
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.051944

ARTICLE

Two-Stage IoT Computational Task Offloading Decision-Making in MEC
with Request Holding and Dynamic Eviction

Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1 and Babangida Isyaku2

1Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia
2Department of Computer Science, Faculty of Information Communication Technology, Sule Lamido University, Jigawa, 741103,
Nigeria

*Corresponding Author: Dayong Wang. Email: wangdayong@graduate.utm.my

Received: 19 March 2024 Accepted: 20 June 2024 Published: 15 August 2024

ABSTRACT

The rapid development of Internet of Things (IoT) technology has led to a significant increase in the computational
task load of Terminal Devices (TDs). TDs reduce response latency and energy consumption with the support of
task-offloading in Multi-access Edge Computing (MEC). However, existing task-offloading optimization methods
typically assume that MEC’s computing resources are unlimited, and there is a lack of research on the optimization
of task-offloading when MEC resources are exhausted. In addition, existing solutions only decide whether to accept
the offloaded task request based on the single decision result of the current time slot, but lack support for multiple
retry in subsequent time slots. It is resulting in TD missing potential offloading opportunities in the future. To
fill this gap, we propose a Two-Stage Offloading Decision-making Framework (TSODF) with request holding
and dynamic eviction. Long Short-Term Memory (LSTM)-based task-offloading request prediction and MEC
resource release estimation are integrated to infer the probability of a request being accepted in the subsequent
time slot. The framework learns optimized decision-making experiences continuously to increase the success rate
of task offloading based on deep learning technology. Simulation results show that TSODF reduces total TD’s
energy consumption and delay for task execution and improves task offloading rate and system resource utilization
compared to the benchmark method.

KEYWORDS
Decision making; internet of things; load prediction; task offloading; multi-access edge computing

1 Introduction

The rapid development of the Internet of Things (IoT) in recent years has resulted in insufficient
Terminal Device (TD) computing capabilities [1]. To solve this issue, computing task offloading
technology moves tasks to other servers for execution [2]. With the support of task offloading
technology, TDs can delegate computing-intensive tasks to cloud computing platforms with sufficient
resources, clout-lets in local area networks, and various edge computing nodes [3]. However, resource-
rich cloud computing platforms are usually far away from TD [4], which will generate more network
transmission delays [5]. In addition, traditional edge computing nodes and cloud-lets cannot support

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051944
https://www.techscience.com/doi/10.32604/cmc.2024.051944
mailto:wangdayong@graduate.utm.my


2066 CMC, 2024, vol.80, no.2

TD mobility well. Although Mobile Cloud Computing (MCC) supports the mobility of terminal
devices, it still cannot solve the problem of high network communication latency [6].

The latest development trend is to offload the computing tasks of TDs to the Multi-access Edge
Computing (MEC) network. Since the network communication distance between MEC and TDs is
usually only one hop, and MEC supports the mobility of TDs very well [7]. However, MEC is different
from MCC, and MEC has relatively limited computing resources. Therefore, task offloading decisions
and resource allocation need to be optimized [8].

A large number of existing solutions to support MEC computing decision-making and resource
allocation introduce traditional mathematical algorithms, heuristic algorithms, AI-based methods, etc.
[9]. However, they only directly decide whether the computing task is run locally on the TD or on the
MEC based on the decision result of the current time slot. Although some algorithms consider the
problem of task offloading for multiple time slots in the future, they do not consider the problem
of maintaining task offloading requests to strive for more offloading opportunities in multiple time
slots in the future and notify TD as early as possible to start task execution locally. In MEC under
conditions of relatively insufficient resources. This way, TDs may lose task offloading opportunities
in the next few time slots and cause an increase in the overall task execution delay.

In this work, we focus on optimizing the task offloading decision optimization problem of IoT
computing tasks under insufficient MEC resources. To overcome the limitations of single timeslot
optimization, this study adopts a combined approach utilizing task offloading load prediction and
virtual decision-making for subsequent timeslots to seek additional available resources for task
offloading requests. In the proposed two-stage task offloading decision framework, the Deep Q-
Network (DQN)-based decision generation algorithm and the Long Short-Term Memory (LSTM)-
based task request time series prediction algorithm jointly predict the possibility of each offloading
request being approved in future time slots, thereby determining the optimal offloading of the
offloading task. strategies and reduce overall task execution time.

• This study provides an in-depth analysis of the performance limitations of existing IoT task
offloading methods in resource-constrained MEC networks and elucidates that the cause of this
problem is the lack of ability to maximize the potential acceptance opportunities for offloading
requests.

• Combining task offloading request prediction and online offloading decision generation to
infer the probability of offloading requests being accepted.

• Jointly consider the delay-sensitivity of computational tasks and the predicted completion time
to adjust strategies of offloading requests entails holding and eviction for optimizing decision-
making.

• Simulation experiment results show that the proposed framework reduces the task completion
time and energy consumption and improves the MEC utilization of the system.

The rest of this study is organized as follows. Section 2 discussed the related work of the IoT
task offloading method in MEC. Section 3 illustrated the proposed two-stage task offloading decision
framework. Section 4 presented the performance evaluation and result discussion. The conclusion was
given in Section 5.

2 Related Works

As a key technique in IoT task offloading, the optimization of offloading decisions and resource
allocation has been extensively studied in the past decades [10–13]. Classic task decision-making



CMC, 2024, vol.80, no.2 2067

methods based on mathematical optimization are relatively mature. Such methods can usually find
the global optimal solution in a strict mathematical sense [14–16]. However, this method requires
mathematical modeling for specific application scenarios, so it has poor dynamic adaptability. In
addition, this type of optimization method performs poorly when dealing with complex constrained
problems with high-dimensional nonlinearity. The task offloading decision-making method based
on game theory allows multiple participants to negotiate, and this method is suitable for adversarial
task offloading and resource allocation scenarios [17,18]. This method is usually more conducive to
ensuring that all parties involved receive relatively fair benefits. In addition, task offloading solutions
based on game theory can better avoid system bottlenecks and single-point failures. However, such
methods lead to a rapid increase in computational complexity when the number of participants is
large, resulting in solution difficulties. In addition, this type of method may have difficulty converging
in a dynamic system environment, and the game equilibrium state may be unstable. The task offloading
optimization method based on fuzzy theory can more comprehensively consider multiple factors that
affect decision-making effects and can use simpler models to describe complex real-life problems,
thereby reducing the complexity of problem modeling. However, the performance of such methods
is usually poor and the system output results are not intuitive. Based on heuristic methods, we do
not seek the absolute optimal solution but seek relatively better solutions [19,20]. This method is cost-
effective and suitable for solving large-scale problems. However, such methods are prone to falling into
local optimal problems.

In order to cope with large-scale and dynamic complex computing task offloading application
scenarios, various decision-making optimization methods based on AI technology have emerged
in large numbers in the past decade [21,22]. This method has self-learning capabilities and can
continuously optimize the model itself based on historical data and experience. In addition, AI-based
task offloading decision-making methods can usually discover complex relationships hidden in high-
dimensional data, so it is easy to find the global optimal solution. Moreover, this type of method can
better adapt to dynamic changes in the network environment [23,24]. However, the methods discussed
above lack the prediction of the offloading environment status for multiple time slots.

Besides, some researchers consider prediction with the computational load on the edge server.
However, such studies mainly focus on the prediction of load on computing nodes but ignore the
prediction of characteristics of task offloading requests from TD [25,26]. In addition, the AI models
selected in a small number of studies can generate predictions of task scheduling decisions for multiple
time slots in the future. However, no consideration is given to finding as many offloading opportunities
as possible for offloading tasks in multiple time slots. We selected representative research works of
different technical classifications for analysis, which cover common binary and partial task offloading
optimization methods. The focus of the study is to analyze the start time of local execution tasks
after the offload request is rejected. Table 1 shows the characteristics of representative task offloading
algorithms to initiate local task execution.

Table 1: Comparison of task offloading optimization algorithm characteristics

Ref. Year Type Method Mode Paradigm Response to offloading
decisions

[27] 2024 AI Meta rein-
forcement
learning

PO MEC/IOT Starting local task execution
after an offloading request
has been rejected

(Continued)



2068 CMC, 2024, vol.80, no.2

Table 1 (continued)

Ref. Year Type Method Mode Paradigm Response to offloading
decisions

[28] 2023 AI Q-learning PO MEC/IIOT Starting local task execution
after an offloading request
has been rejected

[29] 2023 AI DDPG PO MEC/IIOT Starting local task execution
after an offloading request
has been rejected

[30] 2021 Heuristic GA BO MEC/IOT Starting local task execution
after an offloading request
has been rejected

[31] 2023 Heuristic NSGA-III PO MEC/IOT Starting local task execution
after an offloading request
has been rejected

[32] 2021 Lyapunov Lyapunov-
guided
DRL

BO Multi-user
MEC

Starting local task execution
after an offloading request
has been rejected

[33] 2022 Lyapunov Classic
lyapunov

PO MEC/IOT Starting local task execution
after an offloading request
has been rejected

[34] 2021 Game
theory

Coalitional
game-based

BO MEC/IOT Retry in the next decision
cycle

[35] 2023 Classic Mathematical
optimiza-
tion

BO MEC/UAV Starting local task execution
after an offloading request
has been rejected

Note: Abbreviations: BO, Binary offloading; PO, Partial offloading.

The available resources of the MEC change dynamically due to the dynamics of task offloading
requests and the completion of the running of computing tasks on the MEC. According to the review of
literature, the majority of decision mechanisms only rely on the current slot’s task offloading network
condition to make the final offloading decision. This results in rejected tasks immediately starting
execution locally on the TD, missing the opportunity to seek edge computing resources in more time
slots. We illustrate this issue with Fig. 1, which represents a common problem widely observed in
similar studies [28,33,35,36].

It can be found in Fig. 1 that appropriately retrying to obtain the opportunity of task offloading
in several adjacent decision cycles will be beneficial to reducing the completion time of the task after
the first task offloading application is rejected. However, starting local task execution prematurely and
excessive offload retries will increase task completion time.



CMC, 2024, vol.80, no.2 2069

Figure 1: Completion time of different task execution locations

3 Materials and Methods

In this section, the Two-Stage Task Offloading Decision Framework (TSODF) is proposed to
allow offloading decision attempts across multiple time slots. In this method, best-effort decision
optimization is performed on offloading requests and task allocation in each slot based on Deep
Q-learning. In addition, the historical TD task offloading requests are input into the prediction
model based on SLTM in time series to predict the task request load of multiple time slots in the
future. Furthermore, the offloading decision for pending requests in future time slots is reasoned
by combining the inferred MEC available computing resources and predicted TD task offloading
requests. This enables the assessment of the cost and benefits of pending task requests. Subsequently,
optimized decisions with higher request acceptance rates are output to reduce task execution latency
and energy consumption.

We consider a MEC system, where M IoT TDs and an EMC server. Let D = {d1, d2, . . . , dm},
denote the sets of the TDs. The MEC server S has powerful computing power Cs and unlimited
battery life. We assume that every computational task is indivisible and let T = {t1, t2, . . . , tn}. Each
TD can choose to execute tasks locally or offload computing tasks to MEC for execution. Fig. 2
depicts the task offloading system model targeted by TSODF, referencing a typical MEC network
architecture [37].

Figure 2: The system architecture of task offloading in MEC

In the proposed framework, the DQN-based decision-making model performs best-effort opti-
mized task offloading decisions for each time slot. Based on the allocated MEC server resource



2070 CMC, 2024, vol.80, no.2

records, TSODF estimates the CPU resources available in each future time slot. The LSTM-based
prediction module predicts task offloading requests in several future time slots based on historical
TDs task offloading request records. TSODF jointly analyzes the above information to determine
whether to continue to look for offloading opportunities for waiting task offloading requests, and
outputs the optimized final decision result. Fig. 3 shows the proposed system framework of TSODF.

Estimate available 
CPU cycle of MEC 

server

System state

DRL-based decision-making

Action

Estimate completion time for each task

O
ptim

ized offload decisions

Stage I Stage II

Experience replay buffer

Train

Sample
mini-batch

Randomly 
selected

Virtual decision-making without 
memory playback

Evict offload requests with low 
acceptance probability

O
ffload request buffer

LSTM-based offload request prediction

FC FC...
LSTM Unit

LSTM Unit

...

Task offloading request prediction

...

...

...

...

Executing on edge 
computing network

Executing on TD

Waiting

Task offload request

Figure 3: The system model of TSODF

TSODF contains two main work stages, in which stage 1 performs the generation of optimal
offloading decisions in each decision cycle based on deep reinforcement learning; stage 2 performs
task offloading request load prediction based on LSTM. In addition, TSODF estimates the available
resources of the future MEC server based on the decision results that have been generated. Thus,
TSODF infers the probability that a task offloading request will be accepted in the future for
offloading tasks that have not yet been accepted. Based on this mechanism, task offloading requests
will be suspended waiting for an upcoming acceptance opportunity or starting local execution
immediately.

The DQN-based but time-slot offloading decision generation method is discussed in
Section 3.1. Section 3.2 introduces the task offloading request prediction method based on LSTM.
The complete TSODF framework workflow is given in Section 3.3.

3.1 Single Time-Slot Offloading Decision Based on DRL

In order to make task offloading request decisions for each time slot based on available MEC
resources, we build an adaptation algorithm based on DRL technology. Different from previous
research, the DRL-based decision-making algorithm constructed needs to run synchronously with
other modules on a global scale.

The system state in each time slots t can be presented as follows:

st = {CS (t), LoadD (t), QueueLengthT (t), TD (t)} , (1)

where CS (t), LoadD (t), QueueLengthT (t) and TD (t) symbolize the current load of the server, the load
status of the TD, the length of the task queue, and the type of task, respectively. In addition, more
content can be added to the state space in different scenarios without affecting the working logic of the



CMC, 2024, vol.80, no.2 2071

proposed framework. The task offloading decision and the computing resource allocation constitute
the action space at epoch time slot t can be described as:

at = {
Xi,j (t)

}
, (2)

where at is the task offloading decisions. In addition, the object is to minimize the joint cost and the
system reword. Consider system states as follows:

Eexec,i,j = Ci

Cj

× Pj, (3)

where Eexec,i,j represents the energy consumption of task execution, Cj is the computing power of device
dj. The transfer time of a task is calculated as follows:

Ti,j = Wi

B
, (4)

where Wi and B represent the data size of the task and network bandwidth, respectively. The energy
consumption of TD for network transmission task data is calculated as follows:

Etrans,i,j = (
Tup,i,j + Tdown,i,j

) × Ptrans, (5)

where T and P represent transmission time and RF power consumption, respectively. This way, the
total energy consumption and latency can be calculated as follows:

Etotal =
∑

i∈T

∑
j∈D

(
Eexec,i,j + Etrans,i,j

) × Xi,j, (6)

Li = Ei,j + Tup,i,j + Tdown,i,j, (7)

We consider energy consumption and latency together to form the reward as follow of reinforce-
ment learning:

R = α · Etotal + β · Li, (8)

where α and β are weight factors used to balance the importance of different rewards.

Through the reinforcement learning process, the optimal transfer strategy will be found to obtain
the relatively optimal solution of the offloading decision for each time slot i. As Algorithm 1 shows,
DQN-based decision generation and resource allocation work in cycles for each time slot, which is
composed of three main parts:

1) Randomly initialize the deep neural network and generate offloading decisions and resource
allocations for continuously incoming task offloading requests (lines 1–10).

2) Execute the offload decisions generated by the preceding steps and collect updated system sta-
tus. Meanwhile, the rewards for offloading decisions are calculated based on the accumulated
delay and energy consumption (lines 11–13).

3) Cache continuously generated decisions, system state, and rewards. Records from the cache are
randomly selected to train and update the weights of the neural network. Thus, the decision-
making capabilities of algorithms will continue to improve (lines 14–19).

Algorithm 1: DQN Based Task Offloading Decision-Making and Resource Allocation
Input: state Φ (i), action Θ (i)
Output: offload decision for time slot i

(Continued)



2072 CMC, 2024, vol.80, no.2

Algorithm 1 (continued)
1. Initialize: set the evaluation and the target network with random weight θe and θt

2. for episode =1, M do
3. for i = 1, I do
4. Observe the state Φ (i)
5. Random value τ between 0 and 1
6. If τ < ε then
7. Choose an action at random
8. else
9. Select Θ (i) = argmaxΘQ (Φ(i), Θ(i), θe)

10. end if
11. Perform action Θ (i)
12. Observe the next step state Φ (i + 1)

13. Realize R
14. Store Φ(i), Θ(i), r(i), Φ (i + 1) in experience memory E
15. Randomly select sample

(
Φj, Θj, rj, Φj+1

)
from E and calculate TD target

16. Update Q and θe

17. Execute a gradient decent step on Loss (θe)

18. if i == C then
19. Update the target network weight parameter with θt = θe

20. end if
21. end for
22. end for

3.2 IoT Task Offloading Request Prediction

In order to predict the task offloading request load from TD in each subsequent time slot, we build
a task offloading request sequence prediction algorithm based on LSTM. The prediction includes
the number, size, CPU requirements and deadline of subsequent tasks that need to be offloaded.
This algorithm provides a calculation basis for the decision-making optimization in the second stage.
Let H(t) denote the offloading task request time series composed of tasks Γn,k (i), and input it into
the LSTM-based prediction model on a rolling basis. In order to output the predicted values of
multiple attributes for the offloading task, we added three fully connected layers to the output of
the LSTM network. This way, the prediction mode will output Γn,k (i + 1, i + 2, . . . , i + �), where �

is half the slot required for the longest task execution in history. Fig. 3 presents the structure of the
task offloading request prediction model. As shown in Algorithm 2, its implementation includes two
steps:

1) Task offloading requests from TDs are continuously collected and saved in order, thereby
generating time series data for training the LSTM-based prediction model network. The
collected task request characteristics include type, size, deadline, etc. (lines 1–7).

2) Predict task offloading requests for subsequent time slots based on the trained LSTM model.
The predicted output value for each round contains the task characteristics of offloading
requests for multiple consecutive time slots. The prediction is moved forward continuously
through the decision-making cycle (lines 8–12).



CMC, 2024, vol.80, no.2 2073

Algorithm 2: LSTM Based Task Offloading Request Prediction
Input: Historical request sequence H (i)
Output: Predicted TD task offloading request sequence Qi+ω

1. Collect task offloading requests from TDs
2. Split collected request data into train and test sets
3. Connect input units, LSTM unit and three fully connected output units
4. Set up optimizer
5. for epochs do
6. Train the LSTM network
7. end for
8. for i = 1, I do
9. Input H (i) into the LSTM network
10. Make predictions
11. Return Qi+ω

12. end for

3.3 Offload Decision Optimization with Offload Request Retention and Eviction

It is necessary to judge the possibility of each waiting request being accepted in multiple time slots
in order to find as many offloading opportunities as possible for tasks from TD within the appropriate
range. The completion time of the task will be shortened if the offloaded task can be executed in the
MEC after waiting for several time slots. In contrast, TD should be notified as early as possible to
start local task execution when no offloading opportunity can be found for the task in the future. This
way, it’s needed to combine available MEC resources, predicted results of task offloading requests, and
the latest offloading decision results to generate optimized offloading decisions D∗

n,k. Fig. 4 shows the
working principle of the TSODF, and Algorithm 3 shows the specific workflow.

Figure 4: The working principle of TSODF

The main idea of TSODF is to find the possibility of being accepted for a currently unaccepted
task offloading request in future time slots based on the estimation of the release of available
resources of the MEC server and the prediction of subsequent task offloading requests from TD. The
LSTM neural network in the framework is responsible for predicting future task offloading request
sequences to understand in advance the load that the MEC server will bear. The DQN-based task
offloading decision making module is responsible for generating the optimal offloading decision



2074 CMC, 2024, vol.80, no.2

for the current time slot. In addition, the DQN module is also responsible for generating future-
oriented virtual offloading decisions based on predicted task requests and service resource availability
of countermeasures. Thus, TSODF decides whether the task should be wait to be accepted. As shown
in Algorithm 3, its implementation includes four steps:

1) Call Algorithm 1 to generate the local optimal offloading decision and resource allocation for
the task offloading request in the current time slot (lines 1–5).

2) Call Algorithm 2 to predict the task offloading request characteristics of subsequent time
slots, and the expected resource consumptions of the edge server are estimated based on the
prediction results (lines 6–7).

3) The joint predicted task offload request load and the current operating state of the edge server
invoke Algorithm 1 to generate offload decisions and resource allocations for future virtual
time slots (lines 8–11).

4) The possibility of the task offloading request being accepted in subsequent time slots is
speculated based on the inference results. Thus, the holding and eviction decision of the task
offloading request is generated (lines 12–15).

Algorithm 3: Offloading Request Holding and Eviction
Input: MEC CPU cycle per time slot Ftotal, bandwidth B, task required CPU cycle cn,k, task types K,
task offloading request Γn,k (i)
Output: optimized offloading decision D∗

n,k

1. for timeslot i in I do
2. Calculate the number of timeslots � for the average task processing time
3. Call algorithm 1 to generate offloading decisions Dn,k for the time slot i
4. if Dt �= 1 do
5. ω = �/2
6. Call algorithm 2 to predict task offloading requests from Γi

n,k to Γi+ω

n,k

7. Ffree
i = Ftotal −

i+ω∑
i

f mec
n,k

8. Call algorithm 1 to generate offloading decisions Dn,k for the time slot i + ω

9. for t =1, ω do
10. if dt

n,k == true do
11. Calculate the completion time for Γn,k

12. if τn,k ≥ Ln,k do
13. Evict task offloading requests from buffer
14. else
15. Keep holding
16. end if
17. end if
18. end for
19. end if
20. end for

In Algorithm 3, line 1 constructs a time slot-based algorithm to continuously run the main loop
(line 1). Calls Algorithm 1 to generate the optimal task offloading decision for the current time slot
(lines 2 and 3). Temporarily holds currently unaccepted task offloading requests and calls Algorithm
2 to predict future task offloading request trends (lines 4–6). Estimates the available resources of the



CMC, 2024, vol.80, no.2 2075

future MEC server based on known task offloading decisions (line 7). Calls Algorithm 1 to virtually
generate offloading decisions for the next decision cycle (line 8). Determines the possibility that the
offload request in the holding state will be accepted in multiple time slots in the future based on the
prediction results of the previous steps (lines 9–15). Unloading requests for tasks that are about to get
an unloading opportunity continue to be maintained. On the contrary, local execution is started for
tasks that have no chance of offloading in the short term.

4 Results and Discussion

In this section, numerical results are presented to evaluate the performance of the proposed
TSODF framework. Simulation environment information is given in Section 4.1. The results of the
experiments and data analysis are discussed in Section 4.2.

4.1 Simulation Settings

To assess the evaluation of IoT task offloading in MEC, we adopt an MEC computing network,
where there is an MEC server with an access point (AP) which covers a range of 50 m. The wireless
channel bandwidth is set to 40 MHz, and N = 10 TDs are randomly distributed in the coverage of
the wireless AP. The computing capacity of a TD is set to 0.8 GHz. The total CPU cycle of MEC
server is set to 4 GHz. The transmit power of a TD is set as 100 mW and the background noise SRn is
−100 dBm. The range of task size is set from 300 to 1024 KB. The deadline for each task is randomly
generated from 0.1 to 2 s. The simulation environment was built on the Windows 10 operating system,
and Python 3.10 was selected as the program running environment. The computer hardware comes
with inter I7 CPU, and 16 GB RAM. Table 2 lists the key parameters in the simulation.

Table 2: Parameter settings in the simulation

Parameters Value and unit Parameters Value and unit

Number of TDs 10 Transmission power of TDn 100 mW
Total number of task types 5 Background noise power −100 dBm
Probability of type-k task
requested

0 < Pi,j < 1 Data size of task 300–1024 KB

Available CPU cycle of TDn 0.8 GHz CPU requirement to process 100–10000
Megacycles

Computing capability of
MEC

4 GHz Deadline of task 0.1–2 s

4.2 Analysis of Results

The task offloading rate is one of the main indicators used to measure the task offloading
mechanism. It is the ratio of offloaded tasks to the total task volume [38]. The average task
completion time is an important indicator for evaluating the task offloading mechanism and is used
to demonstrate the time saving benefits of task offloading [39]. The average energy consumption of
task completion is used to measure the energy saving benefit of task offloading [40].

In order to verify the TSODA, we compare the task offloading rate with classical DQN-based
decision making method.



2076 CMC, 2024, vol.80, no.2

• TD only (TO). The TO solution denotes that all IoT tasks will be processed on TDs.
• MEC only (MO). The MO solution denotes that all IoT tasks will be processed on the MEC

server. In addition, the computing resources of the MEC server will be evenly allocated to each
IoT task.

• Classic DQN (Classic-DQN). IoT tasks will be distributed and processed between the MEC
server and TDs based on a pure DQN-based offloading decision-making method.

• Two-Stage Task Offloading Decision Framework (TSODF). The TSODF solution denotes that
all IoT tasks will be processed according to the decisions given by the two-stage task offloading
decision framework.

Fig. 5a shows the comparison between 4 schemes. It can be observed that the convergence time of
TSODF with added task offloading prediction is not much different from the classic DQN scheme.
However, the delay of tasks scheduled by the TSODF algorithm is significantly improved compared to
the classic DQN method. Fig. 5b shows the latency differences between various offloading decision
algorithms for task offloading requests with different task sizes. It can be seen that when the total
amount of offloading task requests is greater than the upper limit of the computing power of the
MEC server, the delay of the classic DQN method is close to that of the MEC-only method. However,
the delay of the TSODF method stabilizes at a relatively low level for a long time.

Figure 5: (a) Performance of different algorithms under total task sizes D = 100 Mb. (b) Delay with
different total task sizes

In this study, the energy consumption of TD is the most focused indicator and the energy
consumption of the MEC server is not calculated due to the limited battery capacity of TD. The
TSODF algorithm allocates more computing tasks to the MEC server for execution, thereby reducing
the energy consumption of TD.

Fig. 6a presents the differences in TD energy consumption of various task offloading methods.
In addition, Fig. 6b shows the difference in utilization of MEC server computing resources by each
method. In the MEC network environment, the offloading rate of IoT computing tasks offloading
refers to the ratio of offloading computing tasks from the local execution of IoT devices to edge
computing nodes. It is one of the important indicators to measure the algorithm since each method
always offloads as many tasks as possible from TD to the MEC network. Fig. 7a,b respectively show
the difference between the offloading rates of the task offloading decision-making methods under
different task sizes and different TD numbers.



CMC, 2024, vol.80, no.2 2077

Figure 6: (a) Total TD’s energy consumption. (b) System resource utilization

Figure 7: (a) Task offloading rate with different total task sizes. (b) Task offloading rate with different
numbers of TDs varies from 1 to 10

5 Conclusion

In this work, the optimization of IoT task offloading decisions in MEC is studied in depth. Dif-
ferent from previous work, the proposed Two-Stage Task Offloading Decision Framework (TSODF)
considers the continuous optimization of multiple attempts for unapproved offload requests when
MEC resources are insufficient. The TSODF is designed to explore available edge computing network
resources to accept task offloading requests from TDs. In this way, the success rate of task offloading
and the utilization of edge computing resources are increased, resulting in overall reductions in task
completion time and energy consumption. In addition, the request eviction reduces the delay for local
task execution in waiting for decision-making. Simulation results show that the performance of the
proposed task offloading framework improves the overall task offloading rate and reduces the overall
task execution latency and energy consumption compared to the classical DQN-based task offloading
decision scheme. Although only the case of DQN-based offloading decision generation techniques
is considered in this paper, the proposed framework can be easily extended to the scenarios with
the different types of offloading decision generation techniques. For future work, we will investigate
optimization methods for IoT task offloading decisions in MEC environments supporting scalable
IoT networks.

Acknowledgement: We thank Universiti Teknologi Malaysia (UTM) for supporting us during
this work.

Funding Statement: The authors received no specific funding for this study.



2078 CMC, 2024, vol.80, no.2

Author Contributions: The authors confirm contribution to the paper as follows: Dayong Wang
contributed to Conceptualization and writing-original draft preparation, Babangida Isyaku and
Dayong Wang contributed to methodology, Babangida Isyaku and Kamalrulnizam Bin Abu Bakar
contributed to writing-review and editing, and Kamalrulnizam Bin Abu Bakar supervised the process
of the research. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. B. A. Bakar, F. T. Zuhra, B. Isyaku, and S. B. Sulaiman, “A review on the immediate advancement of

the internet of things in wireless telecommunications,” IEEE Access, vol. 11, no. 70, pp. 21020–21048, 2023.
doi: 10.1109/ACCESS.2023.3250466.

[2] X. Jin, W. Hua, Z. Wang, and Y. Chen, “A survey of research on computation offloading in mobile cloud
computing,” Wirel. Netw., vol. 28, no. 4, pp. 1563–1585, May 2022. doi: 10.1007/s11276-022-02920-2.

[3] K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, S. Salloum and M. S. Mahmud, “A review of optimization
methods for computation offloading in edge computing networks,” Digit. Commun. Netw., vol. 9, no. 2,
pp. 450–461, Apr. 2023. doi: 10.1016/j.dcan.2022.03.003.

[4] B. Isyaku, K. B. Abu Bakar, F. A. Ghaleb, and S. Sulaiman, “Performance evaluation of flowtable eviction
mechanisms for software defined networks considering traffic flows variabilities,” in 2022 IEEE 12th Symp.
Comput. Appl. Ind. Electron. (ISCAIE), May 2022, pp. 71–75. doi: 10.1109/ISCAIE54458.2022.9794547.

[5] S. Zhou, W. Jadoon, and I. A. Khan, “Computing offloading strategy in mobile edge computing environ-
ment: A comparison between adopted frameworks, challenges, and future directions,” Electronics, vol. 12,
no. 11, pp. 2452, Jan. 2023. doi: 10.3390/electronics12112452.

[6] S. A. Abdulzahra, A. K. M. Al-Qurabat, and A. K. Idrees, “Compression-based data reduction technique
for IoT sensor networks,” Baghdad Sci. J., vol. 18, no. 1, pp. 0184, 2021. doi: 10.21123/bsj.2021.18.1.0184.

[7] H. Jin, M. A. Gregory, and S. Li, “A review of intelligent computation offloading in multiaccess edge
Computing,” IEEE Access, vol. 10, no. 3, pp. 71481–71495, 2022. doi: 10.1109/ACCESS.2022.3187701.

[8] M. Maray and J. Shuja, “Computation offloading in mobile cloud computing and mobile edge com-
puting: Survey, taxonomy, and open issues,” Mob. Inf. Syst., vol. 2022, no. 3, pp. e1121822, 2022. doi:
10.1155/2022/1121822.

[9] B. Kar, W. Yahya, Y. D. Lin, and A. Ali, “Offloading using traditional optimization and machine learning
in federated cloud-edge–fog systems: A survey,” IEEE Commun. Surv. Tutor., vol. 25, no. 2, pp. 1199–1226,
2023. doi: 10.1109/COMST.2023.3239579.

[10] K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, N. N. Xiong and C. Luo, “An intelligent hybrid method:
Multi-objective optimization for MEC-enabled devices of IoE,” J. Parallel Distr. Comput., vol. 171, pp.
1–13, Jan. 2023. doi: 10.1016/j.jpdc.2022.09.008.

[11] M. Maray, E. Mustafa, and J. Shuja, “Wireless power assisted computation offloading in mobile edge
computing: A deep reinforcement learning approach,” Hum.-Centric Comput. Inf. Sci., vol. 14, pp. 22,
2024. doi: 10.22967/HCIS.2024.14.022.

[12] M. Ahmed et al., “A survey on vehicular task offloading: Classification, issues, and challenges,” J. King
Saud Univ.-Comput. Inf. Sci., vol. 34, no. 7, pp. 4135–4162, May 2022. doi: 10.1016/j.jksuci.2022.05.016.

[13] M. Maray, E. Mustafa, J. Shuja, and M. Bilal, “Dependent task offloading with deadline-aware
scheduling in mobile edge networks,” Internet of Things, vol. 23, no. 1, pp. 100868, Oct. 2023. doi:
10.1016/j.iot.2023.100868.

https://doi.org/10.1109/ACCESS.2023.3250466
https://doi.org/10.1007/s11276-022-02920-2
https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1109/ISCAIE54458.2022.9794547
https://doi.org/10.3390/electronics12112452
https://doi.org/10.21123/bsj.2021.18.1.0184
https://doi.org/10.1109/ACCESS.2022.3187701
https://doi.org/10.1155/2022/1121822
https://doi.org/10.1109/COMST.2023.3239579
https://doi.org/10.1016/j.jpdc.2022.09.008
https://doi.org/10.22967/HCIS.2024.14.022
https://doi.org/10.1016/j.jksuci.2022.05.016
https://doi.org/10.1016/j.iot.2023.100868


CMC, 2024, vol.80, no.2 2079

[14] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource allocation in UAV-
enabled mobile edge computing,” IEEE Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020. doi:
10.1109/JIOT.2020.2965898.

[15] I. A. Elgendy, W. Z. Zhang, Y. Zeng, H. He, Y. C. Tian and Y. Yang, “Efficient and secure multi-user multi-
task computation offloading for mobile-edge computing in mobile IoT networks,” IEEE Trans. Netw. Serv.
Manag., vol. 17, no. 4, pp. 2410–2422, Dec. 2020. doi: 10.1109/TNSM.2020.3020249.

[16] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi and M. Huang, “TCDA: Truthful combinatorial double
auctions for mobile edge computing in industrial internet of things,” IEEE Trans. Mob. Comput., vol. 21,
no. 11, pp. 4125–4138, Nov. 2022. doi: 10.1109/TMC.2021.3064314.

[17] Y. Chen, J. Zhao, X. Zhou, L. Qi, X. Xu and J. Huang, “A distributed game theoretical approach for
credibility-guaranteed multimedia data offloading in MEC,” Inf. Sci., vol. 644, no. 11, pp. 119306, Oct.
2023. doi: 10.1016/j.ins.2023.119306.

[18] J. Huang, M. Wang, Y. Wu, Y. Chen, and X. Shen, “Distributed offloading in overlapping areas of mobile-
edge computing for internet of things,” IEEE Internet Things J., vol. 9, no. 15, pp. 13837–13847, Aug. 2022.
doi: 10.1109/JIOT.2022.3143539.

[19] H. Hao, J. Zhang, and Q. Gu, “Optimal IoT service offloading with uncertainty in sdn-based mobile edge
computing,”Mobile Netw. Appl., vol. 27, no. 6, pp. 2318–2327, Dec. 2022. doi: 10.1007/s11036-021-01796-4.

[20] T. Zhou, Y. Yue, D. Qin, X. Nie, X. Li and C. Li, “Joint device association, resource allocation, and
computation offloading in ultradense multidevice and multitask IoT networks,” IEEE Internet Things J.,
vol. 9, no. 19, pp. 18695–18709, Oct. 2022. doi: 10.1109/JIOT.2022.3161670.

[21] J. Xu, B. Ai, L. Chen, Y. Cui, and N. Wang, “Deep reinforcement learning for computation and
communication resource allocation in multiaccess MEC assisted railway IoT networks,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 12, pp. 23797–23808, Dec. 2022. doi: 10.1109/TITS.2022.3205175.

[22] H. Zhou, M. Li, N. Wang, G. Min, and J. Wu, “Accelerating deep learning inference via model parallelism
and partial comSputation offloading,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 475–488, Feb.
2023. doi: 10.1109/TPDS.2022.3222509.

[23] A. Acheampong, Y. Zhang, and X. Xu, “A parallel computing based model for online binary computation
offloading in mobile edge computing,” Comput. Commun., vol. 203, no. 4, pp. 248–261, Apr. 2023. doi:
10.1016/j.comcom.2023.03.004.

[24] S. Iftikhar et al., “HunterPlus: AI based energy-efficient task scheduling for cloud-fog computing environ-
ments,” Internet of Things, vol. 21, no. 2, pp. 100667, Apr. 2023. doi: 10.1016/j.iot.2022.100667.

[25] M. Tang and V. W. S. Wong, “Deep reinforcement learning for task offloading in mobile edge
computing systems,” IEEE Trans. Mob. Comput., vol. 21, no. 6, pp. 1985–1997, Jun. 2022. doi:
10.1109/TMC.2020.3036871.

[26] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic scheduling for stochastic edge-cloud
computing environments using A3C learning and residual recurrent neural networks,” IEEE Trans. Mob.
Comput., vol. 21, no. 3, pp. 940–954, Mar. 2022. doi: 10.1109/TMC.2020.3017079.

[27] M. A. Hossain, W. Liu, and N. Ansari, “Computation-efficient offloading and power control for MEC in
IoT networks by meta reinforcement learning,” IEEE Internet Things J., vol. 11, no. 9, pp. 16722–16730,
2024. doi: 10.1109/JIOT.2024.3355023.

[28] S. Wu, H. Xue, and L. Zhang, “Q-learning-aided offloading strategy in edge-assisted federated learning
over industrial IoT,” Electronics, vol. 12, no. 7, pp. 1706, Jan. 2023. doi: 10.3390/electronics12071706.

[29] H. Mai Do, T. P. Tran, and M. Yoo, “Deep reinforcement learning-based task offloading and resource
allocation for industrial IoT in MEC federation system,” IEEE Access, vol. 11, pp. 83150–83170, 2023.
doi: 10.1109/ACCESS.2023.3302518.

[30] C. Li, Q. Cai, C. Zhang, B. Ma, and Y. Luo, “Computation offloading and service allocation
in mobile edge computing,” J. Supercomput., vol. 77, no. 12, pp. 13933–13962, Dec. 2021. doi:
10.1007/s11227-021-03749-w.

https://doi.org/10.1109/JIOT.2020.2965898
https://doi.org/10.1109/TNSM.2020.3020249
https://doi.org/10.1109/TMC.2021.3064314
https://doi.org/10.1016/j.ins.2023.119306
https://doi.org/10.1109/JIOT.2022.3143539
https://doi.org/10.1007/s11036-021-01796-4
https://doi.org/10.1109/JIOT.2022.3161670
https://doi.org/10.1109/TITS.2022.3205175
https://doi.org/10.1109/TPDS.2022.3222509
https://doi.org/10.1016/j.comcom.2023.03.004
https://doi.org/10.1016/j.iot.2022.100667
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/TMC.2020.3017079
https://doi.org/10.1109/JIOT.2024.3355023
https://doi.org/10.3390/electronics12071706
https://doi.org/10.1109/ACCESS.2023.3302518
https://doi.org/10.1007/s11227-021-03749-w


2080 CMC, 2024, vol.80, no.2

[31] K. Sadatdiynov, L. Cui, and J. Z. Huang, “Offloading dependent tasks in MEC-enabled IoT systems: A
preference-based hybrid optimization method,” Peer-to-Peer Netw. Appl., vol. 16, no. 2, pp. 657–674, Mar.
2023. doi: 10.1007/s12083-022-01435-z.

[32] S. Bi, L. Huang, H. Wang, and Y. J. A. Zhang, “Lyapunov-guided deep reinforcement learning for stable
online computation offloading in mobile-edge computing networks,” IEEE Trans. Wirel. Commun., vol.
20, no. 11, pp. 7519–7537, Nov. 2021. doi: 10.1109/TWC.2021.3085319.

[33] H. Hu, W. Song, Q. Wang, R. Q. Hu, and H. Zhu, “Energy efficiency and delay tradeoff in an MEC-
enabled mobile IoT network,” IEEE Internet Things J., vol. 9, no. 17, pp. 15942–15956, Sep. 2022. doi:
10.1109/JIOT.2022.3153847.

[34] X. Yang, H. Luo, Y. Sun, J. Zou, and M. Guizani, “Coalitional game-based cooperative computation
offloading in MEC for reusable tasks,” IEEE Internet Things J., vol. 8, no. 16, pp. 12968–12982, Aug.
2021. doi: 10.1109/JIOT.2021.3064186.

[35] H. Wang, H. Xu, H. Huang, M. Chen, and S. Chen, “Robust task offloading in dynamic edge computing,”
IEEE Trans. Mob. Comput., vol. 22, no. 1, pp. 500–514, Jan. 2023. doi: 10.1109/TMC.2021.3068748.

[36] M. Y. Akhlaqi and Z. B. Mohd Hanapi, “Task offloading paradigm in mobile edge computing-current
issues, adopted approaches, and future directions,” J. Netw. Comput. Appl., vol. 212, no. 10, pp. 103568,
Mar. 2023. doi: 10.1016/j.jnca.2022.103568.

[37] B. Liang, M. A. Gregory, and S. Li, “Multi-access edge computing fundamentals, services, enablers and
challenges: A complete survey,” J. Netw. Comput. Appl., vol. 199, no. 1, pp. 103308, Mar. 2022. doi:
10.1016/j.jnca.2021.103308.

[38] A. Shirke and M. M. Chandane, “Collaborative offloading decision policy framework in IoT using edge
computing,” Multimed. Tools Appl., Jan. 2023. doi: 10.1007/s11042-023-14383-4.

[39] D. Wang, W. Wang, H. Gao, Z. Zhang, and Z. Han, “Delay-optimal computation offloading in large-
Scale Multi-access edge computing using mean field game,” IEEE Trans. Wirel. Commun., 2023. doi:
10.1109/TWC.2023.3344229.

[40] L. Cui et al., “Joint optimization of energy consumption and latency in mobile edge computing for internet
of things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4791–4803, Jun. 2019. doi: 10.1109/JIOT.2018.2869226.

https://doi.org/10.1007/s12083-022-01435-z
https://doi.org/10.1109/TWC.2021.3085319
https://doi.org/10.1109/JIOT.2022.3153847
https://doi.org/10.1109/JIOT.2021.3064186
https://doi.org/10.1109/TMC.2021.3068748
https://doi.org/10.1016/j.jnca.2022.103568
https://doi.org/10.1016/j.jnca.2021.103308
https://doi.org/10.1007/s11042-023-14383-4
https://doi.org/10.1109/TWC.2023.3344229
https://doi.org/10.1109/JIOT.2018.2869226

	Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction
	1 Introduction
	2 Related Works
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusion
	References


