et al. [15] used
Kapur combining Water Cycle (WC) and Moth Flame Optimization Algorithm (MFOA) to complete
the optimal segmentation of gray matter, white matter, and cerebrospinal fluid in brain medical images,
and it has been verified that the Kapur has better segmentation efficiency.

On the application of swarm IOA in multilevel image segmentation, Yan et al. [16] improved
the Whale Optimization Algorithm (WOA) based on Kapur to perform multi-level segmentation on
hydrological images, and compared the experimental results with algorithms such as Bat Algorithm
(BA), Flower Polarization Algorithm (FPA), then discover that WOA can effectively reduce computa-
tional complexity, improve segmentation accuracy and effectiveness. Zhu et al. [17] proposed a multi
strategy learning Manta Ray Foraging Optimization Algorithm (MRFO). The MRFO selected a skip
learning strategy to improve the convergence speed, proposed a behavior selection strategy to judge
the current state of the race, and integrated the Tent and Gaussian mutation to avoid the MRFO
falling into local optima. Selecting the CEC2017 test function and comparing the segmentation
results with 8 algorithms such as PSO, it was found that the MRFO has better advantages and
quality in image thresholding. Ewees et al. [18] fused the Artificial Bee Colony (ABC) with the
Sine Cosine Algorithm (SCA) to form an improved algorithm (ABCSCA). The Otsu was applied to
perform thresholding segmentation experiments on 19 images, and the PSNR and SSIM were used
as measurement indicators to compare the segmentation performance of the ABCSCA with eight
other algorithms such as SSA and GWO, it was found that the ABCSCA has better performance
in terms of convergence speed, robustness and vision. Duan et al. [19] improved the Cuckoo Search
Algorithm (ICS) by parameter adaptive and dynamic weighted random walk strategy. Six benchmark
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test images were subjected to segmentation experiments, and the experimental results compared with
other algorithms confirmed that the ICS had better performance. In the field of medical image
segmentation, Panda et al. [20] fused Cuckoo Search (CS) and Squirrel Search Algorithm (SSA),
combined with the normalized local variance to correct the gray histogram, and achieved better
image thresholding effect in the CEC 2005 standard medical image dataset. Ramadas et al. [21]
improved Differential Evolution (DE) through mutation strategy for segmentation and diagnosis of
brain medical images. Compared with the traditional Kapur scheme, the DE not only significantly
reduced the calculation time, but also greatly improved the image segmentation quality. Wu et al. [22]
proposed an improved Sparrow Search Algorithm (SSA) which integrated nonlinear inertial weights
and Levy flight strategy. The SSA used a two-dimensional maximum entropy to segment classical and
medical images, and compared with the WOA, PSO, GWO and other algorithms, the results showed
that the SSA has better performance in terms of convergence speed, robustness and visual effect.

The various ideas for improving the global search ability of swarm IOA and avoiding local optima
in its iterations can be summarized into two respects: (1) Improving the initialization mode of its
population. At the beginning of the swarm IOA, the initial population with higher dispersion and
stronger randomness is provided, to improve the optimal search ability and accelerate the convergence
speed. (2) Optimizing the renewal strategy of the individual population. A mechanism to update the
population of IOA is the most important means to avoid it falling into local optima. Theoretically,
with the continuous iteration of the IOA, the final optimal solution is closer to the ideal one. However,
if the IOA cannot continuously produce better solutions in its iteration, it easily falls into local optima.
Therefore, this paper seeks to improve CHOA based on the above two key improvement directions,
and to verify its segmentation effect in natural and medical images.

The CHOA is a swarm IOA proposed by Khishe et al. [23], which has simple principles, fewer
parameters, and can be easily deployed and implemented. And the independent development of four
type chimps in CHOA ensures the global search ability. However, there is still a risk of reverting
to local optima in its iteration [24]. In this paper, Sin chaotic sequence is selected for population
initialization to improve the quality of the initial individuals. In the process of population location
updating, Cauchy mutation is introduced to reduce the risk of local optima in iteration, and thus form
an improved CHOA developed by chaos initialization and Cauchy mutation (CICMCHOA). The main
contributions are summarized as follows:

1. In order to improve the initial population diversity and convergence performance of the
CHOA, the random initialization mode of CHOA was improved by Sin chaotic initialization
in CICMCHOA.

2. The population update strategy of CHOA has been improved by utilizing Cauchy mutation.
this not only avoids the CHOA falling into local optima but also enhances its global search
ability and image segmentation performance.

3. By combining fuzzy logic and fuzzy membership functions through fuzzy Kapur, this work
explored the global optimization ability of CICMCHOA and improved the quality of image
segmentation.

4. The effectiveness of CICMCHOA in natural and medical image segmentation has been
validated through extensive visual and data analysis, the experimental results were compared
with those of the ISBO [10], ABCSCA [18], ICS [19] and classical meta-heuristic algorithm-DE
in [7,8,21].

The rest of this paper is organized as follows. Section 2 briefly introduces the formation mech-
anism of CHOA and its mathematical modeling process. The CICMCHOA improved by Sin Chaos
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initialization and Cauchy mutation is provided in Section 3. In Section 4, the experimental results and
detailed discussion are presented to illustrate the performance of CICMCHOA. Finally, the conclusion
of CICMCHOA is presented in Section 5.

2 Description and Modeling of Chimp Optimization Algorithm

In the CHOA [23], according to wild social behavior and cooperative hunting processes, the initial
chimp population is divided into four types with different responsibilities: attacker, barrier, chaser and
driver. In practical applications, the attacker chimps represent the optimal solution to the problem.
The barrier, chaser and driver chimps represent the three sub-optimal solutions in turn. Each type
completes its own tasks of attacking, blocking, chasing and driving, and finally realizes the hunt
through division of labor and cooperation. At the same time, the chimp population will be stimulated
by external conditions such as sexual motivation and food, and chaos will follow their successful
hunting. This mechanism ensures the further optimization and elimination development of the CHOA.

The basic steps of CHOA are as follows: assume there are N chimp individuals in a chimp
population, where Xi represents the current position (threshold) of the chimps. The position updating
process of the chimps driving and chasing prey is shown in Eq. (1).

Xc (t + 1) = Xp (t) − D · A (1)

D = ∣∣CXp (t) − mXc (t)
∣∣ (2)

where XP(t) is the prey position vector in the optimization process, XP (t) is the chimp (hunter) position
vector, D represents the distance between the chimps and the prey, t represents the number of iterations
during the operation of the CHOA. A, C and m are coefficient vectors, and their calculation formulas
are shown in Eqs. (3)–(5).

A = 2f · rand1 − f (3)

C = 2 · rand2 (4)

m = Chaotic_value (5)

rand1 and rand2 respectively represent a random number within the range [0, 1], thus A and C is
a random number inside [0, 2], indicating the effects of prey location on chimp individual location. In
Eq. (3), the variable f is a convergence constraint, its value decreases non-linearly from 2.5 to 0 in the
iterative process of the CHOA. In calculating the update positions of four type chimps (the attacker,
barrier, chaser and driver), f is calculated by fA, fB, fC and fD separately in Eqs. (6)–(9). In Eq. (5), m
is the chaotic vector generated by the chaotic map, representing the degree to which the chimps are
excited to hunt. In the hunting process, the chaotic vector in Eq. (5) represents the degree of chaos. To
better reflect its impact on the CHOA, it is updated according to different formulas in different chimp
populations, as shown in Eqs. (6)–(9).

fA = 1.95 − 2t1/4/T 1/3 (6)

fB = 1.95 − 2t1/3/T 1/4 (7)

fC = (−3t3/T 3) + 1.5 (8)

fD = (−2t3/T 3) + 1.5 (9)
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In Eqs. (6)–(9), fA, fB, fC and fD respectively represent the updating strategies of the parameter
f in four types (the attacker, barrier, chaser and driver chimps). t and T respectively represent the
current number of iterations and the preset maximum number of iterations in turn.

In the exploration stage, CHOA simulates the predation process of chimps in nature. The attacker
chimps representing the optimal solution complete the last attack on the prey, and the barrier, chaser
and driver chimps occasionally participate in the attack behavior while completing their respective
tasks. To improve the convergence speed, the CHOA model assumes that the barrier, chaser and driver
chimps can also determine the location of the prey. Therefore, other chimps need to complete the
iterative updating of their locations according to the location of the first four types of chimps, as
shown in Eqs. (10)–(12).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DA = |C1XA − m1X |
DB = |C2XB − m2X |
DC = |C3XC − m3X |
DD = |C4XD − m4X |

(10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Temp1 = XA − A1DA

Temp2 = XB − A2DB

Temp3 = XC − A3DC

Temp4 = XD − A4DD

(11)

X(t+1) = (Temp1 + Temp2 + Temp3 + Temp4)/4 (12)

where XA, XB, XC and XD respectively represent the position vectors of the attacker, barrier, chaser
and driver (i.e., the threshold vectors), and X(t+1) represent the updated position vectors of the current
chimps in iteration.

3 The Improved CHOA (CICMCHOA)
3.1 Selection and Analysis of Chaos Parameter (m) in CHOA

The selection of parameter m is not described in detail in [23], neither are the strategies of
parameter selection in other relevant literature, or only one single chaotic strategy is used. Therefore,
this paper introduces 10 different chaotic maps (Chebyshev, Circle, Gauss/mouse, Iterative, Logistic,
Piecewise, Sine, Singer, Sinusoidal and Tent), and seeks a better parameter selection scheme through
experimental comparison. The detailed data comparison, analysis and discussion will be provided in
Section 4.1.

3.2 Population Initialization Based on Sin Chaotic

The results of swarm IOA are to an extent controlled by the initial value of the initial population.
The original CHOA initializes the population in a random way, which will lead to poorer initial
solution quality, less population diversity and stronger distribution randomness in some cases.
These problems will directly affect the global optimization ability of the CHOA in the subsequent
optimization steps. Chaotic variables are used to improve the initial solution of the IOA because
of their ergodicity, randomness and uniform distribution, and improve the quality of the initial
population [10,17].

In commonly used methods of chaos initialization, Tent and Logistic chaotic models display
limited map iterations. The distribution of Tent map is too uniform, which reduces the diversity of
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initial population. The distribution of logistic map also tends to be uniform and can only produce
a small number of singular solutions, contributing less to population diversity. Sin chaotic model by
comparison, is a framework with infinite-collapse, with more even distribution while ensuring the
differentiation of the initial population. Therefore, this paper uses Sin chaotic map to initialize the
population. The Sin chaotic map can be expressed as:⎧⎨
⎩

xn+1 = sin
π

xn

, n = 0, 1, 2, . . . , N

−1 ≤ xn ≤ 1, xn �= 0
(13)

In Eq. (13), to avoid a fixed or zero value between [−1, 1], the initial value of xn is set to a real
number not equal to 0.

After the initial population generated by Sin chaotic map, several N dimensional solutions
Xi,j, (i = 1, 2, 3, . . . , N; j = 1, 2, 3, . . . , d) are obtained. Then, the generated initial solutions are
arranged according to the fitness function, and four of the optimal solutions are selected as the
attacker, barrier, chaser and driver chimps of the population, to complete the initialization process
based on the Sin chaotic map.

3.3 Position Updating Strategy Integrating Cauchy Mutation

As can be seen from Eq. (11), other chimp individuals in the population converge to the optimal
solution according to the guidance of the decision-making bodies of attacker, barrier, chaser and driver
chimps. However, if the four types of individuals as population decision makers fall into local optima,
the full population may easily do so too, thus reducing population diversity, optimization range and
accuracy. To address this issue, this paper proposes Cauchy mutation strategy to increase the diversity
of the population, improve the global search ability of the CHOA and avoid the problem of ‘pre-
maturing’. The standard Cauchy distribution function is shown in Eq. (14).

f (x) = 1
π

(
1

x2 + 1

)
(14)

From the probability density distribution of Cauchy function, it can be seen that the function
obtains the maximum at the coordinate origin, and the absolute value of the maximum is relatively
small (only between 0.30 and 0.35), to ensure that the mutated chimp individuals will not spend much
time exploring the surrounding area, and to improve the global search performance of the CHOA
without increasing its complexity. Therefore, making full use of the disturbance ability of Cauchy
strategy can improve the diversity of the population, escape of local optima, and improve the global
search ability of the CICMCHOA. The improved optimal solution is obtained by Eq. (15), cauchy(0, 1)

represents the Cauchy operator, calculated by Eq. (14).

X t+1
i,j = Xbest (t) + cauchy (0, 1) ⊕ Xbest (t) (15)

Although Cauchy Mutation can effectively increase the diversity of the population, it can
conversely reduce the convergence speed of the CHOA. To balance conflicts between convergence
speed and population diversity, a probability variable P is introduced into the improved scheme in
this paper, as shown in Eq. (16). While a random number generated by CICMCHOA exceeds P, the
Cauchy perturbation is used to prevent the CICMCHOA falling into local optima. Otherwise, the
Cauchy perturbation strategy is ignored.
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P = −Exp
(

t
itermax

)20

+ θ (16)

θ is the adjustment parameter which is set to 0.05, Exp is an exponential function based on the
natural constant e. Finally, the position updating strategy of the CICMCHOA changes into:

X(t+1) = Xbest + Xbest ∗ cauchy (0, 1) , if rand (1) > P (17)

4 Analysis and Comparison of Experimental Results
4.1 Experiment Preparation and Parameter Setting

In order to verify the practicality of the CICMCHOA in the field of image segmentation,
this paper selects four benchmark test images to analyze and compare the segmentation effects
of the CICMCHOA and CHOA, and then selects six distinct kinds of medical images to investigate
the effectiveness of CICMCHOA in medical image segmentation. In addition to comparison with
the CHOA, it is also fully compared and analyzed with the DE [7,8,21], ISBO [10], ABCSCA [18],
and ICS [19]. In this paper, the number of test thresholds (NTT) is set to 2–5, respectively, and the
number of iterations to 10000. According to [9,10], Kapur is the most widely used objective function in
medical segmentation, and the comparison works [10,18,19] also uses fuzzy Kapur as the optimization
objective. Therefore, this paper continues to take the same objective function, using PSNR [25] and
FSIM [26] to compare the differences between CICMCHOA and other algorithms in segmentation
effect. The experimental environment runs on Windows 10 (64-bit) with AMD R9 processor, 32 GB
RAM and Matlab 2016a. The experimental parameter values of CICMCHOA are shown in Table 1,
the parameters of the comparative works follow their original parameter settings.

Table 1: Experiment-related parameter setting

Parameter SAN θ m NTT Iteration

Value 50 0.05 Iterative 2, 3, 4, 5 1000

In Table 1, the search agent number (SAN) represents the number of chimps, m is the chaotic
parameter in Eq. (5), NTT is the number of preset thresholds, Iteration is the maximum number of
iterations. To prove the rationality of parameter selection in Table 1, the effects of different parameters
in brain image segmentation are analyzed in Tables 2–5.

Table 2: The effects of SAN on the experimental results

SAN 30 40 50 60 70

PSNR 25.6884 25.9482 26.2161 25.6923 25.4043
FSIM 0.8843 0.8918 0.8974 0.8884 0.8743

Table 2 compares brain images in different SAN conditions through PSNR and FSIM. To analyze
the effects of SAN on the experimental results, the NTT is fixed to the maximum of 5. Other parameters
remain consistent with the original CHOA. From the experimental comparison, we can see that when
the SAN is set to 50, the optimal values of PSNR and FSIM are obtained.
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Table 3: Effects of the parameter m with Chebyshev, etc.

Strategies Chebyshev Circle Gauss/mouse Iterative Logistic

PSNR 25.4742 26.1347 25.4191 26.4559 25.7350
FSIM 0.8741 0.8936 0.8696 0.8958 0.8883

Table 4: Effects of the parameter m with Piecewise, etc.

Strategies Piecewise Sine Singer Sinusoidal Tent

PSNR 26.2108 25.6456 26.1236 25.4126 25.9001
FSIM 0.8964 0.8877 0.9016 0.8736 0.8950

Table 5: Effects of the maximum iteration number

Iteration 500 800 1000 1500 5000 10,000

PSNR 25.3633 25.4541 26.4762 25.5896 25.5594 25.4707
FSIM 0.8676 0.8878 0.8969 0.8792 0.8761 0.8769

In Tables 3 and 4, the effects of m adopting different chaotic map strategies on the experimental
results are illustrated, and the SAN is fixed to 50, the NTT is set to 5, other parameters remain
consistent with the original CHOA. From the data comparison, it can be concluded that the image
segmentation effect arrived the best when the parameter m is “Iterative”.

Table 5 illustrates the effects of different iterations on the experimental results. The optimal values
of other parameters from Tables 2 to 4 are selected. It can be seen from the data comparison that when
the Iteration is set to 1000, the values of PSNR and FSIM are the highest, and continuing to increase
the number of iterations cannot visibly improve the image segmentation effect.

4.2 Natural Segmentation Results Based on CICMCHOA

This paper selects four different benchmark test images to analyze and compare the segmentation
effects of CHOA and CICMCHOA. In Figs. 1 and 2, the visual effects of multi-level segmentation are
presented.

From Figs. 1 and 2, it is difficult to see the difference in segmentation effect based on CHOA
and CICMCHOA. Therefore, the PSNR and FSIM used for each image at different thresholds are
recorded in Table 6.

Based on PSNR, it can be seen from Table 6 that except for the case where the NTT in Line3 and
Line4 are 2, the segmentation effect of CICMCHOA is not ideal. In other cases, the segmentation effect
is better than the CHOA. FSIM also has similar comparative results, proving that the CICMCHOA
proposed in this paper can effectively improve the quality of image segmentation.



CMC, 2024, vol.80, no.2 2057

Figure 1: Natural image segmentation based on CHOA

Figure 2: Natural image segmentation based on CICMCHOA

Table 6: Experimental results under different thresholds for natural images

Line of image NTT PSNR/FSIM
CHOA CICMCHOA

Line1 2 16.6325 0.5927 18.2777 0.5929
3 22.8013 0.6206 22.9048 0.6218
4 23.0232 0.6227 24.1159 0.7145
5 25.4728 0.7355 25.8534 0.7640

(Continued)
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Table 6 (continued)

Line of image NTT PSNR/FSIM
CHOA CICMCHOA

Line2 2 18.6404 0.6477 18.6674 0.6473
3 19.3210 0.7060 19.6164 0.7896
4 19.9355 0.7545 20.2547 0.7982
5 20.1264 0.7879 21.2241 0.8047

Line3 2 17.0308 0.6974 17.0302 0.6974
3 20.1111 0.7073 20.2844 0.7235
4 20.1589 0.7226 21.3638 0.7245
5 21.5246 0.7440 22.3725 0.7621

Line4 2 17.4571 0.5098 17.4140 0.5099
3 19.4479 0.5671 20.3477 0.5886
4 21.2640 0.6592 22.7391 0.7124
5 22.5665 0.7041 23.2952 0.7251

4.3 Medical Segmentation Results Based on CICMCHOA

Based on six distinct kinds of medical images, this paper uses CICMCHOA to optimize fuzzy
Kapur to obtain the optimal thresholds, and then completes the thresholding segmentation. Figs. 3
and 4 respectively show the original medical image and the visual segmentation results with differ-
ent NTT.

Figure 3: Medical image segmentation based on CICMCHOA (part 1)

From the visual segmentation results illustrated in Figs. 3 and 4, we can observe that when the
NTT is 2, the CICMCHOA can effectively locate and segment the anterior background or the lesion
area. When the NTT increases to 3 and then to 5, the details of image segmentation are better defined,
which can effectively assist doctors in medical diagnosis. Compared with the segmentation results
presented in the references [10,18,19], the CICMCHOA in this paper has the same visual effect and
is difficult to distinguish. Therefore, the Thresholds, PSNR and FSIM obtained in the segmentation
of six medical images are given in Table 7. A more detailed comparative analysis is provided in next
section.
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Figure 4: Medical image segmentation based on CICMCHOA (part 2)

Table 7: Experimental results of CICMCHOA under different threshold numbers

Image NTT Thresholds PSNR FSIM

Brain 2 54.5 160.5 18.0098 0.6269
3 33 96 188.5 22.6342 0.7824
4 37.5 97 140 208.5 24.1835 0.8511
5 8.5 28.5 70 109 193 26.4762 0.8969

Skin 2 79.5 184.5 18.1418 0.7396
3 71 131.5 183 19.1666 0.7564
4 43 119 147 84 19.4107 0.7867
5 39 90 117.5 164 223.5 19.5638 0.8062

Lung 2 56.5 187 17.6378 0.7611
3 53 104.5 198.5 22.9036 0.7786
4 54 131.5 166.5 220.5 26.1315 0.7904
5 49.5 110 157 202.5 247 28.5490 0.8073

Bone 2 30 198 16.1760 0.6341
3 51 120 194 20.0797 0.6760
4 47 113.5 147.5 212.5 21.2199 0.7274
5 33 80.5 117 171 227.5 22.8263 0.7606

Liver 2 90 204.5 15.4078 0.6415
3 54 123.5 212 20.1877 0.6502
4 23 81 124 210 24.4217 0.8087
5 23.5 83.5 123 160 214 25.7501 0.8263

Stomach 2 89.5 146 15.8611 0.7787
3 13 54.5 146 21.2631 0.8233
4 11.5 48.5 79 154.5 22.2832 0.8234
5 3.5 25.5 72 112 186 25.5278 0.8648
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4.4 Comparison and Analysis of Similar Algorithms

To more specifically and definitively compare the performance of the CICMCHOA, this paper
takes PSNR as the evaluation standard and compares the segmentation effectiveness of CICMCHOA,
CHOA, DE, ISBO, ABCSCA and ICS in medical images through the measured data, as shown in
Table 8.

Table 8: Comparison data of different algorithms

Image NTT PSNR

CICMCHOA CHOA DE ISBO ABCSCA ICS

Brain 2 18.0098 17.6992 17.7010 17.2584 14.7724 17.0768
3 22.6342 21.7280 21.6577 21.7430 20.1213 22.0331
4 24.1835 23.0560 23.7295 23.4397 23.9289 24.2138
5 26.4762 23.6177 24.7445 24.9479 25.8953 25.7719

Skin 2 18.1418 18.0941 14.1347 18.0033 17.7937 18.1418
3 19.1666 18.9858 15.7833 19.0514 19.0418 19.1062
4 19.4107 19.3633 19.0796 19.3842 19.3177 19.3530
5 19.5638 19.5288 19.5036 19.3863 19.4785 19.4240

Lung 2 17.6378 17.2469 16.5993 16.4747 21.3147 21.4570
3 22.9036 19.0481 19.1016 20.4965 22.8380 22.4543
4 26.1315 25.3602 21.2744 25.5515 24.9327 24.8792
5 28.5490 27.7000 23.7303 26.1204 25.9318 25.6843

Bone 2 16.1760 14.7495 15.5891 15.9479 15.1600 15.9377
3 20.0797 18.4985 18.3537 17.4725 17.0787 18.9662
4 21.2199 20.0755 20.6766 20.0562 20.2923 20.8143
5 22.8263 21.6295 21.7537 21.5860 21.7469 22.0395

Liver 2 15.4078 15.4020 14.9604 15.2818 15.4370 15.6449
3 20.1877 19.0481 19.6764 23.2908 22.6678 19.3162
4 24.4217 24.4321 22.9191 24.3071 24.8010 24.4157
5 25.7501 25.3861 24.6356 25.2640 25.1425 24.7731

Stomach 2 15.8611 15.6761 14.6029 15.6102 14.6255 15.6102
3 21.2631 19.7095 21.1438 20.7793 17.4763 18.6252
4 22.2832 20.2801 21.8841 22.9294 22.2386 21.7074
5 25.5278 23.5804 25.6124 24.8018 23.3761 24.7403

From the comparison of the data in Table 8, the CICMCHOA is superior to the CHOA in medical
image thresholding. The most obvious improvement occurs on figure “Lung” when the NTT is 3, the
PSNR increases by 3.8555. In the case of NTT = 4 in figure “liver”, the effect of CICMCHOA is
lower than that of CHOA, but it is only 0.0104 lower. Overall, The CICMCHOA is 20.2% higher than
the CHOA at the maximum. All data taken together, the mean PSNR of CICMCHOA increases by
about 5%.
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Compared with DE, the segmentation effect of the CICMCHOA improves by 28% at the
maximum, an average increase of 7.7%. Compared with ISBO, the CICMCHOA improves by 15%
at the maximum, an average increase of 3%. Compared with ABCSCA, CICMCHOA is slightly
weaker than the ABCSCA in the “Lung” when the NTT is 2, in the “Liver” when the NTT is 2,3,4.
In other cases, the effects of CICMCHOA are stronger than those of ABCSCA. Overall, compared
with ABCSCA, CICMCHOA increases by 4.3%. Compared with the ICS, the CICMCHOA performs
slightly lower than the ICS in the “Brain” with NTT = 4, the “Lung” and “Liver” with NTT = 2.
On the whole, the CICMCHOA is 2.2% higher than the ICS. Therefore, the improved strategy of
CICMCHOA significantly improves the optimization effectiveness of CICMCHOA in medical image
segmentation, and outperforms the other similar algorithms.

5 Conclusions

To meet the needs of natural and medical image segmentation, this paper uses the Sin chaotic
to improve the random initialization strategy of CHOA. This not only improves the diversity of
the initial population, but also reduces the risk of the CHOA falling into local optima. In the
process of population position updating, the small disturbance ability of Cauchy mutation strategy
is fully utilized to improve the probability of population mutation, further reduce the probability
of CHOA falling into local optima, and balance the global search ability and local exploration
ability of CICMCHOA. Finally, taking the fuzzy Kapur as the objective function, different kinds
of natural and medical images are selected and compared with CHOA, DE, ISBO, ABCSCA and
ICS, respectively. From the comparison results, the CICMCHOA shows better segmentation effect
in medical image segmentation. In the future, we shall conduct in-depth exploration in the selection,
fusion, and optimization of fuzzy objective functions, as well as integration with other IOA, to further
improve the performance of CHOA in image segmentation.
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