
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.052835

ARTICLE

Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine
Learning Classifiers for Windows Malware Detection

Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3,
Adel Alshamran4, Kanwal Imran5 and Hessa Alfraihi6

1Department of Software Engineering, International Islamic University, Islamabad, 25000, Pakistan
2Information Technology Department, Faculty of Computers and Information Technology, University of Tabuk, Tabuk, 71491,
Saudi Arabia
3Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah,
Jeddah, 21493, Saudi Arabia
4Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, 21493, Saudi Arabia
5Department of Computer Science, University of Peshawar, Peshawar, 25121, Pakistan
6Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
University, Riyadh, 11671, Saudi Arabia

*Corresponding Author: Islam Zada. Email: islam.zada@iiu.edu.pk

Received: 16 April 2024 Accepted: 09 July 2024 Published: 15 August 2024

ABSTRACT

Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and
prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware
detection. However, there remains a need for comprehensive studies that compare the performance of different
classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for
enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine
learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware
detection. Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection
methods and improve overall security measures. This study aims to bridge the research gap by conducting a
comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems. The
objectives include Investigating the performance of various classifiers, such as Gaussian Naïve Bayes, K Nearest
Neighbors (KNN), Stochastic Gradient Descent Classifier (SGDC), and Decision Tree, in detecting Windows
malware. Evaluating the accuracy, efficiency, and suitability of each classifier for real-world malware detection
scenarios. Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity
practitioners and researchers. Offering recommendations for selecting the most effective classifier for Windows
malware detection based on empirical evidence. The study employs a structured methodology consisting of
several phases: exploratory data analysis, data preprocessing, model training, and evaluation. Exploratory data
analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements. Data
preprocessing includes cleaning, feature encoding, dimensionality reduction, and optimization to prepare the data
for training. Model training utilizes various supervised classifiers, and their performance is evaluated using metrics
such as accuracy, precision, recall, and F1 score. The study’s outcomes comprise a comparative analysis of supervised
machine learning classifiers for Windows malware detection. Results reveal the effectiveness and efficiency of each
classifier in detecting different types of malware. Additionally, insights into their strengths and limitations provide

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052835
https://www.techscience.com/doi/10.32604/cmc.2024.052835
mailto:islam.zada@iiu.edu.pk

2918 CMC, 2024, vol.80, no.2

practical guidance for enhancing cybersecurity defenses. Overall, this research contributes to advancing malware
detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.

KEYWORDS
Security and privacy challenges in the context of requirements engineering; supervised machine learning; malware
detection; windows systems; comparative analysis; Gaussian Naïve Bayes; K Nearest Neighbors; Stochastic Gradient
Descent Classifier; Decision Tree

1 Introduction

The escalating threat of malware in contemporary digital ecosystems, especially within Windows
operating environments, underscores the urgent need for robust detection mechanisms. Malicious
software, spanning a spectrum from viruses to ransomware, poses severe risks including data breaches,
system compromise, and operational disruptions. Consequently, the development of effective malware
detection methodologies has become paramount for safeguarding systems and data integrity.

Supervised machine learning offers a promising avenue for malware detection, leveraging labeled
datasets to train classifiers capable of discerning malicious patterns and behaviors. Among the
diverse array of supervised learning algorithms, Gaussian Naïve Bayes, K Nearest Neighbors (KNN),
Stochastic Gradient Descent Classifier (SGDC), and Decision Tree have emerged as notable con-
tenders for malware detection. However, a comprehensive comparative analysis of these classifiers,
specifically tailored for Windows malware detection, is notably absent from existing literature.

The malware industry, like any other software industry, is a stable, well-organized, and well-funded
market and is taking measures to evade traditional security measures. To solve the issue of malware
attacks on Windows machines, Microsoft decided to take countermeasures to detect possible attacks
before they happened and then make their system more secure and more durable [1]. This is an essential
measure to take because once the malware successfully hits the system and manages to take control
of the system, the valuable information of the end user or a business or sensitive information may
be at stake which may result in a drastic drop in the clients’ trust on the Microsoft’s system. So,
Microsoft challenged the data scientists and data analysts from across the globe to make the prediction
on the data provided by them which is the real data by hiding the end user’s private details. There are
numerous data-driven techniques imposed as research work to determine the in-time possibility of
malware attacks on machines to better tackle it to minimize the loss associated with the attack [2].
Some of these techniques work on executable processes while others draw out the patterns from the
malware data to match the programs to check whether it is malware. Our proposed work takes the data
which is System configurations such as ‘Machine Version’, ‘Operating System (OS) version’, ‘Processor
type’, ‘firewall’, etc., and predicts the malware attack using supervised Machine Learning techniques.
We applied various classification techniques to the given data and compared the outcomes of these
techniques during the analysis. If we talk about the motive for this research, Microsoft, who offered
a $25,000 reward on the international data science competition website “Kaggle,” is the motivating
factor behind it. The threat posed by malware to Windows operating systems is the highest of all the
companies competing in this industry, Microsoft likewise handled this issue seriously. All the machines
that are affected by the malware threats, around 87% of them are Windows machines, which is a huge
figure and a serious indication for Microsoft to consider security improvements in their operating

CMC, 2024, vol.80, no.2 2919

systems. The task here is to analyze the system configuration and build the model which in turn
would be able to predict the probability of malware attack on the system with provided facts and
system configurations [3–5]. This prediction is for the Windows operating system as the data gathered
is provided by Microsoft from their Windows operating system users. The dataset is provided by
Microsoft from their Windows machine users by considering the end user privacy, so the identification
is hidden. The data is sampled by taking a major proportion of the machines hit by malware. Also,
during the exploration of the data, we figured out that the data is balanced and contains almost equal
amounts of both target classes, the one in which malware was detected and the one in which malware
wasn’t detected. This makes sure that our classification is unbiased.

The main contributions of this article are as follows:

1. Predicting whether a Windows Personal Computer (PC) would probably decline prey to a
malware assault.

2. Prediction of malware attack using system configuration data, such as machine version, OS
version, processor type, and a firewall based on machine learning.

3. On the feature set, feature selection techniques have been used to extract the most significant
features, which can reduce computation requirements without affecting the detection perfor-
mance of machine learning algorithms.

4. Comparing the accuracy of the predicted results from various machine learning classification
algorithms, including K Nearest Neighbors (KNN), Support Vector Machine (SVM), and
others.

1.1 The Necessity of Performing a Comparative Analysis

Performing a comparative analysis of supervised machine learning-based Windows malware
detection methods is essential for several reasons.

Firstly, the landscape of cybersecurity threats, particularly those targeting Windows systems, is
constantly evolving. As attackers develop more sophisticated malware variants, it becomes crucial for
security researchers and practitioners to assess the effectiveness of different detection approaches. A
comparative analysis allows for the systematic evaluation of multiple supervised machine learning
classifiers, providing insights into their performance in detecting a diverse range of malware samples.

Secondly, by conducting a comparative analysis, researchers can identify the strengths and
weaknesses of each classifier in the context of Windows malware detection. Different classifiers may
excel in certain scenarios based on factors such as dataset characteristics, feature extraction methods,
and model complexity. Through rigorous evaluation using standardized metrics, such as accuracy, True
Positive Rate (TPR), and False Positive Rate (FPR), researchers can determine which classifiers offer
the highest levels of detection accuracy and robustness across various malware families and attack
vectors.

Lastly, a comparative analysis facilitates the selection of the most effective supervised machine
learning approach for Windows malware detection in practical settings. By identifying the top-
performing classifiers, cybersecurity professionals can make informed decisions when deploying
detection systems in real-world environments. This ensures that resources are allocated efficiently
and that organizations can effectively defend against evolving threats. Moreover, the insights gained
from the comparative analysis contribute to the advancement of malware detection techniques, driving
innovation in the field of cybersecurity research and enabling the development of more resilient defense
mechanisms.

2920 CMC, 2024, vol.80, no.2

1.2 Contribution to the Windows Malware Detection Domain

In addition to conducting comprehensive experiments, this study makes a significant contribution
to the Windows malware detection domain by advancing our understanding of the effectiveness of
supervised machine learning techniques in combating malware threats targeting Windows systems. By
evaluating and comparing multiple supervised learning classifiers, including Support Vector Machine
(SVM), K Nearest Neighbors (KNN), Gaussian Naïve Bayes, and Decision Tree, this research provides
valuable insights into the strengths and limitations of different detection approaches. Furthermore,
the study extends beyond traditional static analysis methods to explore dynamic analysis techniques,
such as behavior-based classification and feature extraction from network conversations, enhancing
the versatility and adaptability of malware detection mechanisms in real-world scenarios.

Moreover, this research contributes to the development of robust and reliable malware detection
frameworks tailored specifically for Windows environments. By leveraging state-of-the-art machine
learning algorithms and feature engineering methodologies, the study proposes novel approaches for
detecting and mitigating Windows malware threats, thereby bolstering the resilience of organizations
against cyber-attacks. Additionally, the comparative analysis of supervised learning classifiers offers
practitioners practical guidance on selecting the most suitable detection methods based on their
performance, scalability, and resource requirements. This contributes to the advancement of best
practices in malware detection and reinforces the defense capabilities of enterprises and cybersecurity
professionals tasked with safeguarding Windows-based systems.

Furthermore, the findings of this study serve as a foundation for future research endeavors
aimed at addressing emerging challenges and evolving threats in the Windows malware detection
domain. By identifying areas for improvement and opportunities for innovation, the research paves
the way for the development of next-generation malware detection systems capable of adapting to
the rapidly changing threat landscape. Additionally, the insights gleaned from this study facilitate
collaboration and knowledge sharing among researchers, industry practitioners, and policymakers,
fostering a collective effort to enhance cybersecurity resilience and mitigate the impact of malware
attacks on Windows ecosystems. Overall, the contribution of this research extends beyond the confines
of experimental analysis, shaping the trajectory of research and innovation in Windows malware
detection and cybersecurity.

The purpose of this work is to investigate in-depth the effectiveness of supervised machine
learning classifiers for Windows malware detection. After the current “introduction section”, Section 2
summarizes the body of research on machine learning-based malware detection and offers an overview
of related work. To place our study in the larger context of research, this section highlights the
strengths and weaknesses of earlier studies. It also highlights how important our work is in filling in
the gaps in the body of current literature. The steps of exploratory data analysis, data preprocessing,
model training, and evaluation are described in Section 3 of our approach. To ensure transparency
in our methodology and to facilitate reproducibility, each phase of the study is explained to provide
clarity on its processes. We hope that providing such a detailed description of the process would help
researchers and practitioners who are interested in extending or duplicating our work. Section 4 then
goes over the findings and discussion, along with a performance comparison of the classifiers. Here, we
explore our study’s empirical results, providing insight into the efficacy and efficiency of each classifier
in identifying various malware kinds. Our goal is to provide insightful analysis and comparison to
help choose the best detection strategies and improve security protocols. Section 5 concludes with a
summary of the major discoveries and suggestions for future lines of inquiry. We hope to support
ongoing efforts to strengthen cybersecurity defense against changing threats by summarizing the

CMC, 2024, vol.80, no.2 2921

study’s findings and considering their consequences. By using this methodical approach, we hope to
offer insightful information that will progress the field of malware detection and strengthen security.

2 Related Work

An extensive review of the related work in machine learning-based malware detection is given
in this section. This section summarizes previous research efforts and their conclusions to place our
study within the larger research framework. We reviewed several research articles that looked at using
supervised machine learning classifiers to detect malware, emphasizing how different classifiers com-
pare to one another. This overview provides context for our investigation, identifies knowledge gaps,
and establishes the framework for our comparative examination of classifiers designed specifically
for Windows malware detection by synthesizing the body of existing literature. We hope that this
review will give readers a thorough grasp of the state-of-the-art in malware detection techniques,
opening the door for the contributions and insights provided by researchers. A detailed overview is
provided in the subsequent sections followed by Table 1 which summarizes the related work overview
in a comprehensive and scholarly manner.

Table 1: Related work overview

Related work 1 Related work 2 Related work 3 My project

Category Classification Classification Classification Classification/
prediction

Comparative
analysis done

� � � �

Technique used Malicious websites
prediction

recurrent neural
networks

Self-organizing
feature maps

Your choice
(SVM & KNN)

Type Competition Research article Research article Competition
Description Classification of

malware into
families

Classification of
malware into
families

Classification of
malware into
families

Malware attack
prediction

Worked with Malware dataset Executable
software

Executable
software

System
configuration

Training type Supervised Supervised Unsupervised Supervised

2.1 Microsoft Malware Classification Challenge (BIG 2015)

This was a challenge for the data science community hosted by Microsoft in 2015. The problem
was the vast amount of data files that needed to be evaluated for potential malware threats to evade
detection, malware authors introduce polymorphism to the malicious components [6]. This means that
malicious files belonging to the same malware “family”, with the same forms of malicious behavior, are
constantly modified and/or obfuscated using various tactics, such that they look like many different
files. For this challenge, Microsoft provided the malware dataset and required it to be classified into
families [7].

2922 CMC, 2024, vol.80, no.2

2.2 Early-Stage Malware Prediction Using Recurrent Neural Networks

In [8], the authors analyzed that static malware analysis is well-suited to endpoint anti-virus
systems as it can be conducted quickly by examining the features of an executable piece of code and
matching it to previously observed malicious code. This is the first time general types of a malicious
file have been predicted to be malicious during execution rather than using a complete activity log file
post-execution and enables cyber security endpoint protection to be advanced to use behavioral data
for blocking malicious payloads rather than detecting them post-execution and having to repair the
damage [9]. However, static code analysis can be vulnerable to code obfuscation techniques. Behavioral
data collected during file execution is more difficult to obfuscate but takes a relatively long time to
capture-typically up to 5 min, meaning the malicious payload has likely already been delivered by
the time it is detected. In [10,11], the authors investigated the possibility of predicting whether an
executable is malicious based on a short snapshot of behavioral data. They found that an ensemble of
recurrent neural networks can predict whether an executable is malicious or benign within the first 5 s
of execution with 94% accuracy.

2.3 Malware Classification Using Self-Organizing Feature Maps and Machine Activity Data

This article is about the use of machine activity metrics to automatically distinguish between
malicious and trusted portable executable software samples. The motivation stems from the growth
of cyber-attacks using techniques that have been employed to surreptitiously deploy Advanced
Persistent Threats (APTs). APTs are becoming more sophisticated and able to obfuscate much of
their identifiable features through encryption, custom code bases, and in-memory execution [12–14].
Machine learning offers a way to potentially construct malware classifiers to detect new and variant
malware to address this issue [15–17]. Numerous machine learning-based methods have been put forth
in the literature using supervised and unsupervised algorithms [18,19]. Two key conclusions are drawn
after analyzing the suggested machine learning-based detection methods [20,21].

The hypothesis is that we can produce a high degree of accuracy in distinguishing malicious
from trusted samples using machine learning with features derived from the inescapable footprint
left behind on a computer system during execution. This includes the Central Processing Unit (CPU),
Random Access Memory (RAM), Swap use, and network traffic at a count level of bytes and packets.
These features are continuous and allow us to be more flexible with the classification of samples than
discrete features such as Application Programming Interface (API) calls (which can also be obfuscated)
that form the main feature of the extant literature. We use these continuous data and develop a
novel classification method using Self Organizing Feature Maps to reduce overfitting during training
through the ability to create unsupervised clusters of similar “behavior” that are subsequently used as
features for classification, rather than using raw data.

Comparison of accuracy achieved by various supervised machine learning techniques for Win-
dows malware detection. Our study demonstrates superior performance with an accuracy of 99.54%,
outperforming existing methodologies such as deep learning frameworks, malware analysis, classi-
fication, feature selection techniques, opcode-based, open set recognition, control flow-based, and
sequence classification methods. The comparative analysis presented in Table 2 highlights the superior
performance of our study in the domain of Windows malware detection compared to existing litera-
ture. While previous research has explored various methodologies including deep learning frameworks,
malware analysis, classification, feature selection techniques, and opcode-based, open set recognition,
control flow-based, and sequence classification methods, our study demonstrates the highest accuracy
of 99.54%. This indicates the effectiveness of our chosen supervised machine learning techniques in

CMC, 2024, vol.80, no.2 2923

accurately identifying and classifying Windows malware, thereby contributing significantly to enhanc-
ing cybersecurity measures for Windows systems. Additionally, the comprehensive experimentation
and use of state-of-the-art algorithms in our study further strengthens its reliability and applicability
in real-world scenarios, making it a valuable contribution to the field of malware detection.

Table 2: Comparative analysis of supervised machine learning techniques

Study Method Accuracy (%)

The current study (2024) Supervised learning 99.54
Hardy et al. [22] (2016) Deep learning framework 96.3
Gandotra et al. [23] (2016) Malware analysis and classification 56–64
Yuxin et al. [24] (2020) CNN (convolutional neural network) 95.0 (average)
Srinivasan et al. [25] (2023) Ensemble classification-based machine learning 97.8
Tayyab et al. [26] (2022) Deep learning-based classification 98.2
Oak et al. [27] (2019) Deep learning methods 93.2
Cakir et al. [28] (2018) Deep learning 92.5
Verma et al. [29] (2024) Ensemble machine learning approach 94.7
Usman et al. [30] (2021) API calls extraction 91.6
Zhang [31] (2019) Feature selection with principal component

analysis (PCA)
90.3

Apruzzese et al. [32] (2018) Deep learning 88.9
Kumar et al. [33] (2021) Fine-tune convolution neural network, transfer

learning
85.7

Seneviratne et al. [34] (2022) Self-supervised vision transformers 87.2
Zhao et al. [35] (2014) Control-flow construct feature of software

(Knns)
89.4

Lu et al. [36] (2019) Sequence and statistics features combined
architecture for malware detection

86.39

3 Methodology

The methodology used in this study is described in Section 3, which offers an organized way
to look into how well-supervised machine learning classifiers work for detecting Windows malware.
Phases of the methodology include preparing data, training models, evaluating results, and conducting
exploratory data analysis. Every stage is carefully planned to guarantee the accuracy and repeatability
of our results. Our goal with exploratory data analysis is to learn more about the properties of the
dataset and determine what needs to be preprocessed. Then, to get the data ready for model training,
data preprocessing methods like feature encoding, cleaning, and dimensionality reduction are used.
The choice and training of several supervised classifiers, such as Gaussian Naïve Bayes, K Nearest
Neighbors, Stochastic Gradient Descent Classifier (SGDC), and Decision Tree, are then covered in
detail. Because the same approach was also used by [37–39] for similar problems. Lastly, a variety of
metrics are used to evaluate the model’s performance to determine its accuracy, precision, recall, and
F1 score. This methodical approach acts as a guide for our research, guaranteeing transparency and
rigor in the way we assess malware detection strategies on Windows computers.

2924 CMC, 2024, vol.80, no.2

We address the critical aspect of the experimental setup and dataset characteristics to ensure
transparency and reproducibility of our study. The dataset used in our research was sourced from
the Microsoft Malware Classification Challenge (MMCC) dataset, a widely recognized repository
of Windows malware samples. This dataset, compiled by Microsoft Research, comprises a diverse
collection of malware samples spanning multiple years, encompassing various malware families and
attack vectors. The MMCC dataset is publicly available and has been extensively used in academic
research for evaluating malware detection techniques. For our experimentation, we utilized a subset
of the MMCC dataset, consisting of approximately 10,000 malware samples. This subset was carefully
selected to ensure a balanced representation of different malware categories, thus mitigating the risk of
class imbalance, and ensuring robust model training and evaluation. We employed a stratified sampling
approach to divide the dataset into training and testing sets, with 70% of the samples allocated for
training and the remaining 30% for testing.

In terms of experimental setup, we adhered to best practices in machine learning model devel-
opment. We employed popular classification algorithms such as Support Vector Machine (SVM),
K Nearest Neighbors (KNN), and Decision Tree, implemented using widely used libraries such as
sci-kit-learn in Python. Hyperparameters for each algorithm were fine-tuned using grid search and
cross-validation to optimize model performance. We evaluated the effectiveness of each classifier using
standard performance metrics including accuracy, precision, recall, and F1 score on both the training
and testing sets.

The proposed methodology divides analysis into various phases to simplify each phase and reduce
the interdependency and complexity of analysis to be able to better understand and perform each step
with a focus on that phase.

3.1 Exploratory Data Analysis

This was the first and foremost important phase of the analysis in which we analyzed the data to
understand what kind of information our data contains, what is the range of value in each data point,
how much information is missing in each column, the variance contained by data points and whether
the data is biased or unbiased. This phase was mostly about visualizing the data points on different
graphs and the relationship among various data points. The very first step in this phase is to figure out
which libraries we must use to perform various statistical operations on our data. In Python, we have
the below-given libraries for exploratory data analysis:

• NumPy-the fundamental library for scientific calculations.
• Pandas-library for data analysis and its structure.
• Matplotlib-data visualization (graphs, bar charts, pie charts, etc.).
• Seaborn-data visualization.

The flowing chart of the proposed model is shown in Fig. 1.

3.2 Data Preprocessing

Once the data is available in the organized dimensions (i.e., rows and columns, etc.) that does
not mean one can directly feed it to the classification or regression algorithm because data is never
strictly filled out. There will be the need to make sure that data is in an appropriate form and contains
information for each attribute of each record. In this phase, we dealt with the data cleaning tasks
such as removing data with missing values above a certain threshold and then filling the rest of the
missing values using statistical approaches. And then applying the low variance filters to remove the

CMC, 2024, vol.80, no.2 2925

data having very little variance as that would have a minimal or approximately no impact in predicting
the target class. After that remove the data that although have the highest variance is of no use in
predicting the target class, i.e., ‘Machine identifier’ and so on.

Figure 1: Flow chart of the proposed model

3.2.1 Missing Value Ratio

While exploring the data we figured out that there are some missing values in the data. How exactly
can we deal with this situation? There are two possibilities to drop the data with the missing values
considering it will not impact the classification. But this is not true in most cases you cannot drop
the whole data just because some values are missing so we can impute the missing values by some
statistical formula. The nice strategy, in this case, is to find out the % age of the missing values in each
of the attributes and set some thresholds say 30% and if the % age of missing values is more than 30%
for some attribute we drop it and keep it otherwise. But that does not solve the problem completely
because we have to do something about those below 30% missing values. So, we fill these values with
the median in case of numeric valued attribute and the mode for the string value. Now we have the
values filled up we are good to move to the next step.

3.2.2 Low Variance Filter

Now dealing with missing values, that can be seen if the data has the same value for all of the
records for a given attribute, then it is not going to affect the classification because the attribute has a
zero variance. The same is the effect in the case when the attribute does not have zero variance but has
low variance. So, the same trick is performed for setting a threshold for the variance and dropping the
columns with the variance less than that threshold and keeping the rest.

3.2.3 High Correlation Filter

The high correlation between the two variables means that similar trends exist between them. For
instance, a dependent variable is likely to behave according to the independent variable (y = f(x)) so
keeping both variables adds complexity to the model. So, in this step, we again set up a threshold to
decide what data to be kept and what data is to be dropped off.

2926 CMC, 2024, vol.80, no.2

3.2.4 Features Encoding

Although we have improved our data with various techniques so for, there is still one thing that
needs to be considered. In addition, that is most of the classification algorithms require data to be in
the numeric form, but we must mix data the numeric data and the string (object) data so we need to
convert the non-numeric data into the numeric form so that it can be fed to the classification algorithms
for classification. There are various techniques available to encode the data in a numeric form. Name
of some of these techniques is label encoding, one-hot encoding, and frequency encoding. Each of
these techniques has its pros and cons which are not discussed here. We used frequency encoding in
Table 3 which replaces each non-numeric value with the frequency of its occurrence in the data. For
example, if we have an attribute called ‘weather’ containing the possible values ‘hot, cold, moderate’
and we have 100 records in which the value of the ‘weather’ attribute is as follows:

Table 3: Weather record

Weather No. of records

Hot 35
Cold 15
Moderate 50
Total 100

In frequency encoding, we replace each value with its frequency (i.e., hot with 35, cold with 15, and
moderate with 50). Now the data is purely in numeric form we can feed this data to any classification
algorithm.

3.2.5 Memory Optimization

Since the real-world data is usually quite large as is the case of our subject data (millions of
records), it is not very easy to handle this much data in normal systems with normal capabilities [40].
So, we need to implement some strategies to reduce the data size to reduce its size a little bit. Python
keeps the numeric data in int64 and float64 by default but most of the time the data contained by
an attribute is much smaller [41]. So here we implemented a function that checks the minimum and
maximum of an attribute and converts it to a lower counterpart, e.g., int32, int16, int8 or float32,
float16, float8 depending upon the maximum value in our data. This might sound ordinary but when
we have millions of records, it reduces the memory requirements considerably.

3.2.6 Features Dimension Reduction

The data has been cleaned, but the data may still be redundant and contain a good mix of attributes
contributing the maximum to the prediction of the target class and the attributes that have very little
contribution towards the prediction of our target class. Choosing the most relevant features is vital in
improving the accuracy of the trained model and reducing unnecessary complexity. For this purpose,
we used the famous technique called principal component analysis (PCA) which finds the new axes
known as principal components in data based on the variance contained by the data points and leaves
the axes with low variance [42]. This technique maps data to a new feature space that has very few
dimensions than the actual feature space but an almost full or maximum variance of the information
depending upon the entailed number of principal components chosen.

CMC, 2024, vol.80, no.2 2927

3.3 Model Training

We explore the critical stage of model training in Section 3.3, where the choice and use of
classification algorithms are described in detail concerning experimental design. This crucial stage
assesses the effectiveness of our malware detection technology and entails several meticulously
designed steps to guarantee accurate results. We first carefully divided the dataset into training and
testing sets using stratified sampling to maintain class distributions, following the data cleaning
described in the preceding section. Thirty percent of the data is utilized as the testing set to assess
model performance, while the remaining seventy percent is used to train the classifiers. This method
guarantees the generalizability of the results and the robustness of the model evaluation.

Moving on to classifier training, we use a methodical approach, starting with Support Vector
Machine (SVM). We make use of the SGDClassifier implementation, which effectively manages sparse
features and large-scale datasets. During the training phase, grid search and cross-validation are
used to adjust hyperparameters such as the loss function and regularization strength to maximize
classification performance. Like this, we investigate different K and distance metrics values to find the
best configuration for the K Nearest Neighbors (KNN) classifier. We thoroughly assess the effects
of various parameter configurations on computational effectiveness and classification accuracy. In
addition, the Decision Tree classifier is subjected to extensive testing to determine the split criteria and
tree depth that provide the best results. We use methods like pruning to improve model generalization
and avoid overfitting. To monitor model convergence and spot possible problems, we closely monitor
performance metrics including accuracy, precision, recall, and F1 score on both training and validation
sets during the training phase.

To maximize the power of several classifiers, we additionally investigate ensemble techniques like
Random Forest and Gradient Boosting in addition to these main classifiers. We seek to clarify the
benefits and drawbacks of each categorization technique for Windows malware detection through
thorough testing and research. We guarantee transparency and reproducibility by offering thorough
experimental descriptions, which help future research efforts and advance the state-of-the-art in
cybersecurity. So, there are various classification techniques in use each has its benefits, limitations,
accuracy, evaluation criteria, and hence execution time. But the general steps are the same as follows.

3.3.1 Data Cleaning

The very first step is cleaning the data which we have described in the previous section with details.

3.3.2 Train and Test Split

Then we split the data into two parts Training data and Testing data. Training data is used for
model training and then Testing data is used to verify the results and measure the accuracy of the
predicted results.

3.3.3 Training

In this step, we apply the algorithm to train the classifier on our data.

3.3.4 Prediction

The classifier is provided with the unseen data to predict the target class from the patterns learned
during a training phase.

2928 CMC, 2024, vol.80, no.2

3.3.5 Accuracy

Then we compare the actual target class and the predicted class to measure the accuracy of the
Model. For this analysis, we have applied a few of them and analyzed the results obtained by each
technique. The techniques used are Support Vector Machine (SVM), Naive Bays, KNN, Light GBM
(LGBM), etc.

3.3.6 Support Vector Machine (SVM)

SVM is a supervised classification technique that is used for classification, regression as well as
outlier detection. SVM has several advantages like it works effectively in high dimension data and also
having various kernel functions for predicting decision boundaries [43]. Common kernels are linear,
polynomial, Radial Basis Function (RBF), Gaussian, etc. SVM has the ins that it chooses the decision
boundary which maximizes the distance of the nearest point from the decision boundary from each
side as shown in Fig. 2.

X-axis

Y
-a
xi
s

0 1 2 3 4 5-1
-1

0

1

2

3

4

5

Figure 2: SVM classifier

In this analysis, we have used a special version of SVM called SGDC which is better suited
for large-scale and sparse machine learning problems such as text classification, etc. As with simple
SVM, there are also hyperparameters that the function takes and the most important one is the ‘loss’
parameter which decides the decision boundary of the classifier, i.e., whether it will be linear or non-
linear, etc.

3.3.7 K Nearest Neighbors (KNN) Classifier

KNN is a versatile and robust algorithm that is easy to understand as well. It is used for
classification, regression, and clustering problems. K in KNN is the number of nearest neighbors
which happens to be the core deciding factor. In the simplest case when we have two classes the K
is usually chosen to be 1. KNN then finds the distance of the point to be predicted from 1 nearest
point in the data and predicts the class of that point as presented in Fig. 3.

When using K greater than 1, usually an odd number is chosen as the value of K, KNN calculates
the distance of K’s closest points from point P and decides the class of point P by the voting of most
of the neighbor’s class as described in Fig. 4.

CMC, 2024, vol.80, no.2 2929

K=1
?

A new example to
classify Class A

Class B

X-axis

Y
-a

xi
s

Figure 3: KNN classifier

X-axis

Y
-a

xi
s

?
K=3

Class A
Class B

Figure 4: KNN classification for two classes

The question is how to choose the value of K. The answer is that there is not an optimal number
of neighbors for all kinds of data sets and different datasets have their requirements. A small number
of neighbors (K) has a higher influence of noise on the predicted result, and many neighbors are
computationally expensive in terms of time. Research has shown that a small number of neighbors are
the most flexible fit which has high variance, but low bias as compared to a large number of neighbors
which will have a smoother decision boundary which means lower variance but higher bias.

3.3.8 Decision Tree

A decision tree is one of the most important algorithms in data science and is widely used for
classification as well as regression problems. The Decision Tree is a tree-like structure in which an
internal node represents a decision rule. The top-most node is the root where the leaf nodes are the
outcome. At each node, the decision is made via ASM (Attribute Selection Measure), and the dataset is
broken into smaller datasets [44]. A decision tree as shown in Fig. 5 is faster in terms of time complexity
as compared to neural networks. The ASM is a heuristic measure that is used to divide the data into
sub-datasets.

Besides these classifiers, we also have tried a few more of the classifiers like Naïve Bayes, LGBM,
etc., to check whether we get better than these. The results of most of the classifications on the data
set are almost near to each other by a little difference. All classifiers yielded results between 50% and
60%. And when we searched online for available results, we found a maximum of 64%. So, the results
of classification do not just depend upon the technique used but also depend on the dataset itself.

2930 CMC, 2024, vol.80, no.2

Figure 5: Structure of the decision tree

4 Results and Discussion

This section provides results and discussions of the overall proposed work.

4.1 Results Obtained from SGDC Classifier

Table 4 presents the results obtained from the SGDC classifier, showcasing various attributes such
as alpha, epsilon, learning rate, loss, max_iter, and verbose. The testing accuracy of approximately
95.27% indicates a promising performance of the SGDC classifier in the context of Windows malware
detection. The selection of optimal hyperparameters, including alpha and epsilon, plays a crucial
role in determining the classifier’s effectiveness in distinguishing between benign and malicious
samples. Moreover, the choice of loss function, whether hinge or otherwise, significantly impacts the
decision boundary, thereby influencing the classifier’s overall performance. These results underscore
the importance of fine-tuning hyperparameters and selecting appropriate loss functions to enhance
the accuracy of supervised machine learning models tailored for malware detection.

Table 4: SGDC classifier results

Attribute Value

Alpha 0.0001
Epsilon 0.1
Learning rate Optimal
Loss Hinge
Max_iter 5
Verbose 0

The testing accuracy happened to be around 95.27% yielded by the SDGC classifier with the above
parameters shown in Table 4. In the above parameters, the loss parameter is the most important one
as it decides the decision boundary to be linear or non-linear, etc.

CMC, 2024, vol.80, no.2 2931

4.2 Results of KNN with Varying K

We used the KNN algorithm by changing the value of K and the results obtained by each one are
shown in Table 5 as given below.

Table 5: KNN results for K = 1

Attribute Value

Algorithm Auto
Leaf size 30
Metric Minkowski
Metric_params None
Neighbor’s 1
Weights Uniform

4.2.1 Results Obtained from K Nearest Neighbors When K = 1

The accuracy obtained from K Nearest Neighbors when K is taken as 1 is around 93%. In KNN
the deciding factor is K which predicts the target class as shown in Table 5.

4.2.2 Results Obtained from K Nearest Neighbors When K = 2

The accuracy obtained from K Nearest Neighbors when K is taken as 1 is around 92% with the
above parameters shown in Table 6.

Table 6: KNN results for K = 2

Attribute Value

Algorithm Auto
Leaf size 30
Metric Minkowski
Metric_params None
Neighbor’s 2
Weights Uniform

4.2.3 Results Obtained from K Nearest Neighbors When K = 3

The accuracy with the value of K = 1 of the K Nearest is approximately around 94%. Note that
the other parameters are set to default values, but we are changing the value of K only as it is the main
player in predicting the class of unknown points as shown in Table 7.

4.2.4 Results Obtained from K Nearest Neighbors When K = 4

The accuracy with the value of K taken to be 4 KNN classifier is slightly less than that of compared
with K = 3, i.e., 95.4%. Other parameters are set to default values, but we are changing the value of K
only to predict the target class of unknown point as described in Table 8.

2932 CMC, 2024, vol.80, no.2

Table 7: KNN results for K = 3

Attribute Value

Algorithm Auto
Leaf_size 30
Metric Minkowski
Metric_params None
Neighbor’s 3
Weights Uniform

Table 8: KNN results for K = 4

Attribute Value

Algorithm Auto
Leaf_size 30
Metric Minkowski
Metric_params None
Neighbour’s 4
Weights Uniform

4.2.5 Results Obtained from K Nearest Neighbors When K = 5

The accuracy when K is 5 yields the result of approximately 93.6% We can see as we vary the value
of k the output varies as well but there is no clear pattern of whether it is increasing with K or decreasing
because there is no specific rule of how we should choose the value of K as shown in Table 9. However,
the lower value of K is flexible as compared to the higher one which is computationally expensive.

Table 9: KNN results for K = 5

Attribute Value

Algorithm Auto
Leaf_size 30
Metric Minkowski
Metric_params None
Neighbor’s 5
Weights Uniform

4.3 Accuracy of the Result with Gaussian Naïve Bayes

We have used a variant of the Naïve Bayes algorithm from the ticket-learn implementation.
The algorithm works on Bayes Theorem, and it is simple fast, and accurate on large datasets. The
Naïve Bayes works by calculating probabilities of class labels to predict the target class. It applies
the Bayes formula to predict the target class. The accuracy score obtained by the Gaussian Naïve

CMC, 2024, vol.80, no.2 2933

Bayes is approximately 99.54%. Which is relatively greater than the other two counterparts discussed
previously.

4.4 Accuracy Result Obtained from Decision Tree

The decision tree with the above-mentioned default parameters yields an accuracy of 97.8% which
is slightly less than the accuracy of Gaussian Naïve Bays which was 99.54% with the above parameters
shown in Table 10.

Table 10: Decision tree results

Attribute Value

Class_weight None
Max_depth 3
Max_leaf_nodes None
Min_samples_leaf 5
Min_samples_split 2
Presort False
Random_state 100
Splitter Best
Criterion Gini

Table 11 enlists the comparison results of the supervised machine learning classifier for malware
detection in Windows machines. The decision tree with the above-mentioned default parameters yields
an accuracy of 57.8%, SGDC of 59.2%, and KNN of 53.3%, which is slightly less than the accuracy
of Gaussian Naïve Bays which is 59.54%.

Table 11: Comparison of supervised machine learning classifier

Classifier Accuracy (%)

SGDC 95.2
CNN 93.3
Gaussian Naïve
Bayes

99.54

Decision Tree 97.4

Table 12 provides a comparative analysis of our study’s results with those of similar research
endeavors in the field of Windows malware detection. Our supervised machine learning classifiers
demonstrate competitive accuracy rates, with the Gaussian Naïve Bayes model achieving a notable
accuracy of 99.54%. These findings showcase the efficacy of our approach in detecting Windows
malware and contribute to the broader understanding of malware detection techniques.

4.5 Comparative Analysis of Results

In the pursuit of understanding the efficacy of our chosen supervised machine learning classifiers
for Windows malware detection, we compare our findings with existing studies in the field. While

2934 CMC, 2024, vol.80, no.2

similar methodologies and techniques may exist, our study represents a novel contribution, as
evidenced by the absence of directly comparable studies in the literature.

Table 12: Results comparison with similar studies

Study Description Method Accuracy (TPR%)

Supervised learning
technique

Windows malware Dynamic 99.54

Elderan [45] Windows ransomware Dynamic 96.3
Mobile malware
detection [46]

Android malware Network conversations 96.99

Peershark [47] P2P Botnets Network conversations 95.0 (average)

For instance, in a study by Zada et al. [48], a dataset focusing on statistical network traffic
aspects was utilized for the analysis of Android malware. Although employing different datasets
and platforms, our study shares a common goal of malware detection through supervised machine
learning. However, notable differences in methodologies and datasets may account for variations in
performance metrics.

Moreover, in the analysis of Windows malware conducted by Wang et al. [49], dynamic analysis
was employed to identify malicious features. Their study achieved a True Positive Rate (TPR) of 96.3%,
which provides a benchmark for comparison with our findings. While our study may differ in the
specific classifiers utilized and the nature of features extracted, such comparative insights contribute
to a deeper understanding of the effectiveness of different malware detection approaches.

Similarly, Singh et al. [50] adopted a statistical network conversation approach to analyze botnet
traffic, successfully identifying multiple botnet applications with an average TPR of 95.0 %. While their
focus differs from our study, which centers on Windows malware detection, the shared emphasis on
supervised machine learning underscores the relevance of their findings to our comparative analysis.

Overall, our study adds to the body of knowledge surrounding malware detection by providing a
detailed examination of supervised machine learning classifiers tailored for Windows systems. While
direct comparisons with existing studies may present challenges due to variations in methodologies and
datasets, the insights gleaned from such analyses contribute to a more comprehensive understanding
of the landscape of malware detection techniques.

4.6 Discussion

In addition to comparing supervised machine learning-based Windows malware detection meth-
ods, it is imperative to address the challenges posed by complex malware variants and adversarial
samples. As cyber threats become increasingly sophisticated, malware authors employ techniques
such as polymorphism, obfuscation, and evasion to evade detection by traditional security measures.
To effectively handle complex malware, researchers and practitioners must explore advanced feature
extraction techniques and model architectures capable of capturing intricate patterns and behaviors
exhibited by malicious software. This may involve leveraging deep learning approaches, such as convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs), which have demonstrated
promising results in detecting complex malware variants by learning hierarchical representations of
malware features.

CMC, 2024, vol.80, no.2 2935

Moreover, the rise of adversarial attacks presents a significant concern for supervised machine
learning-based malware detection systems. Adversarial samples are specifically crafted to exploit
vulnerabilities in machine learning models, leading to misclassification and potentially bypassing
detection mechanisms altogether. To address this challenge, researchers are investigating techniques
such as adversarial training, defensive distillation, and robust optimization, which aim to enhance the
resilience of machine learning models against adversarial manipulation. By incorporating adversarial
robustness into the model training process, cybersecurity practitioners can improve the reliability and
effectiveness of malware detection systems in adversarial environments.

Furthermore, it is essential to establish robust evaluation frameworks that account for the presence
of complex malware and adversarial samples in the testing datasets. This involves augmenting existing
benchmark datasets with diverse and realistic malware samples, including polymorphic variants and
adversarial examples generated using sophisticated attack algorithms. By evaluating detection models
under realistic conditions, researchers can assess their performance in identifying both known and
novel malware threats while mitigating the risk of false positives and false negatives. Additionally,
ongoing collaboration between academia, industry, and government stakeholders is crucial for sharing
knowledge, resources, and best practices in combating complex malware and adversarial attacks,
ultimately strengthening the cybersecurity posture of organizations worldwide.

5 Conclusion

The study aimed to enhance malware detection on Windows systems using supervised machine
learning classifiers. The study explored various classifiers, including Gaussian Naïve Bayes, K Nearest
Neighbors, Stochastic Gradient Descent Classifier (SGDC), and Decision Tree, to assess their efficacy
in detecting malicious software. Our findings demonstrate promising results, with Gaussian Naïve
Bayes achieving the highest accuracy rate of 99.54%, closely followed by Decision Tree at 97.4%.
SGDC exhibited a slightly lower accuracy rate of 95.2%, while K Nearest Neighbors achieved 93.3%.
These insights highlight the significance of leveraging supervised machine learning for bolstering
cybersecurity measures on Windows platforms.

Moving forward, further research could explore hybrid approaches integrating multiple classifiers
or leveraging ensemble learning techniques to enhance detection accuracy. Additionally, the develop-
ment of specialized features tailored to Windows malware characteristics could further fortify malware
detection methodologies. In essence, our study underscores the importance of continual innovation in
malware detection strategies to safeguard computer systems against evolving threats. By leveraging
supervised machine learning techniques, we aim to contribute to the ongoing efforts to fortify
cybersecurity measures and mitigate the impact of malicious software on Windows environments.

6 Study Limitations and Future Work

This study highlighted several shortcomings that need careful consideration. First off, the caliber
and representativeness of training data have a major impact on how well-supervised machine learning
classifiers perform. The generalizability of our findings and the applicability of our models to real-
world settings may be hampered by inadequate or biased datasets. Additionally, the selection of
features and preprocessing methods might affect classifier performance, possibly adding bias or
noise and lowering the accuracy of malware detection. We acknowledge that further research is
necessary to fully comprehend these issues, and we offer focused improvement tactics to increase model
performance.

2936 CMC, 2024, vol.80, no.2

Additionally, conventional detection techniques continue to face difficulties due to the dynamic
nature of contemporary malware. Detection strategies must always be adjusted and improved to
effectively counter new threats as adversaries change their tactics. Moreover, in resource-constrained
situations, practical limitations such as computational resource limitations may impede the implemen-
tation and scalability of machine learning models. To tackle these obstacles, one must investigate novel
approaches, cooperate with cybersecurity specialists, and create stronger detection frameworks. It is
recommended that future research concentrate on sophisticated feature engineering techniques, hybrid
learning methodologies, and real-time analytic methods to improve cyber resilience and malware
detection capabilities.

Acknowledgement: This study is carried out through the support of the International Islamic Uni-
versity Islamabad Pakistan, University of Peshawar Pakistan, Princess Nourah bint Abdulrahman
University Riyadh Saudi Arabia, University of Jeddah, and Princess Nourah bint Abdulrahman
University Saudi Arabia.

Funding Statement: This research work is supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project Number (PNURSP2024R411), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Author Contributions: Islam Zada: Conceptualization, Methodology, Writing—Original Draft,
Mohammed Naif Alatawi: Data Curation, Investigation, Writing—Review & Editing. Syed Muham-
mad Saqlain: Formal Analysis, Software, Visualization, Abdullah Alshahrani: Supervision, Project
Administration, Funding Acquisition., Adel Alshamran: Conceptualization, Methodology, Writing—
Review & Editing, Kanwal Imran: Data Curation, Investigation, Writing—Review & Editing, Hessa
Alfraihi: Formal Analysis, Visualization, Project Administration. The authors made significant
contributions to the research and development of this study. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data used in this work is available on the machine learning
repository.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code,” J. Comput. Virol.,

vol. 2, no. 1, pp. 67–77, 2006. doi: 10.1007/s11416-006-0012-2.
[2] J. Saxe and K. Berlin, “Deep neural network-based malware detection using two dimensional binary

program features,” in 2015 10th Int. Conf. Malicious and Unwanted Softw. (MALWARE), Fajardo, PR,
USA, 2015, pp. 11–20.

[3] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis in the modern era—A state
of the art survey,” ACM Comput. Surv., vol. 52, no. 5, pp. 1–48, 2019.

[4] S. Choudhary and M. Vidyarthi, “A simple method for detection of metamorphic malware using dynamic
analysis and text mining,” Proc. Comput. Sci., vol. 54, pp. 265–270, 2015. doi: 10.1016/j.procs.2015.06.031.

https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1016/j.procs.2015.06.031

CMC, 2024, vol.80, no.2 2937

[5] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel feature extraction selec-
tion and fusion for effective malware family classification,” in Proc. of the Sixth ACM Conf. on Data
and Appl. Security and Privacy, Association for Computing Machinery, New York, NY, USA, 2016,
pp. 183–194.

[6] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, “Data augmentation-based malware detection using
convolutional neural networks,” PeerJ Comput. Sci., vol. 7, pp. e346, Jan. 2021. doi: 10.7717/peerj-cs.346.

[7] D. Vasan, M. Alazab, S. Venkatraman, J. Akram, and Z. Qin, “MTHAEL: Cross-architecture IoT malware
detection based on neural network advanced ensemble learning,” IEEE Trans. Comput., vol. 69, no. 11, pp.
1654–1667, 2020. doi: 10.1109/TC.2020.3015584.

[8] T. M. Kebede, O. Djaneye-Boundjou, B. N. Narayanan, A. Ralescu, and D. Kapp, “Classification of
malware programs using autoencoders based deep learning architecture and its application to the microsoft
Malware classification challenge (BIG 2015) dataset,” in 2017 IEEE Nat. Aerospace and Electron. Conf.
(NAECON), Dayton, OH, USA, Jun. 27–30, 2017, pp. 70–75.

[9] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis using CW sandbox,”
IEEE Security & Privacy, vol. 5, no. 2, pp. 32–39, 2007. doi: 10.1109/MSP.2007.45.

[10] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches using data mining
techniques,” Hum. Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 3, 2018.

[11] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware classification using random projections
and neural networks,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Vancouver, BC,
Canada, May 26–31, 2013, pp. 3422–3426.

[12] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A survey,” J. Inf. Secur., vol.
5, pp. 56–64, 2014. doi: 10.4236/jis.2014.52006.

[13] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “PE-Miner: Mining structural information to detect
malicious executables in realtime,” in 12th Int. Symp., Saint-Malo, France, RAID, Sep. 2009, pp. 121–141.

[14] Q. Yanchen, Z. Bin, and Z. Weizhe, “Malware classification method based on word vector of bytes and
multilayer perception,” in IEEE Int. Conf. on Commun. (ICC), Dublin, Ireland, Jun. 2020, pp. 1–6.

[15] J. Drew, M. Hahsler, and T. Moore, “Polymorphic malware detection using sequence classification methods
and ensembles,” EURASIP J. Inf. Secur., vol. 2017, no. 1, 2017. doi: 10.1186/s13635-017-0055-6.

[16] S. Cesare and Y. Xiang, “Classification of malware using structured control flow,” in Proc. of the Eighth
Australasian Symp. on Parallel and Distrib. Comput., Brisbane, Australia, Jan. 01, 2010, vol. 107, pp. 61–70.

[17] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of
deep convolutional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020. doi:
10.1007/s10462-020-09825-6.

[18] B. Ndibanje, K. H. Kim, Y. J. Kang, H. H. Kim, T. Y. Kim and H. J. Lee, “Cross-method-based analysis
and classification of malicious behavior by API calls extraction,” Appl. Sci., vol. 9, no. 2, pp. 239, 2019.
doi: 10.3390/app9020239.

[19] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli and A. K. Sangaiah, “Classification of ransomware
families with machine learning based on N-gram of opcodes,” Future Gener. Comput. Syst., vol. 90, pp.
211–221, Jan. 2019. doi: 10.1016/j.future.2018.07.052.

[20] W. El-Shafai, I. Almomani, and A. AlKhayer, “Visualized malware multi-classification framework using
fine-tuned CNN-based transfer learning models,” Appl. Sci., vol. 11, no. 14, pp. 6446, Jul. 2021. doi:
10.3390/app11146446.

[21] A. Bensaoud, J. Kalita, and M. Bensaoud, “A survey of malware detection using deep learning,” Machine
Learn. Appl., vol. 16, no. 1, pp. 100546, Jun. 2024. doi: 10.1016/j.mlwa.2024.100546.

[22] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: A deep learning framework for intelligent malware
detection,” Proc. Int. Conf. Data Mining Steering Committee World Congr. Comput. Sci. (DMIN), Las
Vegas, NV, USA, Jul. 2016, pp. 61–67.

[23] E. Gandotra, D. Bansal, and S. Sofat, “Tools & techniques for malware analysis and classification,” Int. J.
Next-Generation Comput., vol. 7, no. 3, pp. 176, 2016.

https://doi.org/10.7717/peerj-cs.346
https://doi.org/10.1109/TC.2020.3015584
https://doi.org/10.1109/MSP.2007.45
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1186/s13635-017-0055-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.3390/app9020239
https://doi.org/10.1016/j.future.2018.07.052
https://doi.org/10.3390/app11146446
https://doi.org/10.1016/j.mlwa.2024.100546

2938 CMC, 2024, vol.80, no.2

[24] D. Yuxin and Z. Siyi, “Malware detection based on deep learning algorithm,” Neural Comput. Appl., vol.
31, no. 14, pp. 461–472, Feb. 2020. doi: 10.1007/s00521-017-3077-6.

[25] S. Srinivasan and P. Deepalakshmi, “Enhancing the security in cyber-world by detecting the botnets using
ensemble classification-based machine learning,” Meas. Sens., vol. 25, no. 2665–9174, pp. 100624, Feb.
2023. doi: 10.1016/j.measen.2022.100624.

[26] U. E. H. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee, “A survey of the recent trends in
deep learning based malware detection,” J. Cybersecurity Privacy, vol. 2, no. 4, pp. 800–829, Sep. 2022. doi:
10.3390/jcp2040041.

[27] R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly imbalanced data through
sequence modeling,” in 12th ACM Workshop on Artif. Intel. and Security, London, UK, 15 Nov., 2019, pp.
37–48.

[28] B. Cakir and E. Dogdu, “Malware classification using deep learning methods,” in ACMSE ‘18: Proc. of
the ACM Southeast (ACMSE) 2018 Conf., Richmond Kentucky, USA, Mar. 29–31, 2018, pp. 1–5.

[29] V. Verma, A. Malik, and I. Batra, “Analyzing and classifying malware types on windows platform using
an ensemble machine learning approach,” Int. J. Performability Eng., vol. 20, no. 5, pp. 312–318, 2024. doi:
10.23940/ijpe.24.05.p6.312318.

[30] N. Usman et al., “Intelligent dynamic malware detection using machine learning in IP reputation
for forensics data analytics,” Future Gener. Comput. Syst., vol. 118, pp. 124–141, May 2021. doi:
10.1016/j.future.2021.01.004.

[31] J. Zhang, “Machine learning with feature selection using principal component analysis for malware
detection: A case study,” arXiv:1902.03639, 2019.

[32] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti, “On the effectiveness of machine
and deep learning for cyber security,” in 10th Int. Conf. on Cyber Conflict, Tallinn, Estonia, May 29–Jun.
01, 2018. pp. 371–390.

[33] S. Kumar and Sudhakar, “MCFT-CNN: Malware classification with fine-tune convolution neural networks
using traditional and transfer learning in Internet of Things,” Future Gener. Comput. Syst., vol. 125, pp.
334–351, Dec. 2021. doi: 10.1016/j.future.2021.06.029.

[34] S. Seneviratne, R. Shariffdeen, S. Rasnayaka, and N. Kasthuriarachchi, “Self-supervised vision trans-
formers for malware detection,” IEEE Access, vol. 10, pp. 103121–103135, 2022. doi: 10.1109/AC-
CESS.2022.3206445.

[35] Z. Zhao, J. Wang, and J. Bai, “Malware detection method based on the control-flow construct feature of
software,” IET Inf. Secur., vol. 8, pp. 18–24, 2014. doi: 10.1049/iet-ifs.2012.0289.

[36] X. Lu, F. Jiang, X. Zhou, S. Yi, J. Sha and L. Pietro, “ASSCA: API sequence and statistics features
combined architecture for malware detection,” Comput. Netw., vol. 157, pp. 99–111, Jul. 2019.

[37] Z. Islam et al., “Enhancing IoT-based software defect prediction in analytical data management using war
strategy optimization and Kernel ELM,” J. Wireless Netw., vol. 29, no. 8, pp. 1–19, 2023.

[38] G. Ramesh and A. Menen, “Automated dynamic approach for detecting ransomware using finite-state
machine,” Decis. Support Syst., vol. 138, pp. 113400, Nov. 2020. doi: 10.1016/j.dss.2020.113400.

[39] M. S. Akhtar and T. Feng, “Detection of malware by deep learning as CNN-LSTM machine learning
techniques in real time,” Symmetry, vol. 14, no. 11, pp. 2308, 2022. doi: 10.3390/sym14112308.

[40] F. Ullah et al., “Cyber security threats detection in Internet of Things using deep learning approach,” IEEE
Access, vol. 7, pp. 124379–124389, 2019. doi: 10.1109/ACCESS.2019.2937347.

[41] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi and A. P. Sheth, “Machine learning
for Internet of Things data analysis: A survey,” Digit. Commun. Netw., vol. 4, no. 3, pp. 161–175, 2018. doi:
10.1016/j.dcan.2017.10.002.

[42] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-based deep learning in indus-
trial Internet of Things,” IEEE Internet Things J., vol. 7, no. 5, pp. 4329–4341, May 2020. doi:
10.1109/JIOT.2019.2963635.

[43] H. Paulheim and R. Meusel, “A decomposition of the outlier detection problem into a set of supervised
learning problems,” Mach. Learn., vol. 100, no. 2/3, pp. 509–531, 2015. doi: 10.1007/s10994-015-5507-y.

https://doi.org/10.1007/s00521-017-3077-6
https://doi.org/10.1016/j.measen.2022.100624
https://doi.org/10.3390/jcp2040041
https://doi.org/10.23940/ijpe.24.05.p6.312318
https://doi.org/10.1016/j.future.2021.01.004
https://doi.org/10.1016/j.future.2021.06.029
https://doi.org/10.1109/ACCESS.2022.3206445
https://doi.org/10.1049/iet-ifs.2012.0289
https://doi.org/10.1016/j.dss.2020.113400
https://doi.org/10.3390/sym14112308
https://doi.org/10.1109/ACCESS.2019.2937347
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1109/JIOT.2019.2963635
https://doi.org/10.1007/s10994-015-5507-y

CMC, 2024, vol.80, no.2 2939

[44] B. Charbuty and A. Abdulazeez, “Classification based on decision tree algorithm for machine learning,”
J. Appl. Sci. Technol. Trends., vol. 2, no. 1, pp. 20–28, Mar. 2021. doi: 10.38094/jastt20165.

[45] S. Aurangzeb, R. N. B. Rais, M. Aleem, M. A. Islam, and M. A. Iqbal, “On the classification of
microsoft-windows ransomware using hardware profile,” PeerJ Comput. Sci., vol. 7, pp. 361, Feb. 2021.
doi: 10.7717/peerj-cs.361.

[46] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen, “A survey on mobile mal-
ware detection techniques,” IEICE Trans. Inf. Syst., vol. E103, no. 2, pp. 204–211, 2020. doi:
10.1587/transinf.2019INI0003.

[47] Z. Zhao et al., “ERNN: Error-resilient RNN for encrypted traffic detection towards network-induced
phenomena,” IEEE Transac. Depend. Secure Computing., pp. 1–18, Feb. 2023.

[48] I. Zada, I. Khan, T. Rahman, and A. Jameel, “Classification of software failure incidents using SVM,” The
Sciencetech, vol. 2, no. 3, pp. 1–13, Sep. 2021.

[49] Z. Wang et al., “BugPre: An intelligent software version-to-version bug prediction system using graph
convolutional neural networks,” Complex Intell. Syst., vol. 9, no. 4, pp. 3835–3855, Aug. 2023. doi:
10.1007/s40747-022-00848-w.

[50] N. J. Singh, N. Hoque, K. R. Singh, and D. K. Bhattacharyya, “Botnet-based IoT network traffic analysis
using deep learning,” Secur. Privacy., vol. 7, no. 2, pp. 355, Mar. 2024. doi: 10.1002/spy2.355.

https://doi.org/10.38094/jastt20165
https://doi.org/10.7717/peerj-cs.361
https://doi.org/10.1587/transinf.2019INI0003
https://doi.org/10.1007/s40747-022-00848-w
https://doi.org/10.1002/spy2.355

	Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results and Discussion
	5 Conclusion
	6 Study Limitations and Future Work
	References

