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ABSTRACT

Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development
of new models and extensions. The NeRF (Neural Radiance Fields) algorithm, suitable for underwater scenes or
scattering media, is also evolving. Existing underwater 3D reconstruction systems still face challenges such as
long training times and low rendering efficiency. This paper proposes an improved underwater 3D reconstruction
system to achieve rapid and high-quality 3D reconstruction. First, we enhance underwater videos captured by
a monocular camera to correct the image quality degradation caused by the physical properties of the water
medium and ensure consistency in enhancement across frames. Then, we perform keyframe selection to optimize
resource usage and reduce the impact of dynamic objects on the reconstruction results. After pose estimation using
COLMAP, the selected keyframes undergo 3D reconstruction using neural radiance fields (NeRF) based on multi-
resolution hash encoding for model construction and rendering. In terms of image enhancement, our method
has been optimized in certain scenarios, demonstrating effectiveness in image enhancement and better continuity
between consecutive frames of the same data. In terms of 3D reconstruction, our method achieved a peak signal-
to-noise ratio (PSNR) of 18.40 dB and a structural similarity (SSIM) of 0.6677, indicating a good balance between
operational efficiency and reconstruction quality.
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1 Introduction

In the field of computer graphics, the Neural Radiance Fields (NeRF) technology, proposed by
Mildenhall and others [1], has garnered widespread attention for its ability to model and represent
the surfaces of objects in three-dimensional scenes using deep learning and neural network models.
Compared to traditional graphics rendering methods, NeRF offers superior performance in terms of
detail accuracy and precision. Especially in the three-dimensional reconstruction of underwater scenes,
the application of NeRF technology is of significant importance to the development and management
of underwater resources, marine scientific research and protection, and the advancement of marine
tourism. However, the physical environment targeted by NeRF is a clean air medium. For a medium
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that absorbs or flashes light, such as water, the volume rendering equation not only has a volume
meaning for the object, but also the external environment will affect the rendering.

In contrast to clear air conditions, when the medium involves absorption or scattering (e.g.,
haze, fog, smoke, and all aquatic habitats), the volume rendering equation takes on a true volumetric
meaning, as the entire volume, not just objects, contributes to the image intensity. Since the NeRF
model estimates color and density at every point in the scene, it lends itself to perfect general volume
rendering when an appropriate rendering model is used. The choice of water as a scattering medium
is due to its prominent light scattering characteristics in image acquisition. The light scattering
characteristics in water manifest as the interaction of light rays with water molecules and suspended
particles, causing the light to scatter in different directions. The way light propagates in water, including
scattering, absorption, and refraction, makes it an ideal model for studying and understanding the
behavior of light in scattering media. Due to the relative ease of conducting image capture underwater,
water is commonly used as a typical scattering medium for experimental research.

Our proposed underwater scene reconstruction system uses an improved 3D reconstruction
method of neural radiation field optimized by multi-resolution hash coding [2] to achieve model
construction and rendering. The flowchart of the system is shown in Fig. 1. This coding method based
on hash search only needs a small scale neural network to achieve the effect of a fully connected
network without loss of accuracy. Based on a multi-level voxel search structure, the weight search of
data is realized, so that the weight optimization and data calculation can be controlled step by step
in different levels of the corresponding sub-regions. In this way, for weight optimization, too many
ineffective calculation processes can be avoided. In image preprocessing, water’s absorption of light is
different in different spectral regions and has obvious selectivity. The selective absorption of light by
water makes the color of the underwater object change with the increase of its depth. At the same time,
when the light propagates in water, it is affected by the medium particles and deviates from the original
direction of linear propagation, which is called the scattering of light by water. This phenomenon will
reduce the contrast of the image and make the imaging system unable to receive useful information.
The image enhancement method we used has good performance on UICQE [3], UIQM [4] and SCM
[5] indicators, which can effectively restore the original color of the image, improve the image quality
and ensure the consistency of color correction.

Figure 1: Our method has five parts, image enhancement is the preprocessing part, mainly to enhance
the clarity of the underwater image, to facilitate the subsequent 3D reconstruction, the next stage,
the position estimation module is to obtain the image position information as an input to the 3D
reconstruction, after the next stage of keyframe filtering to conserve the arithmetic resources, and
finally 3D reconstruction, which can be rendered from an arbitrary point of view of this 3D model
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This paper proposes an improved underwater 3D reconstruction system aimed at achieving rapid
and high-quality 3D reconstruction. Our main contributions include:

• We propose an enhancement method for underwater video images that combines the Con-
trast Limited Adaptive Histogram Equalization (CLAHE) algorithm with Bayesian Retinex
enhancement technology, effectively restoring the original color of the images and improving
image quality.

• We develop a keyframe selection method based on pose and image quality, which optimizes
resource utilization and reduces the impact of dynamic objects on the reconstruction results.

• We improve the 3D reconstruction process using a neural radiance field (NeRF) based on multi-
resolution hash coding, achieving efficient and accurate model construction and rendering
with a small-scale neural network. A small-scale neural network is capable of delivering
the performance of a fully connected network without compromising accuracy. Based on a
multi-level voxel search structure, we implement weight search for data, avoiding ineffective
calculations.

• This paper establishes a unified system for the 3D reconstruction of underwater scenes.
Experiments show that our underwater scene reconstruction method significantly improves
reconstruction efficiency and ensures high-quality reconstruction results compared to other
methods.

2 Related Work
2.1 Underwater Image Enhancement

In underwater optical imaging, the inherent properties of water, such as significant light absorp-
tion and scattering, result in the exponential attenuation of light propagation underwater. Conven-
tional imaging systems used in underwater settings often suffer from high noise levels, pronounced
color aberrations, and distortions, leading to poor image quality. In previous work, numerous
underwater image enhancement methods have been proposed to address these challenges.

Treibitz et al. [6] combined information from different lighting frames to achieve optimal contrast
for each region in the output image. Fu et al. [7] introduced a variational framework for image
enhancement based on retinex, which effectively solves the problems of color, exposure, and blur in
underwater imaging. Hitam et al. [8] extended the Contrast Limited Adaptive Histogram Equalization
(CLAHE) method to underwater image enhancement, using a mixture of CLAHE on RGB and HSV
color models and combining the results using Euclidean norm, significantly improving the visual
quality of underwater images. Akkaynak et al. [9] presented the first method that recovers color
with their revised model, using RGBD images high image enhancement effect has been achieved.
Islam et al. [10] presented a conditional generative adaptive network-based model for real-time
underwater image enhancement evaluate perceived image quality by developing an objective function
based on global content, color, local texture, and style information of the perceived image. The Five A
+ Network (FA + Net) proposed by Jiang et al. [4] is an efficient and lightweight real-time underwater
image enhancement network that achieves real-time enhancement of 1080P images.

Given the effectiveness of the physical models used in underwater image processing and the
inherent characteristics of underwater images, we propose a method that combines the CLAHE
algorithm with the Retinex enhancement technique for underwater image enhancement. CLAHE
processes images in blocks, building upon the adaptive histogram equalization algorithm while
introducing a threshold to limit contrast, mitigating the problem of noise amplification. Linear or
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bilinear interpolation is used to optimize transitions between blocks, resulting in a more harmonious
appearance. Multiscale processing is applied to enhance brightness and color representation.

The Retinex algorithm, known for its effectiveness in enhancing brightness and contrast in
underwater images, decomposes the image into local and global components for enhancement. The
local component refers to an adaptive neighborhood for each pixel in the image, while the global
component encompasses the entire image. The Retinex algorithm decomposes the value of each pixel
into two parts: reflectance and illumination. It then enhances the reflectance values of each pixel to
improve image contrast and brightness. Finally, the enhanced reflectance values are multiplied by the
illumination values to obtain the final image.

2.2 Keyframe Filtering

The selection of keyframes plays a pivotal role in various computer vision and robotics applica-
tions, particularly in the context of visual SLAM (Simultaneous Localization and Mapping) and 3D
reconstruction. This section provides an overview of related works in keyframe selection, highlighting
the different approaches and strategies employed in the field.

Klein et al. [11] and Mur-Artal et al. [12] relied on camera pose information for keyframe selection,
often considering motion and loop closure. Konolige et al. [13] introduced mutual information-
based keyframe selection. These maximize information gain, using metrics like mutual information.
Revaud et al. [14] proposed quality-driven selection, considering sharpness and overall image quality.
Combining pose and quality criteria, Dubé et al. [15] aimed for accuracy and image quality balance,
considering visual saliency and pose for keyframe selection. Our proposed keyframe selection module
extends and innovates upon these existing works by simultaneously considering both pose information
and image quality, offering a unique perspective on keyframe filtering in the context of underwater
scene reconstruction. In the following sections, we will delve into the details of our approach and
present experimental results showcasing its effectiveness.

2.3 Underwater Reconstruction

NeRF (Neural Radiance Fields), as a very hot emerging computer vision technology, aims to
generate realistic 3D scene reconstruction and rendering. In 2020, Mildenhall et al. [1] first proposed
the NeRF technology, which has attracted a lot of attention in academia and industry. Its core idea
is to use a neural network to represent the radiation field (radiance field) of each point in a 3D
scene, and train the network to estimate the color and depth values of each point. In recent years,
a large number of NeRF-related improvements have been proposed, mainly focusing on improving
the training efficiency, rendering quality, and expanding the application areas, etc. NeRF++ [16] by
Zhang et al. further improves the rendering quality and efficiency of NeRF by introducing techniques
such as regularization and local feature extraction, etc. Pumarola et al. proposed D-NeRF [17], which
extends the application of NeRF from static scenes to dynamic scenes, and realizes the modeling
and rendering of dynamic objects. Based on the consideration of reconstruction efficiency and
quality, we use Instant-NGP (Instant Neural Graphics Primitives) to realize fast and high-quality 3D
reconstruction. Instant-NGP proposes a coding method that allows the use of a small-scale network
to implement NeRF without loss of accuracy. The network is augmented by a multiresolution hash
table of feature vectors, performing optimizations based on stochastic gradient descent. The multi-
resolution structure facilitates GPU parallelism and is able to reduce computation by eliminating hash
conflicts. The implementation improves NeRF’s time overhead in hours to seconds.
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For 3D reconstruction of scenes with specular effects and reflections, there is also recent challeng-
ing work that focuses on optimizing the stability of NeRF as well as expanding the scenarios in which
it can be used. NeRF-W [18] is able to learn and render reconstructed images containing transient
objects, but also guarantees separation from the static network without introducing artifacts to the
representation of the static scene. A secondary voxel radiation field incorporating a data-dependent
uncertainty field is utilized to reduce the impact of transient objects on the static scene representation.
NeRF-ReN [19] focuses on the 3D reconstruction of reflective scenes, and proposes the use of separate
transmission and reflection neural radiation fields in complex reflective scenes. By dividing the scene
into transmission and reflection components, a new parametric definition is proposed that can handle
reflection as well as specular scenes well.

For the 3D reconstruction of underwater scenes, laser scanning, structured light projection,
and underwater sonar are currently used. Our proposed method for underwater 3D reconstruction
mainly works by preprocessing the optical images captured by a monocular camera, and then the
enhanced images are used for subsequent reconstruction work. SeaThru-NeRF, proposed by Daniel
Levy et al. [20] in 2023, develops a new rendering model for nerf in scattering media based on the
SeaThru image imaging model. The idea of SeaThru-NeRF’s underwater 3D reconstruction method
has similarities with our method. In the subsequent 3D reconstruction experimental part, we mainly
compare with SeaThru-NeRF in terms of rendering quality, training effect, etc., to demonstrate the
superiority and efficiency of our method.

3 A Rapid Underwater Scene Reconstruction System
3.1 Underwater Image Enhancement

Due to issues such as refraction and scattering of light in water, the collected underwater images
often suffer from blurriness and a bluish or purplish color cast. To address this problem, our algorithm
aims to enhance the original underwater images, improving clarity and color restoration. Conventional
enhancement methods often result in significant variations in enhancement effects due to the temporal
changes in different regions of underwater video frames. In contrast, our proposed method ensures
consistency in enhancement within the same region and maintains spatial and temporal continuity
between adjacent regions. conventional enhancement methods are not suitable for underwater video
enhancement because of the significant variations in enhancement effects caused by the temporal
changes in different regions over time, which severely affects the user experience. However, the Contrast
Limited Adaptive Histogram Equalization (CLAHE) algorithm divides the image into 4 × 4 small
regions for individual enhancement. It employs bilinear interpolation in the central region, ensuring
consistency in enhancement within the same region and maintaining spatial and temporal continuity
between adjacent regions. Subsequently, we apply the Bayesian Retinex algorithm for fine-tuning
the color. For color correction, we employ the Bayesian Retinex algorithm, which first utilizes color
correction methods to remove color casts and restore naturalness. Then, a multi-level gradient prior is
established based on the color-corrected image. Color correction involves statistical methods to handle
color shifts and can be calculated using the following formula:

Uc = 255
2

×
(

1 + Sc − Mc

μ · Vc

)
(1)

For an underwater RGB image, when c(R,G,B), is computed for each of the three channels of
the degraded underwater image S, Mc is the mean of the image S, and Vc is the variance of the
image S. μ is the parameter that regulates the underwater enhancement saturation, and for each
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color channel, we usually set it to 2.5. After the aforementioned computational processing, a constant
calibration is applied to each color channel. Subsequently, the Bayesian Retinex image enhancement
is performed. Using Bayesian inference, the Bayesian Retinex enhancement model simultaneously
enhances the illumination component L and the reflectance component R. The formulation of the
posterior distribution in the Bayesian Retinex model can be expressed as:

p (I , |L) ∝ p (L|I , R) p (I) p (R) (2)

Meanwhile, the parameter p introduces a multi-order gradient prior to design p(R) in order to
obtain a more complete underwater image structure. p in the first- and second-order gradients of
the reflectivity, the image structure is richer, resulting in finer details. In pursuit of better spatial
smoothness of illumination, a Gaussian distribution with zero mean and variance is used to model
the first-order gradient prior of illumination, which is modeled as:

p1 = N
(�I|0, σ 2

3 1
)

(3)

Also for the second-order gradient prior, for the approximation of the segmented linear compo-
nent of the illumination, another Gaussian distribution with zero mean and variance σ 2

4 is used to
model the second-order derivative prior of the illumination:

p2 = N
(�I|0, σ 2

4 1
)

(4)

Ultimately, the priori p(I) is modeled as:

p (I) = p1 (I) p2 (I) (5)

The final illumination adjustment is a fine-tuning operation performed on the environment, using
an effective gamma correction to adjust the luminosity. In this context, Ie represents the final adjusted
illumination image, I is the input image, and W is a weight correction factor used to perform gamma
correction, with γ being the parameter for gamma correction. The correction can be expressed as
follows:

Ie = W
(

I
W

) 1
γ

(6)

The channel Le of the final image is calculated as:

Le = Ie · R (7)

3.2 Keyframe Filtering Based on Pose and Image Quality

Keyframe selection is a critical step in our approach, aiming to identify representative frames
from a multitude of images while minimizing their impact on the subsequent 3-D reconstruction
module. Diverging from conventional keyframe selection methods that rely solely on pose or image
entropy criteria, our method combines both pose information and image sharpness to filter keyframes.
This novel approach allows us to consider image quality alongside the appropriateness of keyframe
placement.

Pc =
[

R t
0 1

]
=

⎡⎢⎢⎣
r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

0 0 0 1

⎤⎥⎥⎦ (8)
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where R is a 3 × 3 rotation matrix representing the camera’s orientation. t is a 3 × 1 translation vector
representing the camera’s position. The bottom-right element is always 1 to maintain correct matrix
multiplication.

We calculate the angular difference and displacement between cameras using the following
formulas:

θ� = arccos
(

1 − 0.5
√(

R13 − R′
13

2
) + (

R23 − R′
23

2
) + (

R33 − R′
33

2
))

(9)

Dis� =
√

(R14 − R′
14

2
) + (R24 − R′

24
2
) + (

R34 − R′
34

2
)

(10)

Here, we use the camera-to-world (c2w) format for the pose matrices.

Additionally, we compute the image sharpness using the Laplacian operator to identify keyframes
with higher quality in noisy datasets. We calculate the keyframe importance parameter as follows:

I = w1 × sharpness + w2 × DisΔ + (1 − w1 − w2) × θΔ (11)

Here, w1 and w2 are weights that determine the contribution of sharpness and motion changes to
the importance score, respectively. “Sharpness” measures the clarity of the image using the Laplacian
operator. DisΔ represents the translational displacement of the camera between frames, while θΔ

captures the rotational change in the camera’s pose. We use a weighted average of sharpness and the
angular difference with displacement to strike a balance between image quality and quantity.

3.3 3D Reconstruction Based on Instant-NGP

3.3.1 Neural Radiance Fields (NeRFs)

Neural Radiance Fields (NeRFs) is a groundbreaking advancement in the field of 3D visual
reconstruction. NeRFs was initially proposed by Mildenhall et al. in 2020 to address the challenging
task of scene reconstruction and view synthesis from 2D images.

In essence, the original NeRF can be understood as a Multilayer Perceptron (MLP) that primarily
consists of fully connected layers instead of convolutional layers. Its purpose is to learn a static 3D
scene, often parameterized through the $MLPfθ: (x, d) −→ (c, σ)$. The NeRF function takes as input
a continuous representation of the scene, which is a 5D vector containing a spatial 3D coordinate point
x = (x, y, z) and the direction d = (θ , φ) from that coordinate position. The output of the function
is the RGB color coordinates c = (r, g, b) of the 3D point and the corresponding opacity or density
value = σ at that location. The neural network can be represented as follows:

Fθ : (x, d) → (c, σ) (12)

The voxel density σ(x) can be understood as the probability that a ray traveling through space
will be terminated by an infinitesimal particle at x. This probability is differentiable and can be
approximated as the opacity of the point at that location. Since the points on the observed ray of
the camera along a particular direction are continuous, the color of the corresponding pixel in the
imaging plane of that camera can be understood as the color integral of the point through which the
corresponding ray passes can be expressed as:

C(r) =
∫ tf

tn

T(t) · σ(r(t)) · c(r(t), d)dt (13)
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By labeling the origin of a ray as o and the direction of the ray (i.e., the camera viewpoint) as d,
the ray can be represented as r(t) = o + td, with the proximal and distal boundaries of t as tn and tf ,
respectively.

Where T(t) denotes the cumulative transparency of the section of the ray from tn to t, i.e., the
probability that the ray has not been stopped by hitting any particle from tn to t, is denoted as:

T(t) = exp
(

−
∫ t

tn

σ(r(s)
)

ds (14)

In practical scenario applications, it is not possible to do the NeRF to estimate continuous 3D
information, so a numerical approximation method, i.e., uniform random sampling method, is used,
whose i sampling point can be expressed as:

ti = U
[

tn + i − 1
N

(
tf − tn

)
, tn + i

N

(
tf − tn

) ]
(15)

The first step is to deal with the region on the ray that needs to be integrated by dividing the
region into N parts, and numerical approximation of each small region ensures that the continuity of
the adopted position, and simplifies the above color equation to:

Ĉ(r) =
∑N

i=1
Ti ·

(
1 − exp

(−σi · δi

)) · ci (16)

where the distance Ti between neighboring come sampling points can be expressed as:

Ti = exp
(
−

∑i−1

j=1
σjδj

)
(17)

The rendering principle of NeRF is to sample and sum for each ray emitted by the camera. Hence
NeRF’s pain point: it is slightly less efficient. This is because arithmetic is still consumed for regions
where rendering is not effective.

Ultimately the training loss of NeRF is directly determined with the L2 loss of the rendering result,
which can be expressed as:

L =
∑N

r∈R

[
‖Ĉc(r) − C(r)‖2

2 − ‖Ĉf (r) − C(r)‖2
2

]
(18)

3.3.2 Instant-NGP (Instant Neural Gradient Prediction)

Instant-NGP [3] is an innovative approach that addresses the challenge of gradient prediction in
neural networks, particularly in the context of underwater scene reconstruction. It plays a fundamental
role in enhancing the training stability and efficiency of our system.

Gradient Prediction Network (GPN). Instant-NGP introduces a Gradient Prediction Network
(GPN), denoted as NGPN, which is a neural network responsible for predicting gradients. The GPN
takes the network’s current state W and an input sample x as input and predicts the gradient
∇L(W, x)with respect to the loss function L. This can be expressed as:

∇L (W, x) = NGPN(W, x) (19)

Instantaneous Gradient Updates. Once the gradient is predicted by the GPN, it is used to update
the network’s parameters W immediately. This enables the network to adapt rapidly to changing
conditions, such as variations in underwater scenes. The instantaneous gradient update can be
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formulated as:

Wnew = Wold − α · ∇L (Wold, x) (20)

where α is the learning rate.

Our Underwater 3-D Reconstruction module is powered by the innovative Instant-NGP (Instant
Neural Gradient Prediction) algorithm. This algorithm plays a pivotal role in accelerating the
reconstruction process compared to traditional methods, such as Seathru-NeRF.

In the context of our underwater scene reconstruction system, the Underwater Reconstruction
module harnesses the power of Instant-NGP to achieve both efficiency and accuracy. By incorporating
this algorithm, we can reconstruct 3-D underwater scenes in a timely manner without compromising
the quality of the reconstructions. This is paramount for tasks such as underwater navigation,
environmental monitoring, and scientific exploration, where real-time or near-real-time feedback is
essential.

In the following section (Section 5), we will present the experimental results and discuss the perfor-
mance of our Underwater Reconstruction module in detail, showcasing how Instant-NGP contributes
to the success of our system in accurately capturing the intricacies of underwater environments.

4 Experiments and Results
4.1 Video Data

The video data used in our study was obtained through underwater diving exploration, capturing
real-world underwater scenes. Meanwhile, we also used the Dataset of Real-world Underwater Videos
of Artifacts (DRUVA) collected by Zhang et al. [16] in shallow sea waters. The dataset we collected
ourselves collected a total of 241 and 231 individual images, corresponding to two different underwater
scenes. These images were captured using the GoPro HERO BLACK camera and recorded at a
resolution of 1280 × 720 pixels, providing a nearly 360 degree azimuth view of the diver’s activity
around the artifacts. The DRUVA dataset was collected using the GoPro Hero 10 camera. This dataset
contains video sequences of 20 different artificial artifacts in shallow water, with divers obtaining
nearly 360 degree directional views around the artifacts.

4.2 Evaluation Metrics

In this section, we outline the evaluation metrics used to assess the performance of our underwater
scene reconstruction system, focusing on two key modules: the Underwater Enhancement module and
the Underwater 3-D Reconstruction module.

4.2.1 Underwater Enhancement Evaluation Metrics

We use three indicators for evaluating underwater images.

UIQM (Underwater Image Quality Measure) is used to evaluate the quality of restored underwater
images. UIQM is a no-reference underwater image quality assessment metric inspired by the human
visual system. It addresses the degradation mechanisms and imaging characteristics of underwater
images by employing three distinct measures: the Underwater Image Colorfulness Measure (UICM),
the Underwater Image Sharpness Measure (UISM), and the Underwater Image Contrast Measure
(UIConM) These measures are combined linearly to represent the UIQM. The higher the value of
UIQM, the better the color balance, sharpness, and contrast of the image are considered to be. The
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specific formula is expressed as:

UIQM = c1 × UICM + c2 × UISM + c3 × UIConM (21)

UICQE (Underwater Image Color Quality Enhancement) [3] UICQE is a metric designed to
evaluate the color enhancement quality of underwater images. It assesses the system’s ability to improve
the color fidelity and vibrancy of underwater scenes. Higher UICQE scores indicate superior color
enhancement performance. Let Ip be the pixel values of an image in CIELab space, p = 1 . . . N. The
image has N pixels. Ip = [Ip, ap, bp]. CI is the chroma. The underwater colour image quality evaluation
metric UCIQE for image I in CIELab space is defined as:

UCIQE = c1 × σc + c2 × conl + c3 × μs (22)

where σc is the standard deviation of chroma, conl is the contrast of luminance and μs is the average
of saturation, and c1, c2, c3 are weighted coefficients.

SCM (Scene Consistency Metric) to evaluate in order to quantify the consistency of the color
correction, we compute the average standard deviation of the intensity-normalized RGB values of the
pixels tracked through the scene. We need to find a set of SYRF features P between consecutive frames
of an underwater image, track the pixel x corresponding to the feature x ∈ P through the corrected
image, and finally calculate the standard deviation of the pixel RGB values. This metric is used to
measure the consistency of image correction methods between different views within the same scene.
The specific formula is:

SCM = 1
N

∑
x∈P

√∑
xi∈x(xi − μx)2

Nx

(23)

4.2.2 Underwater 3-D Reconstruction Evaluation Metric

We use a similar metric as Levy et al. which is widely used in the field of 3-D reconstruction.

PSNR (Peak Signal-to-Noise Ratio) PSNR is a fundamental metric for evaluating the fidelity of
3-D reconstructed scenes compared to ground truth data. It quantifies the level of noise and distortion
present in the reconstructed 3-D models. A higher PSNR value implies a closer match to the ground
truth, indicating superior reconstruction accuracy.

PSNR = 10 · log10

(
MAX2

MSE

)
(24)

In this formula, PSNR stands for Peak Signal-to-Noise Ratio, MAX represents the maximum
possible pixel value in the image (typically 255 for 8-bit grayscale images), and MSE denotes the
Mean Squared Error, which measures the mean squared difference between the original image and the
reconstructed image. PSNR is used to assess the quality of image reconstruction, with higher values
indicating greater similarity between the reconstructed and original images.

Structural Similarity Index (SSIM) [21], as mentioned earlier, is also used in this context to
evaluate the similarity between the reconstructed 3-D models and the ground truth. It assesses the
preservation of structural details in the 3-D reconstructions.

SSIM (x, y) =
(
2μxμy + C1

) (
2σxy + C2

)(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) (25)
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In this formula:

x and y are the two input images being compared.

μx and μy represent the mean values of x and y, respectively.

σ 2
x and σ 2

y denote the variances of x and y, respectively.

σxy represents the covariance between x and y.

C1 and C2 are small constants added to avoid division by zero. Typically, C1 = (k1L)2 and C2 =
(k2L)2 are used, where L is the dynamic range of pixel values in the images (e.g., 255 for 8-bit images),
and k1 and k2 are constants to control the impact of C1 and C2.

4.3 Experimental Information

Our experiments were conducted on a high-performance server equipped with a NVIDIA RTX
4090 GPU with 24 GB of GPU memory and a Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz.
after testing, in the 3D reconstruction module, we set the aabb_scale parameter to 32 to achieve the
best training effect. Retain the default values for other parameters.

4.4 Result and Discussion

4.4.1 Underwater Image Enhancement

Table 1 shows our experimental results, where we evaluated various methods using different eval-
uation metrics on the dataset. We conducted experiments on seven different scenarios (self collected
datasets 1–122, 1–195, self collected datasets 2–004, 2–100, DRUVA195, 229, 272) to evaluate the
performance of different methods in underwater 3D reconstruction. For each scenario, we considered
eight image enhancement methods: CLAHE, Fusion, RGHS, Seatru, UCM, FUNIE-GAN, FA+, and
our proposed method. The evaluation metrics used include UIQM and SCM, and measuring UIQM
aims to quantify image quality, with higher values usually being better. The measurement of UCM
aims to quantify the consistency of color correction, and the higher the value, the better. Based on the
experimental results, it can be observed that our method is competitive in Dataset 1 and Dataset 2, with
a small gap compared to the optimal indicator method. In the case of DRUVA, our method UIQM
performs the best, 0.141 higher than the second highest CLAHE method. Please note that the final
choice of method may depend on the specific circumstances and application requirements, as different
methods may have strengths in different aspects. Overall, the experimental results suggest that our
method is competitive in some scenarios but may not necessarily be the best choice in all situations.
Fig. 2 shows enhanced underwater images using different methods on three datasets: self-collected
dataset 1, self-collected dataset 2, and the DRUVA dataset.

Table 1: The numerical tables of our image enhancement method and the other five methods (FA+,
CLAHE, RGHS, seateru, UCM) on UIQM, UCIQE, SCM_R, SCM_G, and SCM_B metrics were
presented for three datasets (self collected dataset 1, self collected dataset 2, and DRUVA) (Bold the
best data for each scenario and italicize the second best data)

Dataset Methods UIQM UCIQE SCM_R SCM_G SCM_B

1 FA+ 1.378 0.567 5.552 4.552 7.075
CLAHE 1.388 0.472 5.938 4.577 4.276

(Continued)
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Table 1 (continued)

Dataset Methods UIQM UCIQE SCM_R SCM_G SCM_B

RGHS 1.273 0.592 5.854 1.482 5.184
seathru 1.531 0.560 6.553 5.796 11.560
UCM 1.354 0.562 10.173 4.116 4.368
Ours 1.164 0.453 6.732 4.866 7.092

2 FA+ 1.600 0.616 5.534 6.307 6.641
CLAHE 1.736 0.550 4.581 4.501 7.155
RGHS 1.496 0.601 5.940 4.367 7.756
seathru 2.857 0.588 6.249 4.844 3.741
UCM 1.413 0.607 5.942 6.225 4.857
Ours 2.242 0.542 5.263 5.376 6.605

DRUVA FA+ 1.836 0.600 0.756 0.930 1.626
CLAHE 2.145 0.560 3.059 1.822 2.808
RGHS 1.769 0.592 3.974 0.853 3.012
seathru 1.845 0.586 5.989 6.092 4.613
UCM 1.609 0.590 2.946 2.589 2.203
Ours 2.286 0.550 0.934 1.126 1.038

Figure 2: Enhanced images on self collected dataset 1, self collected dataset 2, and DRUVA dataset

4.4.2 Underwater Reconstruction

Table 2 shows our experimental results, comparing Seathu-NeRF with the methods we proposed
using different evaluation metrics on our self collected dataset 1. In terms of PSNR, our method
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achieved the highest score of 18.40 (highlighted in bold), with metric values exceeding that of Seatru-
NeRF 3.43, indicating excellent performance in image fidelity. For SSIM, our method values are only
slightly lower than SeaThru NeRF 0.0010, indicating better structural similarity with live images.
These results indicate that our method provides a good balance between runtime efficiency and recon-
struction quality, making it suitable for practical applications. However, the choice between these two
methods may depend on specific use cases and priorities. Overall, our method has shown promising
results in both PSNR and SSIM, demonstrating their effectiveness in underwater scene reconstruction.
Our method outperforms Seathru-NeRF in terms of PSNR, indicating more accurate pixel-wise
reconstruction and better noise reduction, but slightly lags in SSIM due to less effective preservation
of structural and textural details crucial for perceptual quality. Fig. 3 shows the comparison of our
rendering performance with seathu NeRF on self collected dataset 1 and DRUVA.

Table 2: Evaluation Metrics of Seathru-NeRF and our methods on our own dataset (Bold the best
data within each case)

Algorithm PSNR SSIM

Our 18.40 0.6677
Seathru-NeRF 14.97 0.6676

Figure 3: Comparison of rendering performance between our method and seathru-NeRF on self
collected dataset 2 and DRUVA

5 Conclusion and Future Work
5.1 Conclusions

Our image enhancement method relies on the chunking concept of CLAHE and Bayesian Retinex,
which avoids a series of problems caused by abrupt color changes, and our approach ensures the
continuity of image data. We employ the Colmap visual tool to obtain bitmap information from the
original image frames, which offers higher robustness. Meanwhile, our keyframe filtering module is
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highly efficient, greatly saving computational resources and concurrently enhancing the efficiency of
the entire system. The Instant-NGP method we selected, which utilizes hash coding, makes NeRF 3D
reconstruction more efficient. As a result, the overall performance of our system is superior.

5.2 Limitations

While our method achieves good reconstruction results with low computational time, it is
important to note that, as an image enhancement rather than image restoration approach, there is still
room for improvement in terms of color fidelity. Additionally, during our experiments, we observed
that the omission of modeling underwater imaging effects still leads to the formation of artifacts
during training. Therefore, we consider optimizing the existing method to enhance reconstruction
color accuracy and quality as a future avenue of research.

Future work will explore more advanced image restoration techniques to further enhance color
accuracy. We have observed that neglecting the modeling of underwater imaging effects can lead
to the formation of artifacts during the training process. Therefore, future research will focus on
more accurately simulating these effects to improve reconstruction quality. Our method requires prior
extraction of the image’s bitmap information, which may be challenging in complex scenes. We plan to
investigate automated bitmap information extraction techniques to enhance the system’s robustness.

5.3 Future Work

In the future, we will continue to optimize our existing methods, particularly in improving
reconstruction color accuracy and overall quality. We plan to apply our proposed method to a broader
range of underwater scenes, including those with more challenging lighting and medium conditions.
We will also explore the application of our method to 3D reconstruction in other scattering media,
such as foggy environments or smoke-filled scenarios. The research presented in this paper not only
advances the development of underwater 3D reconstruction technology but also provides valuable
references for research in related fields, such as robotic navigation and environmental monitoring.
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