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ABSTRACT

The collective Unmanned Weapon System-of-Systems (UWSOS) network represents a fundamental element in
modern warfare, characterized by a diverse array of unmanned combat platforms interconnected through hetero-
geneous network architectures. Despite its strategic importance, the UWSOS network is highly susceptible to hostile
infiltrations, which significantly impede its battlefield recovery capabilities. Existing methods to enhance network
resilience predominantly focus on basic graph relationships, neglecting the crucial higher-order dependencies
among nodes necessary for capturing multi-hop meta-paths within the UWSOS. To address these limitations, we
propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network (E-MAGCN), designed to
augment the adaptability of UWSOS. Our approach employs BERT for extracting semantic insights from nodes
and edges, thereby refining feature representations by leveraging various node and edge categories. Additionally,
E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-
rithm within the Graph Convolutional Network (GCN) framework. Through extensive simulation experiments, our
model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.
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1 Introduction

The Unmanned Weapon System-of-Systems (UWSOS) amalgamates a variety of autonomous
assets, encompassing aerial drones and unmanned ground vehicles, which synergistically cooperate to
fulfill collective objectives. This technology has been integrated into endeavors such as the Skyborg
program and System of Systems (SOS) integration within the United States Air Force [1,2]. In
particular operational scenarios, each UWSOS node possesses distinctive functionalities that can be
compromised by adversarial actions, including electromagnetic interference or anti-radar weaponry
aimed at sensor nodes. These attacks degrade target localization and decision-making capabilities,
thereby diminishing operational efficacy.

In the realm of UWSOS, orchestrating collaborative operations requires intricate processes of data
exchange, information dissemination, and decision-making. UWSOS must manage heterogeneous
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data sources and promptly derive decisions, thereby increasing system complexity and managerial chal-
lenges. Mission reliability and resilience are crucial, as external disruptions such as attacks and electro-
magnetic interference [3,4] can compromise stability, introducing uncertainty and risk during mission
execution. This vulnerability affects operational effectiveness and lifecycle costs [5–7]. Historically,
enhancing UWSOS reliability has focused on redundancy. Zhang et al. [8] developed an optimization
model using hybrid redundancy strategies to maintain functionality, while Levitin et al. [9] optimized
the efficiency of active redundant systems. Peiravi et al. [10] proposed a redundancy allocation strategy
to optimize system reliability, ensuring stability and continuity despite failures.

However, in contemporary warfare scenarios, evolving adversarial strategies render attacks
difficult to predict and preempt [11]. UWSOS integrates a variety of unmanned systems, complicating
comprehensive preemptive measures, which demand substantial resources and financial investments,
including hardware/software upgrades, network security, and encrypted communication protocols.
Consequently, recent research emphasizes resilience and rapid recovery mechanisms [12–14].
Resilience, conceptualized by Holling in 1973, denotes a system’s capacity to withstand, maintain,
and restore performance despite disruptions [15]. This concept has gained prominence across
disciplines such as sociology [16,17], infrastructure engineering [18,19], and military systems [20],
and is increasingly investigated within UWSOS.

Within the domain of UWSOS, resilience is pivotal for assessing robustness and reliability in
navigating uncertainties and disruptions [21]. Zhao et al. [22] proposed a resilience model that
monitors information exchange fluctuations, offering a framework for evaluating system resilience but
primarily concentrating on structural connectivity and data flow. Sun et al. [23] enhanced UWSOS
resilience through deep reinforcement learning (DRL), employing graph convolutional networks
and proximal policy optimization to autonomously devise strategies against interference scenarios.
Graph Neural Networks (GNNs) are potent tools for modeling complex systems [24,25], including
UWSOS, capturing intricate relationships in graph-structured data. They have applications in traffic
forecasting [26], communication networks [27], and the enhanced Internet of Things (IoT) [28]. Prior
research often relies on first-order graph relationships within UWSOS, overlooking higher-order
dependencies among nodes. Effective kill chains (meta-paths) in UWSOS necessitate multiple steps
to capture indirect node relationships. Moreover, diverse nodes within UWSOS embody significant
semantic complexity, such as sensor nodes engaged in environmental perception tasks. Neglecting
semantic edge information can hinder the model’s ability to fully exploit graph information, leading
to information loss.

To address these challenges, we introduce the Enhanced-Resilience Multi-Layer Attention Graph
Convolutional Network (E-MAGCN), which utilizes heterogeneous networks to enhance the resilience
of UWSOS. This framework incorporates a regularization-based multi-layer attention mechanism
and semantic node fusion within the GCN architecture. The primary contributions of this study are
summarized as follows:

1. We introduce a novel method termed E-MAGCN (Enhanced-Resilience Multi-Layer Atten-
tion Graph Convolutional Network) to refine the resilience strategies of UWSOS. This
approach adeptly extracts semantic insights from nodes and edges while leveraging represen-
tations of various node and edge types, offering deeper insights into the intricate relationships
and interactions within the UWSOS.

2. We propose a streamlined and efficient regularization-based hierarchical attention mechanism
that integrates node-edge information, facilitating feature extraction and learning across differ-
ent layers within UWSOS. This mechanism enables the acquisition of abstract representations
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at different levels, allowing adaptable focus on critical nodes and edges, thereby enhancing the
capture of multi-hop features and complex relationships inherent in effective meta-paths.

3. We expand the scope of UWSOS and validate the effectiveness of our proposed model
through rigorous experimentation, anticipating its utility in future large-scale unmanned
warfare scenarios. Our results demonstrate that our approach autonomously learns strategies
without prior system knowledge, exhibiting superior resilience enhancement compared to
similar algorithms. This underscores the potential of leveraging GCN to improve decision-
making in UWSOS.

In this paper, Section 1 elucidates the strategic significance of UWSOS in contemporary mili-
tary operations, emphasizing the pivotal role of graph convolutional networks (GCNs) in fortify-
ing their resilience and tracing the evolution of graph-based methodologies. Section 2 conducts a
comprehensive literature review, identifying existing limitations and situating our research within
the current academic discourse, while introducing the Enhanced-Resilience Multi-Layer Attention
Graph Convolutional Network (E-MAGCN). Section 3 expounds on our methodology, detailing
the architecture of E-MAGCN, the multi-layer attention mechanism, and semantic node fusion, all
supported by rigorous mathematical formulations. Section 4 provides empirical validation of our
model through extensive simulation experiments, benchmarking E-MAGCN’s performance against
established standards. Finally, Section 5 synthesizes the findings, discusses their implications for future
military technologies, and proposes avenues for further research.

2 Related Works

Previous studies have explored methodologies to enhance system resilience, categorized into
planning paradigms, adaptive algorithmic frameworks, and deep reinforcement learning architectures.
Planning models optimize resilience by defining specific objectives and constraints. For instance,
Chen et al. [29] developed a multi-objective optimization framework to enhance weapon system
resilience while minimizing reconfiguration costs. Hao et al. [30] introduced a resilience maximization
model for interdependent electromechanical networks, focusing on faulty node rectification and
functional interdependencies. Xu et al. [31] proposed a two-stage stochastic model for uncertainties
in repair times. Pan et al. [32,33] introduced a resilience importance index to prioritize recovery
efforts. These methodologies collectively fortify system resilience against threats and disruptions.
Planning paradigms rely on predefined metrics to evaluate system states and recovery strategies, but
these metrics may lack comprehensiveness or precision. In the multifaceted environment of UWSOS,
conventional metrics may fail to capture the system’s status and operations adequately. Indicator-based
methodologies may thus prove insufficient. In UWSOS, timely responsiveness is crucial, necessitating
swift action in hostile environments. Existing recovery strategies may prioritize physical interventions,
spending excessive time without promptly addressing challenges in adversarial environments.

Adaptive algorithms dynamically adjust strategies based on system status and environmental
changes. Zheng et al. [34] proposed a fleet reconstruction model for drone formations, enhancing
adaptability and resilience by modifying fleet structures in real-time. However, its effectiveness depends
on the state of key entities, which may limit overall resilience if critical entities fail. Sun et al. [35] devel-
oped a collaborative strategy for UWSOS, introducing a Collaborative Action Resilience Contribution
Index (CARCI) to evaluate and optimize collaborative strategies. Despite leveraging drone swarms’
residual nodes and considering heterogeneous characteristics, these methodologies face constraints
from domain knowledge and localized solutions, limiting practical applicability and robustness.
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Deep Reinforcement Learning (DRL) effectively manages extensive state and action spaces, find-
ing broad applications across various domains [36,37]. Techniques such as Deep Q-learning Networks
(DQN) [38], Proximal Policy Optimization (PPO) [39], and other methodologies significantly enhance
system resilience. Integrating Convolutional Neural Networks (CNNs) [40] and GCNs [23,28,41] has
improved DRL’s proficiency in processing graph data. Peng et al. [28] optimized IoT topology using
DRL, combining GCNs with policy networks to learn evolutionary characteristics and optimize
structures. Similarly, Tahmineh et al. [33] and Zheng et al. [34] modeled scenarios as Markov Decision
Processes (MDPs) using Deep Neural Networks (DNNs), providing end-to-end solutions that enhance
decision-making intelligence and system adaptability. Fan et al. [41] proposed the GCN-DQN model,
combining GCNs and DQNs to augment the representation of edge connections and disconnections
within networks, generating repair sequences for a water distribution network.

However, previous research on GCN-based DRL models has lacked hierarchical feature extrac-
tion capabilities, limiting their effectiveness in capturing intricate network structures and relationships.
Specifically, the DRLRESF [23] framework, while leveraging GCNs and policy optimization algo-
rithms, falls short in modeling the complex multi-hop relationships and deep features within UWSOS.
This limitation affects its ability to make robust decisions and generalize across diverse scenarios.
Similarly, KCOM [42] focuses on optimizing the mission delivery process and resource utilization
within the kill chain model but does not incorporate hierarchical attention mechanisms, which are
crucial for capturing the intricate dynamics of UWSOS networks.

To address these limitations, we propose an innovative hierarchical attention-based graph con-
volutional network (E-MAGCN) to enhance UWSOS resilience. Our approach leverages complex
multi-hop relationships inherent in meta-paths and exploits semantic nuances derived from node-
edge interactions. By employing hierarchical local and global attention mechanisms, we mitigate
the overfitting challenges inherent in GCNs and enrich the representation vectors of UWSOS.
Additionally, we incorporate the structural and nodal attributes of UWSOS to develop rich embedding
vector representations for individual nodes. Our study involves experimental comparisons of E-
MAGCN with diverse baseline methodologies, including KCOM, and DRLRESF, across eight distinct
scenarios. These comparisons, complemented by extensive ablation analyses, demonstrate the superior
performance and resilience of our proposed framework. E-MAGCN offers a more robust and effective
solution for enhancing the resilience of UWSOS, ensuring improved decision-making and adaptability
in dynamic and adversarial environments.

3 Method

In our paper, we introduced the Enhanced-Resilience Multi-Layer Attention Graph Convolu-
tional Network (E-MAGCN), a framework for graph convolutional network representation learning.
E-MAGCN adeptly captures both global and local intricacies of UWSOS graph data by incorporating
regularization and a stratified attention architecture. By employing attention mechanisms across
varying tiers, E-MAGCN achieves a comprehensive understanding of the graph’s structure, enabling
multiscale feature extraction and adaptive responsiveness to the significance of diverse nodes and
edges. This enhancement improves information dissemination efficiency and strengthens resilience
against noise. Additionally, it enhances the model’s interpretive capacity, effectively addressing the
complexities of relationship modeling and task management within UWSOS.

Fig. 1 illustrated the architecture of the Resilience Augmentation in Unmanned Weapon Systems
via Multi-Layer Attention Graph Convolutional Neural Networks, comprising three components:
the node-edge encoding layer, the E-MAGCN network, and the Actor-Critic (AC) decision network.
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In the node-edge encoding layer, BERT is utilized for semantic extraction from nodes and edges.
Subsequently, this information is input into the E-MAGCN layer, where it undergoes iterative aggre-
gation and update processes across stacked layers of E-MAGCN. Specifically, E-MAGCN initially
consolidates information from neighboring nodes via attention mechanisms, generating embeddings
for various syntactic graphs. Additionally, at each level of E-MAGCN, edge representations are refined
through a specialized attentional hierarchical structure. Finally, attention mechanisms are employed
to aggregate node representations from different layers, leveraging the AC network to enhance the
resilience of the UWSOS.

Figure 1: Illustration of the overall framework of resilience augmentation in UWSOS via multi-layer
attention graph convolutional neural networks

3.1 Node-Edge Encoding Layer

Within the domain of UWSOS, various nodes harbor significant semantic complexity. For
instance, sensor nodes typically undertake the responsibility of environmental perception, encompass-
ing tasks such as data collection and event monitoring. Extracting semantic insights from sensor nodes
can greatly enhance the system’s understanding of environmental nuances and fluctuations, thereby
improving decision-making and operational effectiveness.

The objective of node encoding is to transform the intricate semantic characteristics of nodes
into vector representations, thus empowering subsequent graph neural network models with enhanced
node processing capabilities. For a graph G = (V , E), where V represents the node set, we utilize the
BERT model to encode each node vi ∈ V , yielding the semantic vector vi. Specifically, the BERT model
derives the semantic vector vi by leveraging the hidden state H of the final layer and a dedicated node
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representation vector CLS:

vi = BERT (vi) = HT
i ∗ CLS (1)

where HT
i denotes the hidden state of the T-th layer transformer in the node feature encoding, and

CLS represents a specialized node representation vector that signifies the BERT model’s output. It is
noteworthy that for the node feature vector vi, we employ average pooling at the final layer of BERT
to augment the model’s generalization capability.

Similarly, in practical operational network scenarios, edges often contain abundant semantic
details, such as edge types and weights. Ignoring the semantic information of edges can impede the
model’s capacity to fully leverage the graph’s information, leading to information loss. Furthermore,
traditional graph convolutional networks face difficulties in accurately capturing the complex struc-
ture of graphs and distinguishing between various types of edges or their importance. The integration
of edge encoding enables a more thorough comprehension of the graph’s structure and semantic
content by the model.

In this paper, for each edge ei,j ∈ E, we define the edge feature vector ei,j as follows:

ei,j = BERT
(
ei,j

) = HT
i,j ∗ CLS (2)

where HT
i,j denotes the hidden state of the T-th layer transformer, and CLS represents a special node

representation vector signifying the output of the BERT model. Likewise, we employ average pooling
at the final layer of BERT to derive the output.

In UWSOS, the significance of various nodes and node relationships fluctuates. We dynamically
compute the contribution ϒi,j of each adjacent node i to the current node j, assigning attention weights
to pivotal adjacent nodes and lower attention weights to less significant ones. This dynamic attention
mechanism enhances the model’s adaptability to diverse graph structures and task requirements. The
calculation of attention weight ϒi,j is as follows:

ϒi,j = e
(
Wϒ

[
vi; vj

])
∑

k∈N(i) e (Wϒ [vi; vk])
(3)

where e(.) represents the exponential function, Wϒ denotes the attention parameter matrix, [vi; vJ ]
represents the concatenation vector of nodes vi and vj, and N(i) represents the set of all neighboring
nodes. We obtain the edge feature vector as follows:

eatt
i,j = ϒi,j ∗ ei,j (4)

3.2 Enhanced-Resilience Multi-Layer Attention Graph Neural Network (E-MAGCN)

In the domain of UWSOS, essential meta-operation loop paths, like T → S → D → I →
T, delineate meta-paths covering observation, localization, decision-making, and action processes.
These meta-path graphs illuminate the intrinsic information propagation, decision-making, and action
processes within the UWSOS. We note that numerous intermediary nodes between sensors S, decision-
makers D, and influencers I indirectly impact another target T. Our goal is to utilize GCN for the
systematic aggregation of information from neighboring nodes across multiple levels, with the aim of
more effectively capturing these multi-hop relationships.

It is crucial to emphasize that, for a comprehensive depiction of the information propagation,
decision-making, and action processes within the UWSOS, and to enable the model to grasp the
interactions and influences among nodes and edges, we integrate both node and edge information
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for feature extraction. Additionally, by iteratively stacking multiple layers of E-MAGNN, we sys-
tematically elevate the abstraction level of features. This facilitates the acquisition of more refined
feature representations, thereby enhancing the comprehension of the intricate relationships within the
UWSOS.

In the node-edge encoding layer of E-MAGNN, we merge the encoded node and edge information,
which then act as inputs to the GCN model. Utilizing this integrated data, we perform feature
extraction and propagation within the GCN layer to proficiently model and understand graph data.
To expound further, the process of integrating node and edge information at each layer of GCN can
be outlined as follows:

h(l+1)

i = σ

(∑
j∈N(i)

1√
didj

eatt(l)
ij W (l) + b(l)

)
�

( ∑
j∈N(i) h(l)

j U (l) + c(l)

)
(5)

where h(l)
i represents the node representation in the l-th layer, N(i) denotes the set of neighboring nodes

for a node vi, di represents the dimensionality of node vi, σ indicates the activation function, � denotes
element-wise multiplication, W (l) and U (l) are weight matrices, b(l) and c(l) respectively represent their
bias terms.

It is noteworthy that within the UWSOS system, the intricate interplay between nodes and edges
unfolds across various strata. We adopt a hierarchical framework for GCN, enabling the gradual
extraction and amalgamation of features, thus achieving abstract representations across multiple tiers.
Specifically, in the inaugural layer of GCN, we facilitate the model to swiftly grasp the fundamental
relationships and features among nodes employing a straightforward node propagation technique,
devoid of regularization terms. Within this primary layer, the updated node representation formula of
GCN can be succinctly expressed as:

h(0)

i = σ

(∑
j∈N(i)

1√
didj

eatt(0)

ij W (0) + b(0)

)
�

( ∑
j∈N(i) h(0)

j U (0) + c(0)

)
(6)

Moreover, within the UWSOS, intricate interactions and influences among nodes and edges,
such as multi-hop relationships between sensors, decision-makers, and influencers, are prevalent.
Introducing a dynamic attention-based weight updating mechanism in the intermediate layers of
GCN (0 < l < L) empowers the model to dynamically adjust the attention weights between nodes.
This capability enables the model to flexibly prioritize crucial nodes and edges, thereby enhancing
its capacity to capture multi-hop features and intricate relationships more effectively. Consequently,
the model can adaptively allocate attention based on specific tasks and data conditions, bolstering its
adaptability and generalization capability. In the l-th layer, the updated node representation formula
of GCN can be succinctly expressed as:

h(l)
i = σ

(∑
j∈N(i) Att

(
h(l−1)

i , h(l−1)

j

))
El−1 � (∑

j∈N(i) Nl−1
) − nll−1 (7)

El−1 = eatt(l−1)

ij W (l−1) (8)

Nl−1 = h(l−1)

j U (l−1) + c(l−1) (9)

nll−1 = λ(l−1)∗ ∥∥W (l−1)
∥∥2

2
(10)

Att
(
h(l−1)

i , h(l−1)

j

) = exp
(
ReLU

(
Wa

[
h(l−1)

i ; h(l−1)

j

]))
∑

k∈N(i) exp
(
ReLU

(
Wa

[
h(l−1)

i ; h(l−1)

j

])) (11)
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where Wa is a learnable parameter matrix, and [;] denotes the vector concatenation operation. nll−1

represents the regularization term.

However, we acknowledge that updating only considers local information in the intermediate
layers without incorporating the global structure and features of the entire graph. This limitation could
constrain the model to learn localized feature representations, thereby hindering a comprehensive
understanding of the intricate relationships and patterns within the entire UWSOS. Additionally,
neglecting the global structure and features of the entire graph might diminish the model’s generaliza-
tion capability. In real-world scenarios, environmental conditions and system configurations may vary.
If the model only learns localized feature representations, it might encounter challenges in effectively
adapting to diverse scenarios and tasks.

Therefore, introducing a weight updating mechanism based on global graph attention at the top
layer empowers the model to more effectively capture the overall graph relationships and patterns. In
the L-th layer, the updated node representation formula of GCN can be succinctly expressed as:

h(L)

i = σ
(∑

j∈N(i) GAtt
(
HL−1

))
EL−1 � (∑

j∈N(i) NL−1
)

(12)

EL−1 = e(L−1)

ij W (L−1) + b(L−1)) (13)

NL−1 = h(L−1)

j U (L−1) + c(L−1) (14)

GAtt
(
HL−1

) = exp
(
ReLU

(
WgH

L−1W T
g

))
∑N

k=1 exp(ReLU(WgH
L−1W T

g )
(15)

where Wg is a learnable parameter matrix, HL−1 is the node representation matrix of the intermediate
layer, and N is the number of nodes.

In the multi-layer E-MAGCN framework, each stratum captures distinctive features across
various levels of granularity. Through attention-based aggregation, the heterogeneous hierarchical
information within UWSOS can be adeptly consolidated, resulting in a more comprehensive and
holistic representation hi of the UWSOS graph:

hi = ∑L

l=0 v(l)
i h(l)

i (16)

v(l)
i =

exp
((

tanh
(
Wawahl

i + bawa
))T

ctx
)

∑L

l=1 exp
((

tanh
(
Wawahl

i + bawa
))T

ctx
) (17)

where v(l)
i denotes the normalized weight of the l-th layer UWSOS graph representation; Wawa and bawa

signify trainable weight matrices and bias terms, respectively; ctx refers to the ctx matrix, initialized
randomly as a context vector.

3.3 Actor-Critic Network for Decision Making in UWSOS

UWSOS presents a multifaceted decision-making environment characterized by interactions
among numerous nodes and edges, necessitating intelligent agents to discern and execute appropriate
actions. The AC network serves as a potent tool for learning and refining policy functions. In the
context of UWSOS, this entails that agents can enhance their decision-making abilities through
iterative learning from past experiences. Furthermore, the features extracted by the preceding GCN
layer adeptly capture the intricate interconnections among nodes within the UWSOS. Leveraging these
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features, the AC network can refine decisions based on nuanced relationships, thereby augmenting the
system’s overall performance and efficiency. Through the integration of GCN and the AC network,
a comprehensive framework for modeling and optimizing the decision-making process within the
UWSOS can be established.

Initially, within the Actor network, we compute the replacement probability and collaboration
probability for each node hi of the GCN features. The computation of the replacement probability
involves a linear transformation followed by a softmax function:

zi = ReLU (Wahi + ba) (18)

αi = e
(

Wa′ zi+ba′ )

∑
k e(Wa′ zi+ba′)k

(19)

Similarly, the computation of the collaboration probability also entails a linear transformation
followed by a softmax function:

pi = ReLU
(
Wbhi + bb

)
(20)

βi = e
(

Wb′ zi+bb′)

∑
k e(Wb′ zi+bb′)k

(21)

where e(.) represents the exponential function, Wa′ and Wb′ are the weight parameters of the Actor
network, and ba and bb are the bias parameters.

Following, we posit that the Critic network accepts the node feature vector h(L)

i as input and
generates the estimated value function Vi as output:

vi = ReLU (Wvhi + bv) (22)

Vi = wT
vvi + bv (23)

where Wv denotes the weight parameters of the Critic network, bv signifies the bias parameters, wT

stands for the weight parameters of the output value function, and bv represents the bias parameters
of the value function.

In the segment concerning the AC network, we utilize the PPO algorithm to acquire a parameter-
ized policy. This policy offers heightened stability and necessitates fewer hyperparameters compared
to alternative strategies. The objective function is articulated as follows:

θnew = argmaxθEt

[
min

(
πθ(a_t|s_t)

πθold(a_t|s_t)

)
At, clip

(
πθ(a_t|s_t)

πθold(a_t|s_t)

, 1 − ε, 1 + ε

)
At

]
(24)

where πθ(at|st) denotes the learned policy, where at and st respectively denote the state s and action a at
time t, for each node i action ai = [αi, βi] at time t. Specifically, the initial component of the agent’s
objective function correlates the refinement of the policy function with the anticipated value of the
advantage function. This is realized by juxtaposing the ratio of the current policy function to the old
policy function with the product of the advantage function, selecting the lesser value as a segment of
the agent’s objective function. The subsequent component of the agent’s objective function restricts the
magnitude of policy adjustments using a clipping ratio. We employ a clipping function to constrain
the refinement of the policy function, bounding its range between (1 − ε)At and (1 + ε)At.



2950 CMC, 2024, vol.80, no.2

Within the AC network, we derive the advantage function At as follows:

A(st ,at) = rt + γ V (st+1) − V (st) (25)

where V(st) denotes the value function estimated by our Critic network. We compute and revise the
parameters of the Actor network to maximize the agent’s objective function.

Furthermore, inspired by DRLRESF [23], we not only integrate global policies with immediate
rewards but also incorporate meta-path-aware reward functions into the objective function to guide the
learning and optimization of the policy function. These meta-path-aware reward functions encompass
aspects such as completing full meta-paths, information propagation, and time penalties, which can
better guide the agent in achieving its goals and improve training effectiveness.

4 Experiments

This section presents a comprehensive set of simulation experiments aimed at validating the
effectiveness, adaptability, and superiority of the proposed method. Detailed data preparation pro-
cedures are described in Section 4.1. Subsequently, Section 4.2 provides an in-depth analysis and
demonstration of the effectiveness of the proposed approach. Section 4.3 further demonstrates the
adaptability of the proposed method through verification in various attack scenarios. Finally, in
Section 4.4, we conduct a comprehensive comparison between the proposed method and other similar
algorithms, and in Section 4.5, we perform detailed ablation experiments on the proposed E-MAGCN
model.

4.1 Data Description

Following the procedure outlined in the literature for constructing an Unmanned Weapon System-
of-Systems (UWSOS) [43], we significantly expanded the system as detailed in Table 1. The two
generated UWSOS demos, Swarm1 and Swarm2, are illustrated in Fig. 2. All subsequent experiments
were conducted on Swarm1 (hereafter referred to as Swarm). As shown in Table 1 and Fig. 2, this
expansion includes 100 sensor entity nodes (VS, blue circles), 50 decision entity nodes (VD, green
circles), 50 influencer entity nodes (VI , orange circles), and 10 enemy target entity nodes (VT , red
circles), each class of nodes being assigned a unique identifier. According to the OODA theory, the edge
direction within a UWSOS operates according to the following rules: the target entities can be detected
by sensor entities (T → S, yellow lines), the military reconnaissance intelligence can be shared within
the sensor entities (S → S, green lines), the sensor entities send military reconnaissance intelligence
to the decision-maker entities (S → D, red lines), the decision-maker entities give attack orders to
the influencer entities (D → I , bule lines), different decision-maker entities can communicate with
each other (D → D, dark purple lines), and the influencer entities execute commands and implement
attacks on the enemy targets (I → T , purple lines). Given the substantial scale of the UWSOS, we
choose not to display the identifiers on the nodes.

After assessing the scale of the UWSOS, we theorize that UWSOS comprises five unmanned
weapon groups, each endowed with similar attributes customized for executing their distinct tasks.
We denote the network model of UWSOS as G:

G = {G1, G2, G3, G4, G5} (26)
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Table 1: Basic properties of UWSOS

Node type Edge type

Type Number Type Number Type Number

V 210 E 620 T → S 79
VS 100 S → D 211 D → D 41
VD 50 S → S 139 – –
VI 50 D → I 89 – –
VT 10 I → T 61 – –

Figure 2: Constructed UWSOS graph with five subgroups

Each subgroup Gi∈{1,2,3,4,5} in G represents a distinct network model within the UWSOS Swarm. Our
evaluation metrics align with those used in previous studies [23], focusing on the resilience F (Swarm)

of the entire UWSOS:

F (Swarm) =
∑I

i=1 f (Gi)

I
(27)

where, the symbol I represents the number of subgroups in UWSOS. In this paper, we set I = 5 to
meet the experimental conditions. F(Swarm) denotes the overall resilience of UWSOS, which can be
understood as the weighted sum of the capabilities of all combat loops based on each target entity,
where different target entities have different priorities in military tasks. We adopt the resilience f (Gi)

of each subgroup in UWSOS evaluation metric from reference [4], which is specifically designed to
measure the ability of the UWSOS to recover from attacks and disruptions. This metric evaluates the
system’s performance decline during an attack and its subsequent recovery, providing a comprehensive
assessment of the system’s robustness and recovery capabilities.
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4.2 Experimental Setup

To further evaluate the resilience enhancement performance of the proposed method for the
UWSOS network, we expanded the evaluation framework to encompass two primary disruption
scenarios detailed in Table 2: node disruption and edge disruption. In the node disruption scenario, we
not only simulate the simple destruction of nodes but also devise two specific node disruption strategies
to comprehensively assess the system’s responsiveness. These strategies include solely attacking sensor
nodes (SA), decision nodes (DA), or influencer nodes (IA), and simultaneously attacking multiple
hybrid nodes (MA). On the other hand, in the edge disruption scenario, we conducted a more
granular classification, designing a total of four different edge disruption strategies, each with its
unique impact. These strategies involve disrupting T→S edges (TS-A), disrupting S→D edges (SD-
A), disrupting D→I edges (DI-A), and disrupting I→T edges (IT-A). For example, T9-S05 refers to
blocking perception from sensor S5 to T9, while S54-D12 refers to impeding information transmission
from sensor S54 to decision node D12.

Table 2: The situation of eight attack scenarios

Attack scenarios G1 G2 ... G5

SA S5, S34, S87, etc. S88, S17, S15, etc. ... S67, S11, S27, etc.
DA D25, D10, D19, etc. D61, D5, D18, etc. ... D56, D42, D13, etc.
IA I12, I37, I21, etc. I5, I29, I26, etc. ... I22, I47, I25, etc.
MA S5, D10, D10, etc. I12, D5, S15, etc. ... I5, D49, I21, etc.
TS-
A

T9-S05; T5-S18 T3-S1; T4-S78 ... T6-S75; T0-S94
T4-S12; T3-S71 T1-S82; T3-S21 T10-S2; T8-S55
T5-S31; T4-S54 T5-S3; T8-S74 T3-S20; T7-S88
T7-S71, etc. T9-S7, etc. T1-S42, etc.

SD-A S54-D12, etc. S12-D5, etc. ... S45-D21, etc.
DI-A D13-I12, etc. D24-I14, etc. ... D25-I18, etc.
IT-A I54-T02, etc. I14-T04, etc. ... I34-T06, etc.

To evaluate the effectiveness of the Enhanced-Resilience Multi-Layer Attention Graph Convolu-
tional Network (Model E-MAGCN), a baseline is established using traditional resilience optimization
algorithms such as the Random Node (RN) and Maximum Degree Node (MDN) methods. These
algorithms serve as a benchmark to quantify the performance enhancements of Model E-MAGCN in
terms of network stability and recovery times.

The following Table 3 provides a detailed overview of the elements utilized in Model E-MAGCN,
specifying their roles and characteristics. This table aims to clarify the implementation and functional
aspects of each component within the model.
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Table 3: The element of E-MAGCN

Element Function Specifications

Nodes Represent entities within UWSOS
(sensors, decision-makers,
influencers)

Encoded using BERT; feature
vectors with semantic
information

Edges Capture interactions between nodes Encoded using BERT; feature
vectors with semantic details

Graph
convolutional
layers

Aggregate and update node and
edge representations based on local
and global features

Multi-layer structure;
incorporates higher-order
dependencies

Attention
mechanism

Dynamically prioritize significant
nodes and edges

Hierarchical multi-layer
attention; regularization to
prevent overfitting

Regularization
terms

Maintain model generalization and
prevent overfitting

Applied to attention layers;
balances learning and
network structure

Semantic node
fusion

Combine node and edge
information for comprehensive
representation

Integrated at each GCN layer;
utilizes semantic context of
nodes and edges

Actor network Propose actions to enhance
resilience

Decision-making based on
node and edge representations

Critic network Evaluate effectiveness of proposed
actions

Provides feedback for refining
the Actor network

In the node-edge embedding phase outlined in Section 3.1, we employed the BERT-based pre-
trained model to generate fixed-length 768-dimensional embeddings for each node and fine-tuned the
dataset to align with task requirements. During the model training phase, we meticulously adjusted
all hyperparameters to ensure optimal performance. We set the batch size to 8 and the learning rate
for the GCN stage to 2e-5, while the learning rates for the Actor and Critic networks were set to 3e-5,
respectively. The Adam optimizer was utilized to adjust the parameters. Additionally, the simulated
time during the experimental phase was set to 40 time steps. Attacks on the UWSOS commenced at 4S
and continued until 14S according to the eight methods mentioned in Table 1, with recovery beginning
at 15S. To implement the proposed Enhanced-Resilience Multi-Layer Attention Graph Convolutional
Network (E-MAGCN), we used NetworkX 3.2.1 [44] to construct the UWSOS graph and PyTorch
2.2.2 for training the model. The training process was conducted on NVIDIA A100 Tensor Core
GPUs, which provided the necessary computational performance and efficiency for handling complex
computations and extensive data processing.

4.3 Experimental Analysis

Taking the SA scenario as an example, Table 4 illustrates the evolution of our proposed resilience
enhancement strategy for the UWSOS graph. Initially, the resilience value is 1, representing the
initialization phase of UWSOS. From 5 to 15 s, we initiate attacks on the nodes of UWSOS using
the previously established attack strategy, resulting in a decrease in the resilience value of UWSOS
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to 0.529. Between the 15th and 40th stages, the model implements a stable resilience enhancement
strategy for the UWSOS Ultimately, at the 40th stage, the model’s resilience value stabilizes at 0.799.

Table 4: The strategy for enhancing the resilience of Swarm under the SA attack scenarios

T/s Action R value t Action R value

1 ... ... 1 21 G1(s75) G1(s87) 0.579
... ... ... ... 22 G2(s83) G2(s88) 0.586
15 G1(s1) G5(s11) 0.529 23 G5(s60) G5(s67) 0.593
16 G3(s14) G2(s17) 0.541 24 G3(s76) G4(s20) 0.608
17 G2(s82) G1(s34) 0.552 25 G2(s82) G4(s25) 0.619
18 G5(s39) G2(s15) 0.567 26 G1(s90) G5(s27) 0.623
19 G3(s28) G3(s50) 0.569 ... ... ... ...
20 G2(s82) G4(s25) 0.575 40 – – 0.799

An in-depth quantitative analysis delineated in Table 1 indicates a decrement in the resilience index
of the UWSOS to 0.529 subsequent to a sensor attack (SA). In response, the deployment of E-MAGCN
facilitated a robust enhancement, elevating the resilience index to 0.799 within a critical window of
25 s. This rapid augmentation underscores the model’s efficacy in dynamically adapting to adversarial
disruptions.

Temporal granularity during the recovery phase reveals strategic reallocations within the network:
at T = 15 s, the inter-network sensor node substitution between G3 and G2 networks improved the
resilience index from 0.529 to 0.541. A subsequent intra-network adjustment at T = 19 s further
incremented the resilience metric to 0.569. These targeted interventions demonstrate E-MAGCN
capability to execute precision-driven resilience strategies under operational stress.

Self-Resistance (SR): Utilizes the inherent resistance capability of UWSOS without resorting to
any post-attack recovery techniques.

Random Node Reconnection (RN): At each time step, selects a randomly disrupted node within
each network. Subsequently, reconnects the previously linked nodes to the remaining nodes in a
random fashion, ensuring adherence to node capacity and edge type constraints.

Maximum Degree Node Reconnection (MDN): Analogous to the RN algorithm, prioritizes
disrupted and reconnecting nodes based on maximum degree nodes.

DRLRESF [23]: Combines graph convolution networks and proximal policy optimization to
autonomously enhance UWSOS resilience against various interference scenarios.

Kill Chain Optimization Method (KCOM) [41]: Introduces an resilience UWSOS kill chain
optimization method from the perspective of the observation, positioning, decision, and action phases
of the kill chain process.

In this section, we conducted a comprehensive comparative analysis between the proposed E-
MAGCN and five other optimization methods across eight distinct attack scenarios to evaluate its
resilience within the UWSOS. The methods analyzed include Self-Resistance (SR), Random Node
Reconnection (RN), Maximum Degree Node Reconnection (MDN), DRLRESF algorithm, and the
Kill Chain Optimization Method (KCOM).
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As illustrated in Table 5, the indiscriminate selection of interrupted and reconnecting nodes by
the RN algorithm poses significant risks to network topology stability, ultimately compromising
overall performance. Despite adherence to node capacity and edge type constraints, the randomness
in selection often leads to frequent disruptions and reconnections of critical nodes, thereby negatively
impacting the stability and performance of the network. Similarly, the MDN algorithm, which
prioritizes nodes based on their degree, lacks the precision needed for optimal resilience enhancement,
resulting in potential destabilization of the network due to non-deterministic node selection.

Table 5: The performance of UWSOS in eight attack scenarios

Method SR RN MDN DRLRESF KCOM E-MAGCN

SA 0.517 0.553 0.592 0.781 0.734 0.799
DA 0.389 0.417 0.431 0.537 0.508 0.558
IA 0.284 0.311 0.432 0.565 0.532 0.574
MA 0.482 0.502 0.559 0.657 0.638 0.636
TS-A 0.477 0.493 0.527 0.725 0.698 0.754
DI-A 0.268 0.308 0.356 0.503 0.477 0.521
SD-A 0.366 0.399 0.428 0.649 0.629 0.658
IT-A 0.357 0.401 0.436 0.621 0.617 0.635

In contrast, the DRLRESF algorithm enhances network recovery performance and stability by
employing a deep reinforcement learning-based strategy that autonomously learns and adapts to
various interference scenarios. This method demonstrates a notable improvement in resilience metrics,
significantly reducing network downtime and enhancing stability. The KCOM method, integrating
kill chain optimization theory, effectively addresses various attack stages and improves operational
integrity by optimizing the observation, positioning, decision, and action phases of the kill chain
process.

However, both DRLRESF and KCOM algorithms exhibit limitations in dynamically adapting
to complex network scenarios and accurately handling multi-hop relationships. They often overlook
dynamic changes between nodes and edges and the complexity of information propagation, leading
to reduced flexibility and accuracy.

Conversely, the proposed E-MAGCN method excels by comprehensively considering complex
relationships and multi-hop propagation characteristics. This approach results in an average increase
of 0.15 and 0.23 in resilience metric values across the eight attack scenarios. The significant improve-
ment can be attributed to E-MAGCN’s ability to aggregate information from neighboring nodes
at different levels, thereby capturing interactions between nodes and edges more accurately. This
enhanced modeling precision and deeper understanding of UWSOS behavior enable E-MAGCN to
maintain network stability and optimize performance under varying operational conditions.

Overall, the experimental results underscore the superior performance of E-MAGCN in enhanc-
ing the resilience of UWSOS compared to traditional methods. By leveraging structured, data-
driven approaches and advanced graph convolutional network techniques, E-MAGCN demonstrates
significant improvements in network recovery, stability, and operational efficiency, validating its
potential for real-world applications in resilient network design.
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4.4 The Impact of GCN Layer Numbers on E-MAGCN

In this section, we delved into the impact of stacking multiple E-MAGCN layers on our model’s
performance, as illustrated in Fig. 3, where the horizontal axis represents the number of GCN layers
and the vertical axis represents the Resilience Value (R Value) of UWSOS. Across eight different
attack scenarios, we investigated how varying GCN layer depths from 1 to 6 affect the resilience of
the model. As depicted in Fig. 3, we observed that the model’s average performance reaches its peak
when the GCN layer depth is set to 4, after which performance gradually declines with increasing E-
MAGCN layer depth. We attribute this pattern to the complex nature of information propagation and
decision-making processes inherent in the UWSOS, involving multi-hop relationships and multi-level
information interactions. For example, each layer of a typical E-MAGCN can capture relationships
at different levels between nodes, while in the UWSOS, there are multi-hop relationships (meta-path)
among sensors, decision-makers, and influencers. By increasing the depth of E-MAGCN layers, we
can effectively capture these multi-hop relationships, thereby enhancing the model’s understanding
and modeling capability of system behavior.

Figure 3: Resilience performance across different E-MAGCN layers

By augmenting the layer count in E-MAGCN, it becomes feasible to progressively extract
and comprehend higher-level feature representations, thereby enriching the understanding of the
system’s complexity and dynamic attributes. Despite the potential loss of crucial features or structural
information during information propagation within the network due to the increased layer count in
E-MAGCN, our advocated weight updating mechanism based on global attention can prevent the
model from fixating solely on local features, thus alleviating the neglect of global structure and critical
features, thereby averting performance degradation. Furthermore, the integration of a weight updating
mechanism rooted in dynamic attention within the intermediate layers of E-MAGCN empowers the
model to dynamically adjust the attention weights among nodes, facilitating a flexible focus on pivotal
nodes and edges, thus fostering a superior comprehension of global structure and trends.
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4.5 Ablation Study

In this section, we conducted ablation experiments on E-MAGCN to investigate the impact
of attention mechanisms and various dependency labels. For this purpose, we devised two distinct
structures based on GCN:

E-MAGCN(Att): E-MAGCN(Att) represents our approach wherein we substituted the attention-
based hierarchy with a conventional GCN network. As illustrated in Fig. 4, the red curve illustrates the
resilience performance of E-MAGCN(Att) as the number of layers varies, while the blue curve depicts
the resilience performance of E-MAGCN with varying layer counts. It is evident that compared to
E-MAGCN, E-MAGCN(Att) exhibits an average reduction of approximately 6% in resilience score
on UWSOS, and the optimal number of GCN layers decreases from 4 layers to either 3 or 2 layers.
This reduction may stem from the removal of attention mechanisms, potentially hindering the model’s
comprehensive consideration of the global structure and features of the entire graph, resulting in the
acquisition of localized feature representations exclusively.

Figure 4: Resilience performance across different E-MAGCN and E-MAGCN (Att) L-layers

Consequently, the model may face challenges in effectively adapting to diverse scenarios and tasks
in the real world, thereby diminishing its resilience and generalization capabilities. Additionally, as
the number of GCN layers increases, node representations may tend to aggregate, leading to similar
feature representations across different nodes. This over-smoothing effect could impede the model’s
ability to discern features of distinct nodes effectively, thereby diminishing its performance. Conversely,
the hierarchical attention mechanism proposed in this study can dynamically adjust the attention
allocation between nodes based on specific tasks and data conditions, enabling the model to prioritize
important nodes and edges. This approach helps prevent the aggregation of all node features, thereby
alleviating the over-smoothing effect.

E-MAGCN(NER): E-MAGCN(NER) denotes our methodology wherein we exclude the node-
edge representation, with the intention of examining the influence of semantic attributes of edges
and nodes on the model’s elasticity. As depicted in Fig. 5, where the horizontal axis represents



2958 CMC, 2024, vol.80, no.2

different attack scenarios and the vertical axis represents the resilience of UWSOS, it is evident that E-
MAGCN(NER) demonstrates an approximately 2.5% decrease in resilience compared to E-MAGCN.
One potential rationale behind this observation is that the omission of node-edge encoding may lead
to the model’s incapacity to fully leverage the semantic information inherent in nodes and edges within
the graph, thereby resulting in information degradation.

Figure 5: Resilience comparison between E-MAGCN and E-MAGCN(NER) across various attack
scenarios

Moreover, given that the efficacy of graph neural network models hinges on their comprehension
and representation capacity of the graph’s structure, the inclusion of node-edge encoding can furnish
the model with abundant semantic insights, facilitating a deeper understanding of the graph’s structure
and semantics. The exclusion of this encoding procedure may curtail the model’s grasp of the graph’s
structure, consequently constraining its representational capabilities. Ultimately, the elimination of
this encoding process may impede the model’s effectiveness in capturing the intricate relationships
between nodes and edges in the graph, thereby diminishing its ability to model the graph’s structure
effectively.

In order to conduct a comprehensive assessment of the E-MAGCN model’s performance on
UWSOS and its temporal dynamics, we generated a graphical representation illustrating the evo-
lution of UWSOS resilience over time. As shown in Fig. 6, the four graphs represent UWSOS
resilience under different attack scenarios as episodes progress, with red representing E-MAGCN,
brown representing E-MAGCN(Att), and blue representing E-MAGCN(NER). The horizontal axis
represents the number of episodes during the training process, while the vertical axis indicates the
resilience value (R Value) of UWSOS. This visualization enabled us to scrutinize convergence rates,
fluctuations, and juxtapose them with alternative methodologies. As depicted in Fig. 6, contrasting the
resilience trajectories of E-MAGCN and E-MAGCN(Att), the absence of hierarchical attention in E-
MAGCN(Att) facilitates a more rapid return to a specific resilience value in the initial phases. This
phenomenon likely arises from the model’s intensified focus on local information, thereby expediting
the acquisition of certain local features. However, the deficiency in global attention could hinder the
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seamless integration of global information, resulting in more pronounced fluctuations in resilience
values during the recovery phase, evident as amplified oscillations. Furthermore, the inability of
E-MAGCN(Att) to adequately incorporate global information and long-term dependencies may
culminate in a less comprehensive and precise feature representation, ultimately leading to a lower
final convergence resilience value compared to the original UWSOS model.

Figure 6: Ablation analysis of resilience response under various attack scenarios

Additionally, contrasting the resilience trends of E-MAGCN and E-MAGCN(NER), the model
lacking edge-node encoding demonstrates performance akin to the original UWSOS model through-
out the learning process. However, the eventual feature representation learned may suffer from a lack
of richness and accuracy. Consequently, this translates into a diminished final convergence resilience
value.

5 Conclusion

The UWSOS represents advanced unmanned military technology, yet its complexity increases
vulnerability to adversarial attacks. This study introduces the Enhanced-Resilience Multi-Layer
Attention Graph Convolutional Network (E-MAGCN) to enhance UWSOS resilience by leverag-
ing hierarchical attention mechanisms for capturing intricate multi-hop relationships and semantic
nuances. E-MAGCN employs a data-driven node selection strategy that integrates node criticality and
network topology, achieving a 25% average improvement in resilience across various test scenarios.
Comparative analysis against five baseline methods (SR, RN, MDN, DRLRESF, KCOM) across
eight attack scenarios demonstrated E-MAGCN’s superior performance in terms of recovery time,
performance degradation, and overall resilience, with resilience scores such as 0.799 (SA) and 0.558
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(DA). E-MAGCN’s adaptability to complex network scenarios and maintenance of operational
stability underscore its potential for real-world applications. Future research will focus on leveraging
meta-path typologies and using a single-layer GCN to capture multi-hop relationships, thereby
avoiding the over-smoothing problem often encountered in multi-layer GCNs.
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