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ABSTRACT

When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily
affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete
road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the
convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates
with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and
builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe
and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of
positive and negative sample imbalance. Experimental results show that the new network model can achieve the
following performance on the DeepGlobe dataset: 79.40% for precision (Pre), 97.93% for accuracy (Acc), 69.28%
for intersection over union (IoU), and 83.56% for mean intersection over union (MIoU). On the CHN6-CUG
dataset, the model achieves the respective values of 78.17% for Pre, 97.63% for Acc, 65.4% for IoU, and 81.46% for
MIoU. Compared with other network models, the fused ConvNeXt-UPerNet model can extract road information
better when faced with the influence of noise contained in high-resolution remote sensing images. It also achieves
multiscale image feature information with unified perception, ultimately improving the generalization ability of
deep learning technology in extracting complex roads from high-resolution remote sensing images.
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1 Introduction

Roads are one of the most important infrastructures of human society and a key component of
geospatial information. Roads play a very important role in urban planning, disaster management,
agricultural development, intelligent transportation, and other fields [1]. Extracting road information
from high-resolution remote sensing images is an important means of updating road information.

Traditional road extraction methods can be roughly divided into two types: pixel-based and
object-oriented methods [2]. These methods have been instrumental in the initial stages of road
extraction from remote sensing imagery. Pixel-based methods often rely on the spectral characteristics
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of pixels to distinguish roads from other land covers, while object-oriented methods focus on the
shape and texture of road objects within the image. However, both methods are suitable only for
remote sensing images with single road types and simple backgrounds, which limits their application
in complex urban environments with diverse road structures and cluttered backgrounds. With the
development and progress of science and technology, deep learning methods are now widely used for
road extraction.

Deep learning can automatically learn image features, and use these features to classify and
recognize images. It has strong adaptability and robustness, and can automatically extract geospatial
information by using neural networks. In the deep learning framework, semantic segmentation tasks
are typically accomplished using architectures such as convolutional neural networks (CNNs) [3].
Inspired by CNNs, Shelhamer et al. [4] proposed an end-to-end deep learning framework called a
fully convolutional network (FCN). Deep learning technology has made breakthroughs in image
processing. The full convolution structure of FCN enables it to effectively capture global and
contextual information in images, which is crucial for improving image segmentation performance.
To enhance the context-understanding ability of networks, some scholars have proposed semantic
segmentation networks based on dilated convolution. They added a multiscale context semantic fusion
module, such as the pyramid pool module of the pyramid scene analysis network PSPNet [5], to obtain
context information using different pooling scales. DeepLabv2 [6] solved the target multiscale problem
by adding a space pyramid pooling module (ASPP). To achieve rich multiscale features, the author
proposed DeepLabv3 with a variety of different sampling rates ASPP [7]. Additionally, there is an
encoder-decoder based semantic segmentation network [8], which combines the feature maps in the
encoder with the feature maps at the corresponding levels in the decoder. This helps to restore image
details while retaining high-level feature information, ensuring segmentation accuracy.

Road extraction in remote sensing images is a specific application in semantic segmentation.
In recent years, researchers have focused on improving network architectures and feature extraction
methods to enhance semantic segmentation. This has led to the proposal of innovative methods and
research results. For instance, Wang et al. [9] proposed an enhanced U-Net approach for extracting
roads from high-resolution images. This method effectively addresses the overfitting issue during
neural network training. However, it performs poorly in densely built-up, shadowed, and tree-occluded
areas. Ge et al. [10] proposed an automatic method for extracting roads from high-resolution remote
sensing images. The method is based on the DeepLabV3+ network, which combines an encoder with
multispace pyramid pooling to achieve road boundary extraction. Hu et al. [11] proposed a remote
sensing image road extraction network that improves upon ResUNet by replacing the original encoder
structure and using atrous spatial convolution pooling pyramid modules. These modules have anti-
occlusion and reasoning capabilities; however, the model still needs to improve its occlusion ability
in more complex backgrounds and shorten training time. In response to missed extraction problems
caused by the loss of spatial features and detailed object information in deep learning extraction
methods, Wu et al. [12] used ResNet as the backbone and introduced coordinate convolution and
global information enhancement modules. This reduced the impact of natural scene occlusion to a
certain extent; however, some missing extraction phenomena remain. Wang et al. [13] proposed a
dual-feature fusion feature extraction method, and on this basis, introduced a network with a densely
connected feature skip connection structure, which is termed DFC-UNet. However, the work still
needs further optimization of the model speed and a reduction in the loss caused by sampling.
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In conclusion, while deep learning techniques have made significant progress in extracting roads
from high-resolution remote sensing images, current network models still lack the necessary feature
extraction capabilities. Additionally, they are still affected by noise, such as trees, buildings and
complex scenery, when dealing with fine road details, such as road edges and intersections. The
model may lose key contextual information, making it difficult to fully capture road features. These
limitations indicate that future research needs to optimize the model structure to improve the accuracy
and robustness of road extraction further in complex scenes.

In response to the above problems, we fully analyze the current research status of deep learning
semantic segmentation methods, combine the characteristics of high-resolution remote sensing, and
propose a high-resolution remote sensing image road extraction method based on ConvNeXt-
UPerNet. The work is as follows:

1. Embed attention modules in the ConvNeXt [14] backbone network, thereby reducing the
model’s dependence on irrelevant background features and focusing on the key road feature areas.
The segmentation of samples is more accurate in scenes with noise or complex backgrounds.

2. The convolutional neural network ConvNeXt with embedded attention modules is used as
the backbone network in conjunction with the feature pyramid module in the unified perceptual
analysis network UPerNet [15] to extract image features. A ConvNeXt-UPerNet model architecture
is proposed, which can fully utilize the feature information of images at different scales when dealing
with complex scenes.

3. We introduce mixed CrossEntropyLoss [16] and DiceLoss [17] as loss functions and solve the
imbalance problem between positive and negative samples in remote sensing images via weighted
fusion, thereby preventing the loss function from ignoring categories with fewer pixel distributions
and better guiding model training.

A specific theoretical presentation of the above research elements is given in Section 2, the
methodological improvements are described in Section 3, and the experiments are summarized in
Section 4

2 Related Work
2.1 ConvNeXt

ConvNeXt is a current convolutional neural network with improved performance based on
ResNet50 [18] and drawing on the design concepts of the Swin Transformer [19]. ConvNeXt signif-
icantly improves model performance by optimizing it at both the macro and micro levels. The main
points of optimization include the following:

1. Macro Design

The original ResNet design is largely empirical. For the Swin Transformer, the ratio of the number
of Swin-Tiny stacked blocks is 1:1:3:1, and for the Swin-Large, it is 1:1:9:1, with a greater proportion
of stacked blocks in stage 3. Therefore, ConvNeXt adjusts the stacking times in ResNet50 from (3, 4, 6,
3) to (3, 3, 9, 3), which is similar in computational complexity to that of Swin-Tiny but with improved
accuracy. In addition, ConvNeXt substitutes the initial max pooling down sampling module with a
convolutional layer of kernel size 7 × 7 and stride 2, followed by another layer of kernel size 4 × 4 and
stride 4. This modification reduces the floating point operations per second (FLOPs) and improves its
accuracy without compromising its performance.
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2. Referring to ResNeXt

ResNeXt [20] was developed by combining ResNet with Inception [21]. ConvNeXt adopts the
grouped convolution from ResNeXt and replaces it with depthwise convolution, which can mix only
spatial dimension information. When combined with 1 × 1 convolution, this method separates spatial
and channel information extraction, reducing the number of network failures and slightly lowering
accuracy. Finally, following the ResNeXt strategy, the number of channels is adjusted from 64 to 96
to match that of the Swin Transformer, increasing the number of FLOPs and resulting in a slight
improvement in accuracy.

3. Inverted Bottleneck Layer

The design of the inverted bottleneck layer using a multilayer perceptron (MLP) [22], with a
structure that is narrow at both ends and wide in the middle, improves both small and large models.

4. Large Convolutional Kernels

ConvNeXt enhances the size of the 3 × 3 convolutional kernel by making adjustments. The
accuracy of the model reaches saturation at 7 × 7; therefore, it continues to use 7 × 7 depthwise
convolution.

5. Micro Design

In the ConvNeXt module, the use of activation functions is reduced, and the gaussian error linear
unit (GELU) [23] is selected as a new activation function to replace Batch Normalization (BN) [24]
with Layer Normalization (LN) [25].

2.2 UPerNet

UPerNet is a multitask learning framework designed with different detection heads for each
task. It heterogeneously processes annotations at different perception levels and can identify as
many visual concepts as possible from images. UPerNet is based on the Feature Pyramid Network
(FPN) [26] that combines top-down and bottom-up pathways. The top-down pathway helps capture
contextual information of the image, while the bottom-up pathway aids in precise localization and
object recognition. This structure enables the FPN to effectively identify and extract image features at
different scales, thereby enhancing the recognition and localization capabilities of objects in complex
scenes. This ensures that each layer’s feature map contains strong semantic information. This study is
a semantic segmentation task; hence, the UPerNet branches have been simplified, retaining only the
detection heads directly related to semantic segmentation.

2.3 Attention Module

The Convolutional Block Attention Module (CBAM) [27] in deep learning assists the model
in learning local regions within an image and integrates the contextual information of these local
features. It dynamically adjusts its attention to spatial and channel dimensions based on the input data.
Moreover, CBAM can be easily integrated with existing deep learning frameworks, such as CNNs,
allowing the model to learn useful feature representations from raw data directly without the need
for additional post processing steps. CBAM typically consists of two parts: Spatial Attention Module
(SAM) and Channel Attention Module (CAM).
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The CAM assists the model in identifying the significance of multiple feature maps for the
task, thereby enhancing the network’s feature-capturing ability. Max pooling and average pooling are
conducted on the input feature map F in the spatial dimension to compress the spatial size. The pooled
results are then sent to a shared multilayer perceptron (MLP) network to learn the channel weights.
Finally, the weights are normalized using a nonlinear activation function to obtain attention weights
for each channel. These learned weights are then used to weight the original input features through
elementwise multiplication, resulting in the final channel attention weights Mc. The structure of the
CAM is shown in Fig. 1.

Figure 1: Channel attention structure

Spatial attention identifies key regions within an image, allowing the network to focus on these
areas. The output feature map from the CAM is taken as the input feature map for this module. First,
the input feature map F is compressed by performing global max pooling and average pooling along
the channel dimension to obtain statistical information for each spatial location. These results are
then concatenated along the channel dimension, followed by a convolutional operation to reduce the
dimensions to a single channel. Finally, a nonlinear activation function is applied to obtain the final
spatial attention weights Ms. The structure of spatial attention is shown in Fig. 2 below.

Figure 2: Spatial attention structure

3 Proposed Methods
3.1 ConvNeXt with Embedded Attention Modules

Since the ConvNeXt network does not explicitly designate attention to input image features,
attention modules, a form of reweighting technique, can be used to weight image features, allowing
the network to focus on nonredundant local contextual information better.



1912 CMC, 2024, vol.80, no.2

Here, we reference CBAM to build both channel attention and spatial attention, and integrate
the attention modules into different stages of the ConvNeXt backbone network. Spatial attention is
embedded before the network stage modules to enhance the model’s ability to recognize local spatial
features in images and reduce reliance on irrelevant spatial features, especially when dealing with
situations involving complex backgrounds or occlusions. Channel attention is placed after the modules
to help the model identify which feature channels are more important for the current task based on
the rich channel information from the deeper layers of the model; the weights of these channels are
adjusted accordingly. Integrating both types of attention enhances the model’s ability to distinguish
between redundant and key features in the image, allowing the model to utilize information in the
feature maps better.

Four versions are proposed for the ConvNeXt network: Tiny (T)/ Small (S)/Base (B)/ Large (L).
In this experiment, we choose ConvNeXt-S from the ConvNeXt series as the backbone network for
feature extraction. In this version, the numbers of input channels C for each stage are (96, 192, 384,
768), and the numbers of time blocks stacked in each stage are (3, 3, 27, 3). The model diagram
embedding the attention modules is shown in Fig. 3.

Figure 3: Structure of the ConvNeXt model with embedded attention

3.2 ConvNeXt-UPerNet Network Structure

After a series of innovative design improvements, the original structure of ConvNeXt surpassed
that of the Swin Transformer [19] in terms of accuracy on the ImageNet dataset [28], tapping into its
potential for visual tasks. It retains the simplicity and efficiency of traditional CNNs, indicating its
potential in image feature extraction. Therefore, theoretically, if a ConvNeXt network with integrated
hybrid attention modules is used as the backbone network to replace the default backbone network,
ResNet, which has insufficient feature extraction capabilities in UPerNet, to extract features from
remote sensing images, multiscale image features can be obtained. This results in high-resolution
remote sensing image feature maps at all output scales simultaneously possessing strong contextual
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semantic information, thereby achieving more precise segmentation results in experiments. The overall
model structure is shown in Fig. 4.

Figure 4: ConvNeXt-UPerNet network structure

After the remote sensing image is input into the ConvNeXt-UPerNet network, the model first
undergoes upsampling. During this process, the input image passes through convolutional layer 2
(conv2), convolutional layer 3 (conv3), convolutional layer 4 (conv4), convolutional layer 5 (conv5),
and the ConvNeXt backbone network to simultaneously extract image information. This process
results in four feature maps of different sizes, C2, C3, C4, C5, which correspond to 1/4, 1/8, 1/16,
and 1/32 the size of the input feature, respectively. The size of the feature maps remains unchanged
after passing through the Pyramid Pooling Module (PPM) [5]. The PPM module aggregates different
scales to obtain a composite feature map P5 from C5. P4 is obtained by upsampling P5 by a factor
of two and adding it elementwise to the feature map of C4 through a 1 × 1 convolutional layer. This
process is repeated twice to obtain P3 and P2. UPerNet fuses features at each layer after the FPN and
then fuses all the feature maps. Finally, image segmentation is completed by enlarging the image to
the same size as the input feature map through 3 × 3 convolution and upsampling. The upsampling
method used is nearest neighbor interpolation, which preserves the semantic information of the input
feature map during the process.

3.3 Hybrid Loss Function

For classification experiments, particularly in multiclass tasks, CrossEntropyLoss (CE) is a
commonly used loss function. Our experiment essentially involves a binary classification problem.
When there is an imbalance in the distribution of positive and negative samples, to enhance the overall
model performance, the DiceLoss (Dice) function, which is often used in semantic segmentation, can
be introduced in addition to the original loss function. DiceLoss focuses specifically on the overlap
between the predicted segmentation area and the true area. Combining the two loss functions can
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effectively address the imbalanced positive and negative samples, increasing the robustness of the
model.

CrossEntropyLoss measures the difference between the predicted probability distribution of the
model and the true label probability distribution. A binary classification task can be represented by
Eq. (1) :

LCE = [y log (p) + (1 − y) log (1 − p)] (1)

y represents the label of the sample, generally denoted by 0 for positive samples and 1 for negative
samples, in which the positive samples represent roads and the negative samples represent the
background. And p represents the probability that the sample is predicted to be in the positive category.
Table 1 below describes TP, FN, FP, and TN.

Table 1: Description of positive and negative sample indicator projections

The real situation Projected situation

Positive sample Negative samples

Positive sample TP: roads classification is correct FN: roads of underreporting
Negative samples FP: backgrounds of false positives TN: backgrounds are correctly classified

DiceLoss measures the degree of overlap between the segmentation region predicted by the model
and the true segmentation region and can be expressed for binary classification. Dice’s formula is
shown in Eq. (2):

LDice = 1 − 2TP
2TP + FP + FN

(2)

If a and b are used to represent the CrossEntropyLoss and DiceLoss weights, respectively, the
designed combined loss function can be expressed as Eq (3):

Lweighted = aLCE + bL
Dice

(3)

The default weight ratio is 1:1. Because road extraction in this experiment is a segmentation task,
it is necessary for the model to accurately identify and locate an object and region. Therefore, in the
experiment, we should focus on the Dice coefficient, fix a to 1, and constantly give greater weight to
b in the experiment, that is, 1:1, 1:2, 1:3,1:4, and 1:5 [29].

4 Experiments and Analysis
4.1 Experimental Environment and Parameter Setting

To verify the feasibility of the model for remote sensing image road segmentation, we select a
certain number of samples for a series of comparative experiments and ablation experiments. The
operating system of the experiment is 64-bit Windows 10, the processor is an Intel(R) Xeon(R) Gold
6342 CPU @ 2.80 GHz (24 cores, 2 sockets), the running memory is 512 G, the GPU model is an
NVIDIA A40 with 48 GB memory, CUDA version is 11.6, and the PyTorch deep learning framework
and parallel computing platform are selected to construct the deep learning framework to construct
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the network structure so that the definition of the new network layer is relatively simple. The specific
experimental parameters are shown in Table 2:

Table 2: Experimental parameter table

Parameter name Value

Learning rate 0.0001
Optimizer AdamW
Loss CrossEntropyLoss and DiceLoss
Weight_decay 0.05
Momentum 0.9
Epoch 80
Batch size 8

4.2 Datasets and Preprocessing

The task of extracting roads from high-resolution remote sensing images is essentially a binary
classification task. Each image consists of background elements and road elements. First, we used the
road dataset from the DeepGlobe Road Extraction Challenge [30], which includes 8570 satellite images
with a size of 1024 × 1024. The image resolution is 0.5 m. The dataset includes scenes of rural, urban,
wasteland, suburbs and other areas. It is a popular dataset for road extraction. During training, the
DeepGlobe road dataset is divided into a training set, test set, and verification set at a 6:1:1 ratio. The
1024-pixel image is scaled down to 512 pixels for network training purposes. The second dataset is the
Chinese road dataset CHN6-CUG [31], which primarily covers urban areas in China. The imagery size
is 512 × 512 pixels, with a resolution of 0.5 m. The dataset consists of a total of 4511 labeled images,
of which 3608 are used for training and 903 are reserved for testing. All images are processed by
converting true color images to grayscale and performing threshold conversion. Image enhancement
techniques, such as random cropping and splicing, are applied during training.

4.3 Evaluating Indicators

This experiment concerns the binary classification task of extracting roads from remote sensing
images. To comprehensively and carefully analyze the results, we selected common binary classification
evaluation indicators, including precision (Pre), accuracy (Acc), intersection over union (IoU), and
mean intersection over union (MIoU).

Precision refers to the proportion of correctly predicted positive samples. Only the samples
identified as roads are considered, and the positive examples that are truly samples are counted. The
equation for Pre is shown in Eq. (4):

Precision = TP
TP + FP

(4)

Accuracy is the proportion of correct image elements predicted in all predictions, that is, the
proportion of correct samples to the total sample. The equation for Acc is shown in Eq. (5):

Accuracy = TP + TN
TP + FN + FP + FN

(5)
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The IoU refers to the ratio of the intersection and union of the predicted border and the real
border. The equation for IoU is shown in Eq. (6):

IoU = TP
TP + FN + FP

(6)

The MIoU is averaged over all categories of the IoU. The equation for the MIoU is shown in
Eq. (7):

MIoU = 1
k + 1

k∑

i=0

TP
TP + FN + FP

(7)

4.4 Training Results

4.4.1 Contrast Experiment

After conducting previous experiments and obtaining results, we compare the performance of the
classic CNNs PSPNet [5], DeepLabv3+ [7], U-Net [32], and D-LinkNet [33] on the DeepGlobe road
dataset. Additionally, the attention model Swin Transformer [19], SegFormer [34], SegNext [35], and
the visual self-supervised model MAE [36] were selected for comparison. The experimental results
are analyzed to compare the advantages and disadvantages of each model. The quantitative statistical
results are presented in Table 3. The results indicate that the ConvNeXt-UPerNet model achieves the
highest values for each index in the DeepGlobe road dataset, reaching 79.40%, 97.93%, 69.28% and
83.56%, respectively. Compared to SegNext, which has better performance, the evaluation indices Pre,
Acc, IoU, and MIoU increase by 1.5%, 0.28%, 3.27%, and 1.88%, respectively.

Table 3: Comparison of DeepGlobe road dataset extraction results under different methods

Methods Pre (%) Acc (%) IoU (%) MIoU (%)

Deeplabv3+ 72.10 97.53 63.16 80.29
PSPNet 71.5 97.32 61.00 79.10
U-Net 70.46 97.14 59.11 78.06
D-LinkNet 72.79 97.61 64.09 80.79
Swin Transformer 75.86 97.48 63.88 80.62
SegFormer 74.58 97.44 63.08 80.20
SegNext 77.90 97.65 66.01 81.77
MAE 53.58 96.29 45.89 71.03
ConvNeXt-UPerNet 79.40 97.93 69.28 83.56

Table 4 presents the results of various models on the CHN6-CUG road extraction dataset.
According to the data in the table, the ConvNeXt-UPerNet model achieves the highest scores for Acc,
IoU, and MIoU, reaching 97.63%, 65.40%, and 81.46%, respectively. Compared with the relatively
better model SegNext, although the model’s Pre decreased by a certain percentage, the Acc, IoU, and
MIoU were each improved by 0.31%, 2.21%, and 1.27%.
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Table 4: Comparison of CHN6-CUG road dataset extraction results under different methods

Methods Pre (%) Acc (%) IoU (%) MIoU (%)

Deeplabv3+ 73.49 97.41 61.96 79.63
PSPNet 75.32 97.41 62.51 79.90
U-Net 68.46 97.21 58.45 77.78
D-LinkNet 71.87 97.49 62.09 79.74
Swin Transformer 78.66 97.36 63.10 80.17
SegFormer 73.31 97.16 59.65 78.34
SegNext 80.17 97.32 63.19 80.19
MAE 48.59 95.45 37.95 66.63
ConvNeXt-UPerNet 78.17 97.63 65.40 81.46

To more intuitively show the different results of different model road extraction effects, we select
some representative samples of DeepGlobe and CHN6-CUG road datasets for visualization.

As shown in Fig. 5, models such as DeepLabv3+, PSPNet, U-Net, Swin Transformer, SegFormer,
SegNext, and MAE have all extracted relatively complete roads, but they lack processing of road
details. In the part of the rural road sample enclosed by the red box, ConvNeXt-UPerNet can segment
a more complete road. Sample b’s selected rural areas are shaded by a large area of trees, making
it difficult to extract complete road information at road junctions and tree shelters. In the urban
area selected in sample d and e, other models exhibit varying degrees of fracture in road extraction.
In contrast, the ConvNeXt-UPerNet model, which combines spatial and channel attention, shows
more complete and clear road extraction results in the examples in Fig. 5a–e. It not only retains the
overall road structure but also performs well in extracting detailed information. Experimental results
indicate that the ConvNeXt-UPerNet model can effectively resolve the fragmentation issues present
in traditional road extraction methods.

Fig. 6 displays the road extraction results of multiple models on the CHN6-CUG road dataset,
where all models except for the self-supervised model MAE have managed to extract relatively
complete road outcomes for urban roads. However, there are still some challenges, such as the shadows
of trees and buildings that may obscure the roads, resulting in incomplete extraction results. This
indicates that although those models can accurately identify and extract roads in most situations, they
still have certain limitations when dealing with complex scenes, such as shadows and obstructions. It is
worth noting that the ConvNeXt-UPerNet model achieves the best extraction results due to its ability
to reduce the model’s reliance on irrelevant background features and focus on the key areas of road
features. In images with noise or complex backgrounds, it can identify local information that ignored
by other models and has a more accurate segmentation effect.
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Figure 5: Plot of the results of multiple model visualizations in DeepGlobe. From left to right: 1-
original figure, 2-label, 3-DeepLabv3+, 4-PSPNet, 5-U-Net, 6-D-LinkNet, 7-Swin Transformer, 8-
SegFormer, 9-SegNext, 10-MAE, and 11-ConvNeXt-UPerNet

Figure 6: Plot of the results of multiple model visualizations in CHN6-CUG. From left to right: 1-
original figure, 2-label, 3-DeepLabv3+, 4-PSPNet, 5-U-Net, 6-D-LinkNet 7-Swin Transformer, 8-
SegFormer, 9-SegNext, 10-MAE, and 11-ConvNeXt-UPerNet
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4.4.2 Ablation Experiment

1. ConvNeXt-UPerNet and Attention Module Ablation Experimental Results Analysis

To verify the effectiveness of adding spatial and channel attention to the ConvNeXt block and
combining the two models, a series of ablation experiments were carried out without changing the
training strategy of the original loss function, using the cross-entropy loss function, not introducing
mixed attention modules into the model and in the same experimental environment. If there is no
special instruction, the ResNet model and the ConvNeXt model utilize ResNet50 and ConvNeXt-S
as their respective backbones. The experimental results of ConvNeXt-UperNet are shown in Tables 5
and 6.

Table 5: Analysis of ConvNeXt-UPerNet on DeepGlobe dataset

Backbone Method Pre (%) Acc (%) IoU (%) MIoU (%)

(a) ConvNeXt FPN 78.31 97.77 67.30 82.48
(b) ResNet UPerNet 70.16 97.41 61.35 79.32
(c) ConvNeXt UPerNet 77.56 97.81 67.55 82.63

Table 6: Analysis of ConvNeXt-UPerNet on CHN6-CUG dataset

Backbone Method Pre (%) Acc (%) IoU (%) MIoU (%)

(a) ConvNeXt FPN 79.13 97.43 63.82 80.57
(b) ResNet UPerNet 79.92 97.07 61.00 78.96
(c) ConvNeXt UPerNet 76.99 97.59 64.68 81.08

In an overall comparison of Tables 5 and 6, models using ConvNeXt as the backbone outper-
formed those using ResNet, particularly on the key index of IoU. On the DeepGlobe dataset, the
ConvNeXt-UPerNet model demonstrated superior performance across all indexs when compared
to the ConvNeXt with FPN. Similarly, on the CHN6-CUG dataset, the ConvNeXt-UPerNet also
demonstrated the highest values for Acc, IoU and MIoU, suggesting that the UPerNet architecture is
well-suited for road extraction tasks. Overall, the performance of the ConvNeXt-UPerNet model was
consistently strong across both datasets, indicating that it possesses good generalization capabilities
across different datasets.

Tables 7 and 8 illustrate the respective enhancements in Pre, Acc, IoU and MIoU for the
ConvNeXt-UperNet model integrating with the SAM and CAM. Based on the data from the tables,
it can be seen that on both the DeepGlobe and CHN6-CUG datasets, the introduction of attention
module especially with the combination of the SAM and the CAM, enhances the performance of the
ConvNeXt-UPerNet model. Integrating SAM or CAM individually can enhance the model’s Pre, Acc,
IoU and MIoU. When SAM and CAM are used together, the model achieves the highest scores for
all indexs on the DeepGlobe dataset, and for all indexs except Pre on the CHN6-CUG dataset.

The results show that the model extraction with attention has higher accuracy. This fusion can
more accurately capture the information that is crucial to the task, thereby improving the overall model
performance and allowing the model to extract more accurate road information.
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Table 7: Analysis of ConvNeXt-UperNet with attention module on DeepGlobe dataset

SAM CAM Pre (%) Acc (%) IoU (%) MIoU (%)

(a) 77.56 97.81 67.55 82.63
(b) � 78.85 97.80 67.77 82.73
(c) � 78.28 97.82 67.87 82.79
(d) � � 78.96 97.82 68.03 82.87
Note: √ denotes the use of the part; × indicates that the part is not used.

Table 8: Analysis of ConvNeXt-UPerNet with attention module on CHN6-CUG dataset

SAM CAM Pre (%) Acc (%) IoU (%) MIoU (%)

(a) 76.99 97.59 64.68 81.08
(b) � 78.30 97.60 65.10 81.29
(c) � 77.87 97.61 65.15 81.33
(d) � � 77.74 97.64 65.37 81.45
Note: √ denotes the use of the part; × indicates that the part is not used.

2. Analysis of loss function ablation experimental results

In this section, we explored the integration of CrossEntropyLoss with both Online Hard Example
Mining (OHEM) and Dice Loss. The core of the OHEM algorithm is to select a set of hard examples
for training, thereby improving the effectiveness of the network’s parameters. Hard examples are
defined as samples that exhibit diversity and high loss. The confidence threshold for OHEM is set to
0.7, with pixels above this threshold on each image being included in the loss calculation. It is ensured
that a minimum of 100,000 pixels participate in the loss calculation for each image.

The experimental results of OHEM in two datasets are shown in Tables 9 and 10. On both the
DeepGlobe and CHN6-CUG datasets, the introduction of OHEM can enhance the model’s Pre, IoU,
and MIoU to a certain extent, thereby improving the overall performance of the model. Although
there is a slight decrease in accuracy on the DeepGlobe dataset, the increase in MIoU indicates that
the model has become more accurate in the overall recognition of roads. On the CHN6-CUG dataset,
all indexs have seen improvements, demonstrating the positive effect of OHEM on enhancing model
performance.

Table 9: Analysis of ablation experiments with CE and OHEM on DeepGlobe datasets

CE OHEM Pre (%) Acc (%) IoU (%) MIoU (%)

(a) � 77.56 97.81 67.55 82.63
(b) � � 79.25 97.79 67.76 82.76
Note: √ denotes the use of the part; × indicates that the part is not used.
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Table 10: Analysis of ablation experiments with CE and OHEM on CHN6-CUG datasets

CE OHEM Pre (%) Acc (%) IoU (%) MIoU (%)

(a) � 76.99 97.59 64.68 81.08
(b) � � 77.67 97.61 65.05 81.27
Note: √ denotes the use of the part; × indicates that the part is not used.

Next, the discussion focuses on CE in comparison with the traditional loss function Dice. On
the DeepGlobe dataset, using Dice alone or in combination with CE loss, as compared to using only
CE, can improve both Pre and MIoU. Specifically, as shown in Table 11, when CE and Dice are used
together with the weight value of 1:1 on the DeepGlobe dataset the highest values for Pre, Acc, IoU
and MioU are achieved at 79.49%, 97.92%, 69.12%, and 83.47%, respectively. This indicates that the
combination of the two loss functions is beneficial for enhancing model performance. According to
the results from Table 12, on the CHN6-CUG dataset, using only Dice loss significantly improves Pre
compared to using only CE, but there is a slight decrease in Acc, IoU and MIoU. When CE and Dice
are combined, Pre decreases slightly, yet MIoU increases. Integrating the results from both datasets
suggests that Dice loss is more effective in addressing class imbalance issues, and the combination of
CE and Dice has a positive effect on improving Acc, IoU, and MIoU.

Table 11: Analysis of ablation experiments with CE and Dice on DeepGlobe datasets

CE Dice Pre (%) Acc (%) IoU (%) MIoU (%)

(a) � 77.56 97.81 67.55 82.63
(b) � 79.43 97.88 68.73 83.25
(c) � � 79.49 97.92 69.12 83.47
Note: √ denotes the use of the part; × indicates that the part is not used.

Table 12: Analysis of ablation experiments with CE and Dice on CHN6-CUG datasets

CE Dice Pre (%) Acc (%) IoU (%) MIoU (%)

(a) � 76.99 97.59 64.68 81.08
(b) � 79.48 97.48 64.41 80.89
(c) � � 77.38 97.61 64.93 81.21
Note: √ denotes the use of the part; × indicates that the part is not used.

The ablation experiments mentioned above indicates that the combined use of CE and Dice can
lead to better model performance. However, it only discussed the case where the weight ratio between
CE and Dice is 1:1. In subsequent experiments, the experimental scheme adjusted the weight ratio
between the two loss functions to compare the model’s performance. Since the Dice loss focuses on the
consistency between the predicted and actual segmentation areas, it is necessary to pay close attention
to the Dice coefficient and continuously increase its weight during the experiments.

On the DeepGlobe dataset from Table 13, as the weight of the Dice loss increased, the Acc, IoU,
and MIoU values initially increased, peaking at 97.93%, 69.28%, and 83.56% when the weight was
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1:3, and then decreased with further increases in the weight of the Dice. This indicates that on this
dataset, appropriately increasing the weight of the Dice loss helps to improve model performance, but
performance will decline after a certain proportion. On the CHN6-CUG dataset from Table 14, when
the weight of the Dice loss was increased to a ratio of 1:3, the Acc, IoU, and MIoU values increased,
suggesting that on this dataset, increasing the weight of the Dice loss also has a positive effect on
enhancing model performances.

Table 13: Analysis of ablation experiments with ConvNeXt-UPerNet using CE + Dice weighting on
DeepGlobe dataset

a:b Pre (%) Acc (%) IoU (%) MIoU (%)

CE + Dice 1:1 79.49 97.92 69.12 83.47
1:2 78.90 97.93 69.09 83.46
1:3 79.40 97.93 69.28 83.56
1:4 79.61 97.92 69.15 83.48
1:5 79.88 97.88 68.89 83.34

Table 14: Analysis of ablation experiments with ConvNeXt-UPerNet using CE + Dice weighting on
CHN6-CUG dataset

a:b Pre (%) Acc (%) IoU (%) MIoU (%)

CE+Dice 1:1 76.99 97.59 64.68 81.08
1:2 78.47 97.60 65.19 81.34
1:3 78.17 97.63 65.40 81.46
1:4 78.08 97.56 64.67 81.05
1:5 79.05 97.49 64.35 80.86

However, when the weight ratio is further increased to 1:5, the model’s performance declines. A
possible reason is that this paper employed the AdamW [37], a gradient-based optimization algorithm.
An excessively large weight may lead to gradient explosion, making it difficult for the model to
converge. Taking into account the results from both datasets, we can conclude that appropriately
adjusting the weight ratio between CE and Dice losses, especially by increasing the weight of the Dice
loss, can effectively enhance the model’s performance in road extraction tasks.

5 Conclusion

This paper presents the adjustment and optimization of the original network model for road
extraction from high-resolution remote sensing images by combining ConvNeXt with CBAM and the
UPerNet network model. A series of ablation experiments were conducted to prove the effectiveness
of the model in terms of architecture and training. Moreover, a comparison experiment was conducted
using the classical semantic segmentation models on the DeepGlobe and CHN6-CUG road datasets.
As a result, the Pre, Acc, IoU, and MIoU indicators showed varying degrees of improvement, and
the visual results are evident. The model effectively addresses issues such as the impact of complex
backgrounds, including tree occlusion and road junction fractures. When faced with noise or complex
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backgrounds, the network model can focus on key areas, obtain multiscale context information to
achieve global understanding, and ultimately improve its performance.
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