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ABSTRACT

The recent development of the Internet of Things (IoTs) resulted in the growth of IoT-based DDoS attacks. The
detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent
botnets in interconnected devices. Anomaly detection models evaluate transmission patterns, network traffic, and
device behaviour to detect deviations from usual activities. Machine learning (ML) techniques detect patterns
signalling botnet activity, namely sudden traffic increase, unusual command and control patterns, or irregular
device behaviour. In addition, intrusion detection systems (IDSs) and signature-based techniques are applied to
recognize known malware signatures related to botnets. Various ML and deep learning (DL) techniques have been
developed to detect botnet attacks in IoT systems. To overcome security issues in an IoT environment, this article
designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification (GTODL-BADC)
technique. The GTODL-BADC technique follows feature selection (FS) with optimal DL-based classification for
accomplishing security in an IoT environment. For data preprocessing, the min-max data normalization approach
is primarily used. The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal
feature subsets. Moreover, the multi-head attention-based long short-term memory (MHA-LSTM) technique was
applied for botnet detection. Finally, the tree seed algorithm (TSA) was used to select the optimum hyperparameter
for the MHA-LSTM method. The experimental validation of the GTODL-BADC technique can be tested on a
benchmark dataset. The simulation results highlighted that the GTODL-BADC technique demonstrates promising
performance in the botnet detection process.

KEYWORDS
Botnet detection; internet of things; gorilla troops optimizer; hyperparameter tuning; intrusion detection system

1 Introduction

The production of IoT devices caused the stable growth of IoT-based attacks. Currently, dan-
gerous IoT risks are nothing but IoT Botnet attacks that attempt to pledge effective, profitable and
actual cybercrimes [1]. IoT botnets are groups of Internet-connected IoT devices infected by malware
and accomplished slightly by attackers. IoT networks have essential tasks in providing models to
identify safety vulnerabilities and attacks owing to the fast development of threats and the assortment
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of attack strategies [2]. If malware is implemented, there will be a growing number of advances in
DL/ML based recognition models that use full-time series data. However, there is a requirement
to employ full-time series data harshly parameters present functions efficacy [3]. In addition, early
identification permits enhanced IoT Botnet response suggestions. As an outcome, it reduces injuries
that are affected by probable assaults. The dynamic analysis method surveys how malware relates to its
atmospheres when executed [4]. The use of botnets and bot malware supports other dangerous online
actions like distributed denial of service assaults, click scams, and spam and virus distribution. IoT
Botnet development contains propagation and extensive scan stage [5]. If it is viable to diagnose and
distinguish bots beforehand, they initiate a definite assault, namely DDoS; IoT Botnet recognition
solutions have a harsher effect. So, it is vital to classify dangerous activities of IoT Botnet modules as
much as possible.

A botnet attack is one of the severe attacks recognized for spreading quickly among devices linked
to the Internet [6]. There are chief gaps in prior techniques for discovering suitable and effective
mechanisms to defend IoT devices from botnet assaults [7]. An IDS is the only dominant solution
for dealing with botnet attacks. It utilizes artificial intelligence (AI) to discover novel botnet attack
designs. An IDS is separated into dual kinds such as misuse and anomaly models [8]. These types
are highly based on being signature-based. Many IDSs, like Suricata and Snort, are obtainable. AI
techniques are employed to identify IoT attacks with further assured recognition. AI techniques can
discover alterations in networks and approaches to attacks. This was one of the high tasks tackled
by security solutions to handle IoT attacks [9]. Generally, hackers make slight variations in preceding
attacks that security solutions cannot identify. Numerous researchers employ AI methods to prevent
threats to the IoT environment by examining network traffic. DL and ML models are built into security
systems to discover such assaults proficiently. DL is one of the AI developments used in real time to
handle complex nonlinear data [10]. A deep recurrent neural network (DRNN) is executed to detect
botnet assaults from IoT devices.

This article designs a gorilla troops optimizer with a DL-enabled botnet attack detection and
classification (GTODL-BADC) technique. The GTODL-BADC technique follows feature selection
(FS) with optimal DL-based classification for accomplishing security in the IoT environment. For
data preprocessing, the min-max data normalization approach is primarily used. The GTODL-BADC
technique uses the GTO algorithm to select features and elect optimal feature subsets. Moreover, multi-
head attention-based long short-term memory (MHA-LSTM) methodology is applied for botnet
detection. Finally, the tree seed algorithm (TSA) can select the optimum hyperparameter for the MHA-
LSTM technique. The experimental validation of the GTODL-BADC technique can be tested on a
benchmark dataset.

2 Related Works

In [11], an innovative lightweight and generic NIDS with a 2-phase architecture was designed. This
technique initially developed 21 statistical features, and depending on these features, a model has been
devised according to an AE for filtering. Next, a new technique was developed to convert packet length
sequences like a 3-channel RGB image for detection dependent upon a lightweight CNN technique.
Hezam et al. [12] developed a DL method that includes 3 DL methods, such as CNN, LSTM-RNN,
and RNN, to combat DDoS attack-targeted IoT environments. The methods are examined by applying
an N-BaIoT database, which could be gathered by affecting nine IoT devices with two major serious
DDoS botnets such as Mirai and BASHLITE. Haq et al. [13] designed two innovative architectures
namely Deep Neural Network (DNN), DNNBoT1 and DNNBoT2, for identifying and categorizing
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botnet attacks, namely BASHLITE and Mirai. The application of PCA has been accomplished to
feature extraction. The system could be presented depending on rigorous hyperparameter tuning with
GridsearchCV. Khan et al. [14] considered a lightweight and robust DL method. This technique was
to exhibit the scalability and attack detection effectiveness employed for training as well as testing.
Besides, the developed Hybrid system was related to a benchmark Artificial Neural Network (ANN)
model. In [15], the federated DL (FDL) technique was developed for zero-day botnet attack detection.
An optimum DNN method was utilized for classification. A method parameter supports remote
controls of the self-sufficient DNN architecture training at numerous IoT-edge devices. However,
the federated averaging (FedAvg) technique could be exploited to combine local model updates. A
global DNN was generated, followed by a count of communication iterations among the IoT-edge
devices and architecture parameter server. Hasan et al. [16] planned a hybrid intelligent DL approach
for protecting the IIoT environment from dangerous and difficult multi-variant Botnet attacks. The
developed method was severely analyzed with a new database, normal and comprehensive efficiency
assessment metrics, and standard DL methods. Also, cross-validation of these outcomes was further
executed to exhibit overall effectiveness.

In [17], an ARP spoofing identification method was developed by applying an explainable DL
method such as ARP-PROBE for IoT networks. This introduced algorithm depends on features
removed in network packets for identifying ARP spoofing rapidly and efficiently employing an
FS and extraction model, which recognizes and chooses the extremely significant features. In [18],
cooperative game theory incorporating three methods, namely LSTM, AE, and SVM, has been
implemented to recognize IoT botnet attacks. The developed methods depend upon the efficient
FS through cooperative game theory and shapely values under a database collected at a 5 IoT
device attacked with botnets and employing AE, LSTM, and SVM for recognizing IoT Botnet
traffic. Nazir et al. [19] aimed to detect effectual ML and DL models for IoT Botnet recognition
by evaluating standard datasets, metrics, and preprocessing models. In [20], a novel model by joining
collaborative threat intelligence and blockchain (BC) technology with ML methods, this model also
utilizes Random Forest (RF), Decision Tree (DT) classifier, Ensemble, CNN, and LSTM methods.
Abualigah et al. [21] proposed a novel IPDOA model, which enhances the search procedure of the
Prairie Dog Optimization Algorithm (PDOA) by integrating the initial upgrading mechanism of
the Dwarf Mongoose Optimization Algorithm (DMOA). Sangaiah et al. [22] incorporated linear
correlation feature selection techniques utilizing INTERACT and MLP, suggesting the uninterrupted
employment of data balancing approaches. Javadpour et al. [23] proposed a novel distributed multi-
agent IDPS (DMAIDPS) model, where learning agents execute a six-step recognition procedure
for classifying network behaviour. Several DL methods comprising CNN, LSTM-RNN, and DNN,
along with a rigorous hyperparameter tuning process, are utilized for detecting IoT botnets, while
federated DL models and fusion intellectual DL methods improve cybersecurity in IIoT environments
by accentuating effectual FS and model optimization.

3 The Proposed Method

This article designs a novel GTODL-BADC technique. The technique follows FS with opti-
mal DL-based classification for accomplishing security in the IoT environment. It comprises four
main processes: min-max data normalization, GTO-based feature subset selection, MHA-LSTM-
based classification, and TSA-based hyperparameter tuning. Fig. 1 illustrates the entire flow of the
technique.
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Figure 1: Overall flow of GTODL-BADC technique
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3.1 Data Normalization

For data preprocessing, the min-max data normalization approach is primarily used. Min-max
normalization is a critical preprocessing method applied in botnet recognition in IoT atmospheres
to normalize and measure sensor data features [24]. This technique changes raw sensor values into a
shared range, naturally among 0 and 1, by deducting the least value and separating by range (difference
amid maximal and minimal values). This normalization safeguards that numerous sensor readings
with dissimilar measures are carried to an even scale, permitting actual comparison and analysis. In
botnet recognition, this standardized data becomes helpful for training ML methods. By simplifying
consistent feature representation through various IoT devices, min-max normalization donates to
creating robust methods to classify abnormal patterns related to potential botnet actions through
multiple devices and sensors.

3.2 GTO-Based FS

The GTODL-BADC technique uses the GTO model to elect optimal feature subsets at this stage.
The GTO model relies entirely on many separate performances of gorillas that are arithmetically
replicated. Five behaviours are taken in this state to improve gorillas’ behaviour, such as 3 for the
exploration and 2 for the exploitation phases [25]. These actions include migration to a weird area,
migration to other gorillas, travel near a definite spot, challenges for adult females and conducting
silverback. The 2 phases signify the mentioned planned choices which are separated into exploitation
as well as exploration phase demonstrated in the following sub-sections.

Exploration stage. In this stage, three distinct behaviors are explained: the 1st one is to manifest
GTO exploration, whereas 2nd tactic signifies migrant behaviour to other gorillas. Besides, 3rd plan
goals at cheering GTO’s abilities in defining countless computing spaces denotes movement near a
definite spot. Eq. (11) signifies three behaviours arithmetically, where action to unknown endpoint
approach in this equation. Suppose an arbitrary number (rn) exceeds a factor (Fr). Also, migrants to
other gorillas or migrants near a definite spot are cautiously chosen if an arbitrary number is equal or
more than 50 percent.

GtX (Itn + 1)

=

⎧⎪⎨
⎪⎩

LB + rn1 × (UB − LB), Fr > rn
Z × X(Itn) × Q + Xr(Itn) × (rn2 − D × (1 − Itn/MxItn)) , 0.5 ≤ rn,
X (Itn) + (X (Itn) − GoXr (t)) × rn3 − (

X (Itn) − GoXr (Itn) × Q2
)

, 0.5 > rn

(1)

D = cos (2 × rn4) + 1 (2)

Q = D ×
(

1 − Itn
MxItn

)
(3)

Z = [−(D × (1 − Itn/MxItn)), D × (1 − Itn/MxItn)] (4)

Whereas rn, rn1, rn2, rn3, and rn4 demonstrate random values amongst [0, 1], while X (Itn) and
GtX(Itn + l) state complete and future routes of the gorilla’s location. Random movable variables
Xr and GtXr determine a gorilla’s present group and its potential location. The factor (Fr) must be
in the range [0:1] and describes the prospect of deciding on a travelling technique to an anxious site.
UB denotes minimum bound, and LB signifies maximum bound. The variables D and Q are defined
accurately by Eqs. (1) and (4). A maximal and current iteration amount is categorized by (Itn) and
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(MxItn). Also, representation (Z) is [−(D×(1−Itn/MxItn)), D×(1−Itn/MxItn)], while representation
(s) means arbitrary values between [−1:1].

Exploitation phase: 2 strategies are projected in this phase when factor D × (1 − Itn/MxItn)

is equated with variable (Y). These two performances led silverback to compete with adult females.
When the value of Y equals or is less than the value of D × (1 − Itn/MxItn), 1st one is defined, and
then the method of silverback selected can guide others to food sources. This approach is signified
mathematically in Eq. (15), which is mentioned below:

GtX (Itn + 1) = Q × R (Itn) × (X (Itn) − Xsb) + X (Itn) (5)

R (Itn) =
⎛
⎝

∣∣∣∣∣
(

1
NG

) NG∑
i=1

GtXi (Itn)

∣∣∣∣∣
2Q⎞

⎠
(

1
2Q

)

(6)

Whereas NG is gorillas’ populace; Xsb specifies silverback; X(Itn) means the gorilla location vector;
and GtXi (Itn) indicates gorilla position 0 in iteration Itn.

If the value of y is more than the term D × (1 − Itn/MxItn), the approach of competing for adult
females is nominated. It signified arithmetically Eq. (17), which is given below:

GX (Itn) = Xsb − (Xsb × L − X (Itn) × L) × A (7)

L = 2 × rn5 − 1 (8)

A = β × E, E =
{

NG1rn ≥ 0.5
NG2rn < 0.5

(9)

where L denotes the force of impact; rn5 represents an arbitrary amount from [0:1]; β represents the
pre-optimization value that is definite and set to 3; factor (A) vector denotes ferocity level in battle;
and E is used as a follower for violence effectiveness.

If the fitness value of GtX(Itr) is less than X(Itn), then the GtX(Itn) solution will substitute X(Itn).

Enhanced GTO combining tangent flight approach. An improved GTO (IGTO) includes this
section’s Tangent Flight Strategy (TFS). Cauchy calculated below, and its tangent function is similar
to TFS:

f = tan
(

pp × π

2

)
(10)

pp = randn (1, Dim) (11)

Meanwhile, pp denotes an evenly distributed random amount with values in the interval [0, 1],
and Dim denotes the number of dimensions in the function. This process is proficient in competently
penetrating search space. This function is periodic and never breaks the balance between exploitation
as well as exploration. TFS is added to Eq. (15) by the recommended IGTO technique. The separation
between the gorilla and silverback will narrow as an outcome of this alteration, radically decreasing
the final step size and enhancing the principal value. This model is explained scientifically below:
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GtX (Itn + 1) =
(

tan
(
π × 2pp−1

2

)
100

)
× Q × R(Itn) × (X (Itn) − Xsb) + X (Itn) (12)

The fitness function (FF) reflects classification accuracy and the number of nominated features. It
increases classification accuracy and reduces the set size of the nominated feature. So, FF is employed
to estimate individual solutions as given in Eq. (13).

Fitness = α ∗ ErrorRate + (1 − α) ∗ #SF
#All_F

(13)

Whereas ErrorRate denotes the classification error rate employing a particular feature. ErrorRate
is intended as a percentage of improper categorized to the amount of classification prepared, conveyed
as a value amid 0 and 1 (ErrorRate is the complement of classification accuracy), #SF denotes the
number of selected features, and #All_F signifies the total quantity of attributes in original datasets.
α employed to control the significance of classification quality and subset length. In the tests, α is set
to 0.9.

3.3 Botnet Detection Using MHA-LSTM

For the classification process, the MHA-LSTM model can be applied. LSTM is comprised of

a memory unit called a cell
(

C̃t

)
,the update gate (ut), forget gate (ft), input gate (it), and output

gate (ot) [26]. Using the above gates, it is possible to obtain, keep, or write data from or into a cell.
Correspondingly, assume W and b, X(f , i, c, o) as the controlling gates of present input Xt prior output
ot, weight matrix, and bias.

ft = Sigmoid

(
W o

f [ht−1, Xt] + bf

)
(14)

Eq. (14) signifies the entry-wise multiplication of prior data and present input that relies on the
existing values of the forget gate. Zero and non-zero values of the forget gate imply throwing away and
passing the data individually. At the same time, input implements data and keeps it in a memory unit.
Next, the input gate (if ) decides on the sigmoid function what data to be transmitted and forgotten
from the storage unit. The input gate generates a near-zero output to avoid cell updates from novel
data input.

it = Sigmoid

(
W o

i [ht−1, Xt] + bi

)
(15)

C̃t = tanh
(
W O

C [ht−1, Xt] + bC

)
(16)

Lastly, the new memory unit is combined with the output gate to determine the existing value of
LSTM, in which the output gate exploits sigmoid activation to elect which condition in the existing
cell serves as an outcome and the novel memory unit exploits tanh to allocate output value.

ot = Sigmoid

(
W O

o [ht−1, Xt] + bo

)
(17)

ht = oo
t tanh (Ct) (18)

Among the difficulties experienced in this field is the capability to address tasks with longer-term
dependency. LSTM is an effective model for forecasting accurate time series. Despite addressing chal-
lenges such as gradient expansion and vanishing problems, LSTM is widely adopted for applications
that heavily depend on prior information.
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MHA-LSTM is a refined neural network structure that integrates the strength of multi-head
attention mechanisms and LSTM. In this hybrid method, multi-head attention is combined into the
LSTM framework to increase the network’s capability to capture longer-range needs and instantly
appear to dissimilar portions of the input sequence. Fig. 2 depicts the infrastructure of MHA-LSTM.

Figure 2: Architecture of MHA-LSTM

The multi-head attention mechanism permits the method to concentrate on dissimilar places
within the input sequence in parallel, allowing it to capture difficult relationships and dependencies
more efficiently. This is mainly beneficial for challenges involving sequential data where definite
elements have varying levels of significance at dissimilar time steps.

3.4 Hyperparameter Tuning

Finally, the TSA can be applied to optimize the hyperparameter selection of the MHA-LSTM
model. The TSA is simulated by nature, as presented by Kıran in 2015 [27]. TSA has designed the
connection of positions of seeds and trees from searching space. An optimum tree in population or
arbitrarily elected tree position was utilized for all seed productions. An essential parameter of the
TSA technique is the ST control parameter. This parameter ensures a variety of seed production. This
variety has been recognized by employing the formulas in Eqs. (19) and (20). Once the arbitrarily
elected number is lesser than the ST parameter value, the 1st formula is utilized, and once it is greater,
the 2nd formula is employed.

Si,j = Ti,j + αi,j ×
(
Bj − Tr,j

)
(19)

Si,j = Ti,j + αi,j ×
(
Ti,j − Tr,j

)
(20)
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Meanwhile, Si,j signifies the seeds produced. Ti,j denotes the tree of a specific size. αi,j stands for the
random number created among [−1, 1]. Bj implies the best tree. Tr,j indicates the tree arbitrarily elected
from the population. In the early searching space, the primary population (tree places) was stated to
have feasible performance in optimizer issues, which was achieved utilizing Eq. (21).

Ti,j = Lj,min + ri,j

(
Hj,max − Lj,min

)
(21)

Lj,min, and Hj,max denote the low and upper bounds of searching space, respectively. ri,j signifies the
arbitrarily created value between zero and one. To select the optimum performance in the population,
the function f is determined, which is utilized in Eq. (22).

B = min f
( �Ti

)
i = 1, 2, . . . , N (22)

In this case, N denotes the trees from the population. At this point, trees are 1st planted from the
searching space (a); after that, seed production is applied to all the trees (b), and lastly seed chosen is
implemented (c). The pseudocode of TSA is provided in Algorithm 1.

Algorithm 1: Pseudocode of TSA
Step1: The initialization of the algorithm

Arbitrarily created tree places on the D-dimension searching space utilizing
Eq. (3). Estimate the tree places by the fitness function.
Choose the optimum place utilizing Eq. (22).

Step2: Searching with seeds
For every tree

Choose the amount of seeds created for this tree.
For each seed

FOR every size
IF (rand < ST)

Upgrade this size utilizing Eq. (19).
ELSE

Upgrade this size utilizing Eq. (20).
END IF

END FOR
END FOR
Choose the optimum seed and examine it with a tree.

If the seed place is superior to the tree place, the seed alternates for this tree.
END FOR

Step3: Chosen better performance
Choose the best performance of the population.

If the new optimum performance is superior to the preceding optimum solution, the new better
performance will replace the preceding better performance.
Step4: Testing the end situation

Fitness selection is a considerable factor influencing the performance of TSA. The hyperparame-
ter selection procedure includes a solution encoding method to estimate the effectiveness of candidate
solutions. In this work, TSA reflects accuracy as the main principle for designing FF, as expressed
below:
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Fitness = max (P) (23)

P = TP
TP + FP

(24)

From the above mentioned expression, TP and FP signify true positive and false positive values,
respectively.

4 Result Analysis and Discussion

This section examines the performance of the GTODL-BADC technique under the Bot-IoT
Database [28]. It includes 900 samples and two classes, as represented in Table 1.

Table 1: Details of the dataset

Classes No. of instances

Botnet 450
Normal 450
Total instances 900

Fig. 3 displays the confusion matrices accomplished by the GTODL-BADC method under 80:20
and 70:30 of the training phase (TRPH)/testing phase (TSPH). The attained outcomes indicate
proficient recognition under two classes.

Figure 3: (Continued)
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Figure 3: Confusion matrices of GTODL-BADC model (a, b) 80:20 TRPH/TSPH and (c, d) 70:30 of
TRPH/TSPH

In Table 2 and Fig. 4, the botnet recognition analysis of the GTODL-BADC technique can
be illustrated on 80:20 of TRPH/TSPH. The results depict that the GTODL-BADC technique
achieves effectual botnet detection results. With 80% of TRPH, the GTODL-BADC technique gains
average accuy, precn, recal, Fscore, and AUCscore values of 98.34%, 98.35%, 98.34%, 98.33%, and 98.34%.
Additionally, with 30% of TSPH, the GTODL-BADC methodology gets average accuy, precn, recal,
Fscore, and AUCscore values of 99.44%, 99.46%, 99.44%, 99.44%, and 99.44%, correspondingly.

Table 2: Botnet recognition outcomes of the GTODL-BADC approach on 80:20 TRPH/TSPH

Classes Accuy Precn Recal Fscore AUCscore

TRPH (80%)

Botnet 97.23 99.43 97.23 98.32 98.34
Normal 99.44 97.28 99.44 98.35 98.34
Average 98.34 98.35 98.34 98.33 98.34

TSPH (20%)

Botnet 98.88 100.00 98.88 99.44 99.44
Normal 100.00 98.91 100.00 99.45 99.44
Average 99.44 99.46 99.44 99.44 99.44

Table 3 and Fig. 5 show the botnet recognition analysis of the GTODL-BADC technique under
70:30 of TRPH/TSPH. The acquired outcomes show that the GTODL-BADC technique gets success-
ful botnet detection outcomes. According to 70% of TRPH, the GTODL-BADC technique achieves
average accuy, precn, recal, Fscore, and AUCscore values of 98.57%, 98.57%, 98.57%, 98.57%, and 98.57%.
Besides, on 30% of TSPH, the GTODL-BADC methodology gives average accuy, precn, recal, Fscore,
and AUCscore values of 99.64%, 99.63%, 99.64%, 99.63%, and 99.64%, respectively.
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Figure 4: Average outcomes of the GTODL-BADC approach on 80:20 TRPH/TSPH

Table 3: Botnet recognition analysis of the GTODL-BADC approach on 70:30 TRPH/TSPH

Classes Accuy Precn Recal Fscore AUCscore

TRPH (70%)

Botnet 98.40 98.72 98.40 98.56 98.57
Normal 98.74 98.43 98.74 98.58 98.57
Average 98.57 98.57 98.57 98.57 98.57

TSPH (30%)

Botnet 99.27 100.00 99.27 99.63 99.64
Normal 100.00 99.25 100.00 99.63 99.64
Average 99.64 99.63 99.64 99.63 99.64

Figure 5: Average outcome of the GTODL-BADC approach with 70:30 TRPH/TSPH
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The accuy curves for training (TR) and validation (VL) displayed in Fig. 6 for the GTODL-
BADC technique with 70:30 TRPH/TSPH provide valued insights into its efficiency with numerous
epochs. Precisely, it can reliably enhance in both TR and TS accuy to refining epochs, showing the
model’s ability to recognize and learn patterns in these data of TR and TS. The upgrade trends in TS
accuy display the model’s adaptability for the dataset of TR and its capabilities for producing correct
predictions on unseen data, underscoring supreme generalization proficiencies.

Figure 6: Accuy curve of the GTODL-BADC approach with 70:30 TRPH/TSPH

Fig. 7 specifies a wide-ranging overview of the TR and TS loss values to the GTODL-BADC
methodology with 70:30 TRPH/TSPH in diverse epochs. This TR loss constantly lessened as the
model grew in weight to reduce classification errors with these datasets. These loss curves considerably
indicate the model’s alignment with the TR database, underscoring proficiencies for capturing patterns.
The continuous parameters are modified in the GTODL-BADC technique to minimize discrepancies
between actual and predicted TR labels.

As regards the PR curve shown in Fig. 8, the findings confirm that the GTODL-BADC technique
on 70:30 TRPH/TSPH reliably achieves boosted PR values in every class. These outcomes underscore
the model’s efficient capacity for discerning among many classes, emphasizing its effectiveness in
recognizing class labels precisely.
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Figure 7: Loss curve of the GTODL-BADC approach on 70:30 TRPH/TSPH

Figure 8: PR curve of the GTODL-BADC approach under 70:30 TRPH/TSPH
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Additionally, Fig. 9 reveals ROC curves generated by the GTODL-BADC technique with 70:30
TRPH/TSPH, signifying its proficiency in differentiating amongst classes. These curves give valued
insights into how the trade-off between FPR and TPR varied at diverse classification epochs and
thresholds. The acquired outcomes emphasize the model’s exact classification efficiency in diverse
class labels, emphasizing its effectiveness in addressing several classification challenges.

Figure 9: ROC curve of the GTODL-BADC approach with 70:30 TRPH/TSPH

Table 4 demonstrates a comparison analysis of the GTODL-BADC technique with recent
approaches [29]. In Fig. 10, a brief analysis of the GTODL-BADC technique in terms of accuy. The
results indicate that the GTODL-BADC technique boosts performance. Based on accuy, the GTODL-
BADC technique gains an increased accuy of 99.64%, whereas the BNTCB-POADL, BDCRSO-
DL, P2PBDS, MTCCNN, DT, host, and FLANN models obtain decreased accuy values of 99.54%,
99.15%, 94.52%, 95.04%, 97.91%, 92.95%, and 98.96%, respectively.

Table 4: Comparison outcome of the GTODL-BADC approach with other models

Methods Accuy Precn Recal Fscore

GTODL-BADC 99.64 99.63 99.64 99.63
BNTCB-POADL 99.54 99.41 99.51 99.48
BDCRSO-DL 99.15 96.93 99.21 98.04
P2PBDS 94.52 95.65 96.71 94.68

(Continued)
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Table 4 (continued)

Methods Accuy Precn Recal Fscore

MTCCNN 95.04 95.89 97.81 96.20
DT 97.91 94.97 95.97 95.69
Host-based model 92.95 95.36 96.86 96.61
FLANN 98.96 96.34 97.89 97.12

Figure 10: Accuy analysis of the GTODL-BADC approach with other models

In Fig. 11, a comprehensive analysis of the GTODL-BADC technique concerning precn, recal,
and Fscore, the accomplished outcomes show the GTODL-BADC technique achieved increased per-
formance. According to precn, the GTODL-BADC technique gets improved precn of 99.63% whereas
the BNTCB-POADL, BDCRSO-DL, P2PBDS, MTCCNN, DT, host, and FLANN methodologies
acquire diminished precn values of 99.41%, 96.93%, 95.65%, 95.89%, 94.97%, 95.36%, and 96.34%.
Based on recal, the GTODL-BADC method gives an increased recal of 99.64%, but the BNTCB-
POADL, BDCRSO-DL, P2PBDS, MTCCNN, DT, host, and FLANN methodologies get lessened
recal values of 99.51%, 99.21%, 96.71%, 97.81%, 95.97%, 96.86%, and 97.89%. Also, on Fscore,
the GTODL-BADC technique offers an increased Fscore of 99.63%, however, the BNTCB-POADL,
BDCRSO-DL, P2PBDS, MTCCNN, DT, host, and FLANN methodologies obtain reduced Fscore

values of 99.48%, 98.04%, 94.68%, 96.20%, 95.69%, 96.61%, and 97.12%, respectively.

These achieved results ensured the accurate and automated botnet detection results of the
GTODL-BADC technique.
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Figure 11: Comparative analysis of the GTODL-BADC approach with other models

5 Conclusion

In this article, a novel GTODL-BADC methodology is presented. The GTODL-BADC method-
ology follows FS with optimal DL-based classification for accomplishing security in an IoT envi-
ronment. For data preprocessing, the min-max data normalization approach is primarily used. The
GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature
subsets. Moreover, the MHA-LSTM-based classification model can be applied for botnet detection.
Finally, TSA can be used to select the optimum hyperparameter for the MHA-LSTM technique.
The experimental validation of the GTODL-BADC technique was tested on a benchmark dataset.
The simulation results highlighted that the GTODL-BADC technique demonstrates promising per-
formance in the botnet detection process. The GTODL-BADC approach may comprise scalability
threats with large-scale IoT utilization and the requirement for additional analysis across various IoT
environments. Future studies may explore incorporating further security layers and improving real-
time threat response abilities to reduce growing botnet outbreaks effectually.
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