
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.053163

ARTICLE

An Attention-Based Approach to Enhance the Detection and Classification
of Android Malware

Abdallah Ghourabi*

Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka, 72388, Saudi Arabia

*Corresponding Author: Abdallah Ghourabi. Email: aghourabi@ju.edu.sa

Received: 26 April 2024 Accepted: 07 June 2024 Published: 15 August 2024

ABSTRACT

The dominance of Android in the global mobile market and the open development characteristics of this platform
have resulted in a significant increase in malware. These malicious applications have become a serious concern to
the security of Android systems. To address this problem, researchers have proposed several machine-learning
models to detect and classify Android malware based on analyzing features extracted from Android samples.
However, most existing studies have focused on the classification task and overlooked the feature selection process,
which is crucial to reduce the training time and maintain or improve the classification results. The current paper
proposes a new Android malware detection and classification approach that identifies the most important features
to improve classification performance and reduce training time. The proposed approach consists of two main steps.
First, a feature selection method based on the Attention mechanism is used to select the most important features.
Then, an optimized Light Gradient Boosting Machine (LightGBM) classifier is applied to classify the Android
samples and identify the malware. The feature selection method proposed in this paper is to integrate an Attention
layer into a multilayer perceptron neural network. The role of the Attention layer is to compute the weighted values
of each feature based on its importance for the classification process. Experimental evaluation of the approach
has shown that combining the Attention-based technique with an optimized classification algorithm for Android
malware detection has improved the accuracy from 98.64% to 98.71% while reducing the training time from
80 to 28 s.

KEYWORDS
Android malware; malware detection; feature selection; attention mechanism; LightGBM; mobile security

1 Introduction

The mobile application market has grown rapidly in recent years. According to the newly released
State of Mobile 2022 report by App Annie [1], 170 billion dollars were spent in application stores in
2021, 230 billion new applications were downloaded and an average of 4.8 h per day were spent on a
mobile device. The major part of this application market is reserved for the Android environment.
As of August 2022, an estimated 71.52% of mobile phone users are using Android (according to
StatCounter [2]). This great popularity of Android applications has made them targets of several types
of malwares. In fact, the personal data stored on Android devices including account credentials and

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.053163
https://www.techscience.com/doi/10.32604/cmc.2024.053163
mailto:aghourabi@ju.edu.sa


2744 CMC, 2024, vol.80, no.2

banking transactions attract the attention of hackers on these devices and encourage them to perform
malicious behavior through Android applications.

A recent report on the evolution of mobile malware [3] indicated that, in 2021, a large number of
malware applications was detected by Kaspersky Labs, including 97,661 new mobile banking Trojans,
3,464,756 mobile malicious installer packages, 17,372 new mobile ransomwares. The same survey
also illustrated how sophisticated mobile attacks are growing. Even with Google’s efforts to keep
threats away from its application platform, the experts still manage to find malware on Google Play.
With regard to mobile malware detection systems, it is still challenging to create effective detection
mechanisms comparable to those of personal computers due to several constraints associated with the
characteristics of mobile devices.

The research community has proposed several solutions for Android malware detection based
on machine learning. These solutions usually involve two main steps. The first step is the extraction
and selection of features from the applications. The second step is the creation of a classifier to
distinguish malicious from benign applications. Selecting appropriate techniques for both steps is
crucial to achieving efficient classification results, especially if one wants to deploy these systems on
mobile devices with limited hardware performance. For instance, the feature collection phase requires
extracting diverse features, which may comprise requested permissions, API calls, opcodes, activities,
and system features. This large number of features significantly increases the size of the dataset and
can affect the classifier’s execution time and accuracy. The choice of the classifier is also vital in this
context. For example, classifiers based on deep learning are very efficient in the classification results;
however, they are known for their high memory occupation and slow execution. In the current paper,
we propose an approach for Android malware detection through feature selection and classification
techniques that allow both to keep a high level of classification precision and to reduce the execution
time of the model. Several recent studies [4–6] have shown that data optimization using feature
selection techniques can improve the performance of attack and anomaly detection systems, especially
in environments with limited hardware characteristics, such as mobile and IoT devices.

The set of features extracted from Android applications for malware analysis is large and diverse.
This can result in a large amount of data that also contains irrelevant and redundant elements, making
the task of classification extremely complex. For example, in the dataset CCCS-CIC-AndMal-2020,
which we used for the experimental evaluation of our approach, each instance contains 5911 features.
Analyzing such high-dimensionality dataset is challenging as it requires longer processing times and
more storage and can potentially lead to misclassification of Android applications. This work proposes
an innovative feature selection method for dimensionality reduction. In the literature, several research
studies have proposed methods to select features and reduce their dimensionality in Android malware
classification systems. The majority of works are based on statistical methods such as chi-square
[7,8], PCA [8,9], information gain [10,11] and Fast Correlation-Based Filter [12]. Other studies have
considered the use of techniques based on neural networks such as Restricted Boltzmann Machines
[13] and RNN [14]. In other works, researchers have tried techniques based on graphs and trees such as
Dominance Tree [15] and Random Forest [16]. The present paper complements and extends previous
research efforts by exploring the effectiveness of the Attention mechanism as a feature selection
technique for mobile malware detection and classification. The Attention mechanism has been very
successful in the ML community in the last few years, especially in NLP tasks. Based on neural network
architecture, this mechanism utilizes a weighted vector to help understand the relationship between the
input features and the target and to estimate which part of the data is more pivotal than the others to
accomplish the ML task. Although this mechanism is successful in natural language processing tasks,
it is not yet well explored for mobile malware detection.



CMC, 2024, vol.80, no.2 2745

In this paper, we propose an Android malware detection system based on the Attention mechanism
and the LightGBM classifier. The goal of our solution is to optimize the performance of the Android
malware detection systems by reducing the number of features while maintaining optimal classification
accuracy and ensuring a fast and efficient classification process.

The main contributions of our work are summarized below:

• The proposal of a neural network based on the Attention mechanism dedicated to reducing the
number of features and selecting only those crucial to the classification results.

• The application of a classification model created using a LightGBM algorithm optimized
through the use of the Bayesian method.

• The proposal of an optimized detection system that can be integrated into mobile devices while
ensuring fast execution and high accuracy.

• The evaluation of the proposed solution demonstrated a reduction in processing time and a
slight improvement in classification accuracy from 98.64% to 98.71%.

The rest of the paper is organized as follows: Section 2 reviews the related works. Section 3
describes our approach and its model design. Section 4 presents the results of the experimental tests.
Finally, we conclude the paper in Section 5.

2 Related Work

In this section, we provide an overview of recent work on feature dimensionality reduction in the
field of Android malware detection and classification. These works are classified into three categories
depending on the type of methods used for feature selection: statistical based methods, neural network
based methods, and tree based methods.

2.1 Statistical Based Methods

Most papers in the literature favor the use of statistical techniques (such as chi-square test, Fisher’s
score, information gain, etc.) to select or reduce features due to their speed and low computational
cost. For example, Cai et al. [10] proposed JOWMDroid, a feature-based approach to detect Android
malware combining weight mapping optimization with classifier parameter optimization. Their idea
is to utilize information gain to select the most relevant features from eight categories of features
extracted from APK files. Next, three machine learning algorithms were used to calculate the initial
weight for each feature and then map them to the final weights. The final step is to utilize the
differential evolution algorithm to jointly optimize the parameters of the weighting function and the
classifier.

Another work dealing with feature reduction for Android malware detection was proposed by
Xie et al. [11]. In their approach, they employed a two-step feature selection method consisting of
using InfoGain for an initial selection and applying the chi-square test for further reduction to remove
redundant and irrelevant features. For the classification of Android malware, they used a stacking
method of 5 base classifiers with the use of the Genetic Algorithm to optimize the hyperparameters
of the model.

In [12], the authors introduced a malware detection framework called FAMD (Fast Android
Malware Detector). It utilizes the FCBF (Fast Correlation-Based Filter) algorithm and the N-Gram
technique to process the features and reduce their dimensionality. Then, the CatBoost classifier is
utilized for malware classification. Experimental tests demonstrated a malware detection accuracy of
97.40% and a malware family classification accuracy of 97.38%.



2746 CMC, 2024, vol.80, no.2

In [7], the authors investigated the utility of the feature subset selection methods for Android
malware detection by comparing and contrasting these methods along several factors. They utilized
various learning algorithms to empirically evaluate the predictive accuracy of the feature subset
selection methods and compare their predictive accuracy and execution times. The experiment findings
demonstrated that feature selection is essential for increasing learning model accuracy and reducing
runtime. The outcomes also illustrated that different learning algorithms perform differently when
it comes to feature selection techniques, and no particular feature selection approach consistently
outperforms the others.

Onwuzurike et al. [9] proposed a system that aims to detect Android malware from a behavioral
perspective. It is based on abstracting the API calls executed by the application and building behavioral
models through the use of Markov chains. The authors employed principal component analysis (PCA)
to lower the dimensionality of the feature space and hence the computational and memory complexity
of their system.

In [17], a novel method for selecting features called the selection of relevant attributes was devel-
oped by the authors in order to improve locally extracted features through the use of classical feature
selectors (SAILS). This mechanism was constructed on top of conventional feature selection methods,
including “mutual information”, “distinguishing feature selector”, and “Galavotti-Sebastiani-Simi”.
It aimed to discover prominent system calls from Android applications.

Thiyagarajan et al. suggested in [8] a malware detection method based on the permissions
requested by the application. Their idea was to minimize the data size by decreasing the number
of permissions through a set of data reduction techniques (chi-square, permission ranking with a
negative rate, support-based pruning, association-based pruning, and PCA). The reduced permissions
were utilized for classifying the samples as malware or benign with a decision tree algorithm and
categorizing the malware samples through the use of the K-means clustering algorithm.

2.2 Neural Network Based Methods

In other cases, authors have preferred to benefit from the strength of neural networks for feature
selection. For instance, Liu et al. [13] proposed an unsupervised feature learning method named
“Subspace Based Restricted Boltzmann Machines” (SRBM) to reduce the data dimensionality in
mobile malware detection. Their method includes searching for suitable subspaces over the entire
feature set using a clustering method and learning the features in each feature subspace using
Restricted Boltzmann Machines. Then, all learned features are concatenated to represent the original
features in a lower dimension. The authors illustrated that their method outperforms other feature
reduction methods including “RBM”, “Stacked Auto Encoder”, “Principal Components Analysis”,
and “Agglomeration algorithms” in terms of clustering evaluation metrics.

In [14], Wu et al. proposed a feature reduction framework called DroidRL for Android malware
detection. They used the Double Deep Q Network (DDQN) and the recurrent neural network (RNN)
algorithms to select a valid subset of features over a larger range. They also attempted to determine
the semantic relevance of features by using word embedding for the input features. The experiments
conducted by the authors showed that their approach reduced the number of features from 1083 to 24
while maintaining high accuracy.

2.3 Tree Based Methods

In [15], the authors proposed a method named DroidDomTree that searches the dominance tree
of API calls included in the Android APK in order to find malicious modules. To efficiently select



CMC, 2024, vol.80, no.2 2747

features, they developed a weighting scheme for assigning weights to each node in the dominance tree.
This scheme aims to find the key modules that help in detecting malicious elements. In the experimental
tests, the method presented detection rates between 98.1% and 99.3% when applied with eight machine
learning classifiers. In another paper, Sharma et al. [16] have chosen a simple technique to reduce
features based on calculating the importance of each feature using the feature_importances property
of the Random Forest classifier, and then evaluating it using various machine learning algorithms.

Table 1 presents a comparative summary of the different works discussed in this section. These
works denoted the importance of feature reduction methods in improving the performance of An-
droid malware detection and classification systems. In the current paper, we tried to exploit a more
innovative technique other than those described in the literature, that is, the Attention mechanism.
Despite its importance, this mechanism is not yet well exploited in the field of Android malware
detection. Among the few works done in this context, we can cite the paper by Wu et al. [18], in
which the authors proposed a neural network approach to classify Android malware based on two
layers: attention layer and multilayer perceptron (MLP). The attention layer is intended to learn
feature weights, which can be thought of as scores of relevance between the features and classification
outcomes. Then, the MLP maps the weighted features to classify the samples as benign or malicious. In
this approach, the Attention-based feature importance is associated with an MLP classifier to classify
Android samples. However, in our opinion, we believe that the classification process requires a more
robust algorithm than a simple MLP. For this reason, we propose in this paper a new classification
approach for android applications based on the Attention mechanism and the LightGBM algorithm.
The Attention technique is utilized for determining the importance of features and reducing their
dimensionality, while the LightGBM algorithm (with Bayesian optimization of hyperparameters) is
utilized for performing an efficient classification of Android samples based on the set of selected
features. To the best of our knowledge, the system that we propose in the current article is the first
solution combining an Attention mechanism and a distributed gradient boosting framework like
LightGBM to classify Android malware.

Table 1: Comparative summary of related work

Paper
reference

Approach objective Used methods Dataset type

Liu et al. [13] Application of unsupervised
feature learning to reduce data
dimensionality in mobile
malware dataset

Subspace based restricted
Boltzmann machines

OmniDroid [19],
CIC2019 [20] and
CIC2020 [21]

Alam
et al. [15]

Creation of dominance tree of
API calls to improve the
feature selection and the
detection Android malware

Dominance tree, TF-IDF Android applications
collected from
different sources

Cai et al. [10] Optimization of feature
weight-mapping to detect
Android malware

Feature weighting, ML
classifiers, differential
evolution algorithm

Drebin [22], AMD
[23], applications
collected from
Google Play and
APKPure.com

(Continued)



2748 CMC, 2024, vol.80, no.2

Table 1 (continued)

Paper
reference

Approach objective Used methods Dataset type

Wu et al. [14] Feature reduction for Android
malware detection and
classification

DDQN, word embedding AndroZoo [24] and
Drebin [22]

Xie et al. [11] Feature reduction for Android
malware detection and
classification

InfoGain, chi-square
test, stacking and genetic
algorithm

CIC-AndMal2017
[25] and
CICMalDroid2020
[21]

Bai et al. [12] Feature reduction for Android
malware detection and
classification

Fast correlation-based
filter, catboost classifier

Drebin [22] and
private dataset

Abawajy
et al. [7]

Examine the effectiveness of
the feature subset selection
techniques for detecting
Android malware

Pearson correlation
coefficient, chi-square,
analysis of variance
(ANOVA), information
gain, mutual information

Android applications
collected from
different sources

Onwuzurike
et al. [9]

Detect Android malware by
modeling application behavior

Markov chains, PCA Android applications
collected from
different sources

Ananya
et al. [17]

Feature selection for Android
malware classification

SAILS, XGBoost,
CART, logistic
regression, random forest
and deep neural networks

Drebin [22]

Thiyagarajan
et al. [8]

Reduce the number of
application permissions for
real time malware detection
and clustering

PCA, decision tree,
K-means

AndroZoo [24]

Sharma
et al. [16]

Android malware detection
and family classification

Random forest, deep
learning

AndroZoo [24]

Wu et al. [18] Classify Android malware and
interpret their malicious
behaviors

Attention mechanism,
multilayer perceptron

Drebin [22]

3 Proposed Approach

In this section, we describe the approach we propose in this paper. The goal of this approach is
to classify Android applications and detect those that are malware. It includes two major steps: (i)
selecting the most important features based on an Attention mechanism and (ii) classifying Android
applications as malware or normal through the use of an optimized LightGBM algorithm. The overall
architecture of the proposed system is illustrated in Fig. 1. This system comprises 5 basic elements:
Feature extraction, Attention-based feature importance, Feature selection, and LightGBM classifica-
tion. The process starts with feature extraction from Android applications. Then, an Attention-based



CMC, 2024, vol.80, no.2 2749

technique is applied to these features in order to identify the most important ones. This step assists
in reducing the number of features and selecting only those that help enhance the performance of the
classifier. Finally, an optimized LightGBM algorithm is applied to determine whether the application
is malware or normal.

Figure 1: Approach architecture

3.1 Feature Extraction

The feature extraction process is based on the technique utilized in the “CCCS-CIC-AndMal-
2020” dataset [21] that we tested during the experimentation of the approach. This process consists in
statically analyzing the Android application by reverse engineering its APK file. The extracted features
contain a large set of information, including:

• Activities: the user interfaces of the Android app.
• Broadcast receivers and providers.
• Metadata: a method for storing information that can be accessed by application elements.
• Permissions indicating the restriction of access to data on the device.
• System features.

A feature vector is then created from the numerical values of the collected features. The dimension
of the vector equals 9504.

3.2 Feature Selection

Each instance of the dataset includes 9504 features. This number of features is very large and can
impact the performance of the classifier in terms of speed and accuracy. In our approach, we decided to
utilize a selection method to reduce the number of features and select only those that help in enhancing
the performance of the classifier. We started by eliminating features with null or empty values, which
reduced the number of features to only 5911. Then, we applied a feature selection algorithm based
on the Attention mechanism. This idea aimed to calculate the weight of each feature through the use
of a neural network that contains an Attention layer that allows paying attention to the features that
are more crucial than the others in the classification process. The features with the highest scores are
selected to take part in the classification task. The following paragraph describes in detail how this
step works.



2750 CMC, 2024, vol.80, no.2

3.3 Attention-Based Feature Importance

The Attention mechanism is a neural network concept that has gained much popularity in recent
years and allows paying more attention to certain parts when processing data. It utilizes a weighted
vector to help the neural architecture understand the relationship between the input elements and the
target and estimate which part of the data is more important than others for the task at hand. In our
approach, we used the Attention mechanism to select the most important features that help enhance
the performance of the classifier.

The general architecture of the Attention-based feature importance is presented in Fig. 2. It is a
neural network architecture. The input to this network is a feature vector containing the initial features
of the model. This vector is connected to an attention layer to compute the weighted values of each
feature based on its importance to the classification process. In this way, a weighted feature vector
is created, which is then connected to a Dense layer. The purpose of the Dense layer is to compute
a “y” score in order to predict whether the instance is classified as malware or normal. After the
training process of the neural attention network is complete, the weighted feature vector is utilized
for determining which features have higher weighted values than the others. The features with higher
weighted values mean that they are more crucial for the classification task.

Figure 2: Attention-based feature importance

In order to explain the feature extraction process, consider X as the set of feature vectors extracted
from the Android samples and xi as the i-th sample of the set X denoted as

(
x(1)

i , x(2)

i , . . . , x(j)
i , . . . , x(N)

i

)
,

where x(j)
i (1 ≤ j ≤ N) refers to the j-th feature of the i-th sample. Each feature vector xi is assigned

a label value yi ∈ {0, 1}, where 0 means that the sample is classified as normal and 1 means that it is
classified as malware.

The implementation of the Attention layer is inspired by the work of Wu et al. [18]. It consists
of using an adapted fully connected network and a SoftMax function to calculate the weight of each



CMC, 2024, vol.80, no.2 2751

feature. We started by using the following equation to evaluate how closely the output feature matches
the input feature:

e(j)
i =

∑N

k=1
x(k)

i wkj (1)

where wkj represents a weighting parameter learned during the training of the fully connected network
in the attention layer and e(j)

i denotes the output of the fully connected network at the j-th position,
which can be viewed as an association of a set of features with varying relevance to the input feature
at position j. Thus, training the neural model allows the parameter wkj to be assigned a relevant value
to indicate the relationship between the j-th input feature and other input features.

Next, in order to determine the weights of the input features at various places, we apply a SoftMax
function to the output of the fully connected network. The output of the attention layer is a vector
denoted by αi = (

α(1)

i , α(2)

i , α(3)

i , . . . , α(N)

i

)
calculated as follows:

α(j)
i = exp

(
e(j)

i

)
∑N

k=1 exp
(
e(k)

i

) (2)

where α
(j)
i denotes the weight of the j-th feature in the i-th sample and reflects its importance based on

the classification results.

Then, in order to generate the weighted feature vector, we weight the input feature vector by the
Attention vector αi as follows:

ci = αixT
i (3)

where ci denotes the weighted feature vector of the i-th sample.

Finally, we calculate the classification result yi by mapping the input vector ci into a binary
prediction value.

Once the training process is complete, the Attention-based model assigns different weights to
all features based on their contribution to the classification results. The features with higher weights
indicate that they are more important for the relevance of the classification results, while the features
with lower weights are less important. The weighted feature vector assists in selecting the top n features.
These features are considered more crucial than the others, and our main classifier (LightGBM) is
applied to them. The choice of the parameter n affects the classification results, so it is essential to
select a suitable value. In our case, we tried to choose the best value for n based on the results of the
experiments performed.

3.4 LightGBM Classification

LightGBM [26] is a distributed gradient boosting algorithm released by Microsoft in 2017 for
machine learning tasks. LightGBM is based on decision trees and can be used for several machine
learning tasks such as classification, ranking and regression. It uses leaf-wise tree growth instead of
the level-wise-tree growth which is widely used in several tree-based learning algorithms. LightGBM
has outperformed several machine learning algorithms in multiple applications thanks to its charac-
teristics, including efficiency, speed, and low memory consumption. In our model, LightGBM plays
a role in classifying the Android samples as normal or malware after selecting the most important
features from the previous step.

The implementation of LightGBM requires the use of a set of parameters called hyper-parameters,
such as the number of leaves per tree, the maximum tree depth, and the learning rate. The mentioned



2752 CMC, 2024, vol.80, no.2

parameters significantly affect how well the LightGBM algorithm performs and produces results. The
choice of these hyper-parameters is crucial to achieving good results [27]. In our approach, a Bayesian
optimization technique was utilized for identifying the best parameters for this model.

Bayesian optimization is a useful technique to optimize black-box functions that are expensive to
evaluate [28,29]. The optimization problem can be formulated as follows:

x∗ = argmaxx ∈χ f (x) (4)

where x∗ represents the LightGBM model’s hyper-parameters that need to be optimized. The symbol
χ denotes the search space for the hyper-parameters. The objective function is denoted by f (x) and
indicates how well the LightGBM model performs given the selected hyper-parameters. Accuracy is
the measurement criterion we chose to evaluate how well the objective function performed. Therefore,
the goal of the optimization is to determine the collection of hyper-parameters x∗ with which the
function f (x) performs best. The optimization procedure usually involves numerous iterations. The
objective function yields an observed result yi = f (xi) that will be added to the historical set D =
(x1, y1) , . . . , (xi, yi) and utilized for updating the surrogate probability model in order to generate the
next proposal. The optimization procedure for the LightGBM model is presented in Algorithm 1.

Algorithm 1: Description of the Bayesian optimization with LightGBM
foreach iteration i do
1) Select a new configuration of the hyper-parameters xi+1 based on the function of acquisition α (x),

xi+1 = argmaxα (x, Dn)

2) Determine the performance of f based on the current configuration xi+1 : yi+1 = f (xi+1)

3) Update the set D by adding the current result: Di+1 = Di, (xi+1, yi+1)

4) Update the surrogate probability model related to the objective function

After completing the optimization process and selecting the best hyperparameters, the classifica-
tion process of the LightGBM model starts to identify whether the Android sample should be classified
as normal or malware.

4 Experimental Evaluation

The objective of this section is to evaluate the performance of our approach based on several
experimental tests. This evaluation consists in comparing the classification results of LightGBM and
other machine learning models before and after the application of feature reduction based on the
Attention mechanism.

4.1 Dataset Description

In order to test and assess our approach, we utilized the CCCS-CIC-AndMal-2020 dataset
[21]. This is a recent Android malware dataset created by the Canadian Institute for Cybersecurity
(CIC). The dataset comprises 400 K Android applications (200 K are benign and 200 K are malware).
The Android malware data is divided into the following 14 malware categories: Adware, Backdoor,
FileInfector, No_Category, Potentially Unwanted Apps (PUA), Ransomware, Riskware, Scareware,
Trojan, Banker Trojan, Dropper Trojan, SMS Trojan, Spy Trojan, and Zero-Day. Table 2 presents
the number of families and samples for each of the 14 malware categories. In the Adware category,
for example, there are 47,210 samples in the dataset that belong to this type of malware. Also in this
category, we found 48 malware families, including Dowgin, Adflex, Airpush, Baiduprotect, etc. In the
experimental tests, 12 malware categories were utilized, with the exception of No_Category and Zero



CMC, 2024, vol.80, no.2 2753

Day, because the data in these categories was incomplete. The features of the dataset contain a lot of
information, including:

• Activities: the user interfaces of the Android app.
• Broadcast receivers and providers.
• Metadata: a method for storing information that can be accessed by application elements.
• Permissions indicating the restriction of access to data on the device.
• System features.

Table 2: CCCS-CIC-AndMal-2020 dataset details

Class Number of families Amount of samples

Adware 48 47,210
No category – 2296
PUA 8 2051
Backdoor 11 1538
Ransomware 8 6202
File infector 5 669
Riskware 21 97,349
Scareware 3 1556
Dropper trojan 9 2302
Banker trojan 11 887
Spy trojan 11 3540
SMS trojan 11 3125
Trojan 45 13,559
Zero day – 13,340

4.2 Parameters of the LightGBM Classifier

The hyperparameters of the LightGBM classifier greatly affect the quality of the classification
results. The integration of Bayesian optimization into this approach has remarkably helped us in
carefully selecting the right parameters. To accomplish this task, we have selected a set of values
for each parameter of the LightGBM classifier (Learning rates, Number of iterations, Number of
leaves, Bagging fraction, Feature fraction, Min data in leaf and Max depth). We then enter these
values as input to Algorithm 1 described above. The role of this optimization algorithm is to try
different configurations of these parameters in several iterations with the aim of obtaining an optimal
configuration for the best classification accuracy. Table 3 describes the selected hyperparameters for
this classification model.

4.3 Experimental Results of Binary Classification

The classification model used in this approach plays the role of a binary classifier whose goal
is to classify Android samples into two classes: normal and malware. For this purpose, we grouped
all the samples in the dataset belonging to the different malware families into a single class labeled
“Malware”, and the other class labeled “Normal” is intended for benign samples. In order to train
and assess the model, we divided the dataset as follows: 80% for training and 20% for testing. The



2754 CMC, 2024, vol.80, no.2

experiments conducted in this work include 7 classification models (LightGBM, Random Forest,
AdaBoost, Naive Bayes, Decision Tree, XGBoost and K-Nearest-Neighbor). For each model we
performed 5 tests with the features of the dataset: applying the model (i) to the totality of the features
without reduction (5911 features), (ii) to the 200 best features of the dataset selected thanks to our
Attention-based feature importance method, (iii) to the 300 best features, (iv) to the 500 best features,
and finally (v) to the 1000 best features. The aim is to evaluate the effectiveness of the Attention-based
feature importance method in association with the LightGBM model (as well as the other machine
learning algorithms) and to identify whether it can contribute to the improvement of the classification
model performance. In order to evaluate the performed experimentations, we calculated 5 measures:
accuracy, precision, recall, F1-score and false alarm rate (FAR) as well as the speed of training.

Table 3: Hyperparameters of the LightGBM classifier

Name of the hyperparameter Value

Boosting method gbdt
Learning rates 0.1
Number of iterations 588
Number of leaves 453
Bagging fraction 0.8
Feature fraction 0.5
Min data in leaf 50
Max depth 15

Table 4 illustrates the results of the experiments described above. Concerning LightGBM, the
model applied to the top 300 features (in terms of importance) obtained the best results in the 5
evaluation measures with an accuracy of 0.987110, a precision of 0.988937, a recall of 0.982342, an
F1-score of 0.985628, and a FAR of 0.008990. These scores slightly exceeded the results obtained
from the LightGBM model applied to the totality of features without reduction (5911 features). The
latter exhibited an accuracy of 0.986462, a precision of 0.988772, a recall of 0.981053, an F1-score of
0.984897, and a FAR of 0.009114. Furthermore, the LightGBM model with 300 features took less time
to complete the training with 28.099 s in comparison with 80.043 s for the LightGBM model without
the feature reduction. Fig. 3 presents the ROC curve and the confusion matrix of the LightGBM model
with the top 300 features.

Concerning the other classification models, the application of our feature reduction technique
based on the Attention mechanism showed better classification performance with all algorithms except
Naive Bayes. For example, for Random Forest, the use of the 200 best features showed an accuracy
equal to 0.986086, exceeding that with all the features of the dataset. For AdaBoost, similarly, the use
of the top 200 and 300 features showed better performance in terms of accuracy, recall, F1-score and
training time. Regarding the Decision Tree algorithm, we obtained the best results with the top 500
features. The selection of the first 300 features with the XGBoost model showed the best results in terms
of accuracy, precision, recall, F1-score, FAR and training time. For the K-Nearest-Neighbor model,
accuracy reached its maximum with the top 1000 features. The only case where the feature reduction
technique failed to improve the classification performance was with the Naive Bayes algorithm.



CMC, 2024, vol.80, no.2 2755

Table 4: Results obtained from the classification models

Classification
model

Number of features Accuracy Precision Recall F1-score FAR Training
time (s)

LightGBM

Without feature reduction 0.986462 0.988772 0.981053 0.984897 0.009114 80.043
200 features 0.986598 0.988402 0.981736 0.985058 0.009424 25.056
300 features 0.987110 0.988937 0.982342 0.985628 0.008990 28.099
500 features 0.986564 0.988700 0.981357 0.985014 0.009176 34.318
1000 features 0.986427 0.988696 0.981053 0.984860 0.009176 35.581

Random
forest

Without feature reduction 0.985643 0.990553 0.977416 0.983940 0.007626 410.918
200 features 0.986086 0.989286 0.979689 0.984464 0.008680 26.052
300 features 0.985814 0.990030 0.978325 0.984143 0.008060 32.892
500 features 0.985268 0.988144 0.979007 0.983554 0.009610 39.334
1000 features 0.985848 0.990256 0.978174 0.984178 0.007874 55.863

AdaBoost

Without feature reduction 0.957407 0.964897 0.939523 0.952041 0.027962 1197.214
200 features 0.958839 0.963286 0.944524 0.953813 0.029450 20.893
300 features 0.959146 0.962455 0.946116 0.954215 0.030194 26.718
500 features 0.957509 0.957509 0.940205 0.952184 0.028334 38.433
1000 features 0.957407 0.964897 0.939523 0.952041 0.027962 68.769

Naive bayes

Without feature reduction 0.824137 0.775236 0.857901 0.814476 0.203484 13.823
200 features 0.815680 0.764390 0.853429 0.806460 0.215202 0.197
300 features 0.817078 0.766633 0.853202 0.807604 0.212474 0.203
500 features 0.821102 0.770724 0.857522 0.811809 0.208692 0.239
1000 features 0.823353 0.774280 0.857370 0.813709 0.204476 0.530

Decision tree

Without feature reduction 0.975208 0.970562 0.974460 0.972507 0.024180 88.788
200 features 0.974355 0.969016 0.974157 0.971580 0.025482 3.736
300 features 0.974253 0.969434 0.973475 0.973475 0.025110 5.289
500 features 0.975447 0.970293 0.975294 0.975294 0.024428 9.415
1000 features 0.975344 0.970428 0.974915 0.972666 0.024304 12.959

XGBoost

Without feature reduction 0.980835 0.983024 0.974233 0.978608 0.013764 1438.581
200 features 0.981210 0.982669 0.975445 0.979044 0.014074 55.962
300 features 0.982062 0.983587 0.976430 0.979995 0.013330 81.079
500 features 0.980596 0.982350 0.974384 0.978351 0.014322 133.677
1000 features 0.980971 0.982512 0.975066 0.978775 0.014198 253.358

K-Nearest-
Neighbor

Without feature reduction 0.932376 0.945841 0.901326 0.923047 0.042222 1641.555
200 features 0.932035 0.945372 0.901023 0.922665 0.042594 74.515
300 features 0.932172 0.945815 0.900872 0.922796 0.042222 94.963
500 features 0.932206 0.945748 0.901023 0.922844 0.042284 150.967
1000 features 0.932410 0.945987 0.901250 0.923077 0.042098 285.270



2756 CMC, 2024, vol.80, no.2

Figure 3: ROC curve and confusion matrix of the LightGBM model with the top 300 features. (a)
Confusion matrix. (b) ROC curve

Comparing all the results obtained from the different experiments, we can conclude that the
LightGBM model with the top 300 features is the best performing model for the Android malware
dataset. These comparative results confirm that the feature importance technique based on the
Attention mechanism proposed in this paper has shown its ability to improve the classification results
of the LightGBM model. The strength of this technique is that it can pay attention to features that play
an important role in the classification results and ignore those that are less important. This technique
has both reduced the training time and improved the classification results.

4.4 Experimental Results of Malware Category Classification

In this part, we are looking to evaluate our approach in the context of a multiclass classification.
Our target is to classify the malware samples of the dataset into 12 malware categories as previously
mentioned in the description of the dataset. This experiment consists in conducting a comparative
evaluation among (i) the LightGBM model without feature reduction, (ii) the LightGBM model with
selection of the best features as we did in the previous experiment, and (iii) the model described by
the authors of the dataset paper (deep learning model). The benchmarking comprises 4 measures:
precision, recall, and F1-score of each malware category as well as the overall model accuracy.

Table 5 shows the classification results of the different models tested in this comparison. This
time the LightGBM model applied to the 500 best features provided the best results with an accuracy
of 0.947711 in comparison with 0.946933 for LightGBM without feature reduction, 0.946349 for
LightGBM with top 200 features, 0.946960 for LightGBM with top 300 features, 0.947461 for
LightGBM with top 1000 features, and 0.93 for the deep learning model of the authors of the dataset.

These results demonstrated once again the effectiveness of the feature importance technique based
on the Attention mechanism. This effectiveness is also associated with the choice of the value n that
determines the number of important features to be selected. Choosing this number carefully is very
essential to avoid ignoring some important features or including some features that have a negative
effect on the classification results.



CMC, 2024, vol.80, no.2 2757

Table 5: Results of the malware category classification

Metrics A
dw

ar
e

B
ac

kd
oo

r

B
an

ke
r

T
ro

ja
n

D
ro

pp
er

T
ro

ja
n

F
ile

in
fe

ct
or

P
U

A

R
an

so
m

w
ar

e

R
is

kw
ar

e

SM
S

tr
oj

an

Sc
ar

ew
ar

e

Sp
y

tr
oj

an

T
ro

ja
n

A
cc

ur
ac

y

T
ra

in
in

g
sp

ee
d

LightGBM
without feature
reduction

Precision 0.92 0.85 0.87 0.85 0.94 0.86 0.81 0.98 0.94 0.97 0.92 0.94 0.9469 374.56

Recall 0.96 0.75 0.84 0.70 0.77 0.66 0.92 0.97 0.94 0.75 0.88 0.91
F1-score 0.94 0.79 0.85 0.77 0.85 0.74 0.86 0.97 0.94 0.85 0.90 0.92

LightGBM (200
features)

Precision 0.92 0.86 0.87 0.85 0.94 0.87 0.81 0.98 0.94 0.97 0.92 0.94 0.9463 283.4

Recall 0.96 0.74 0.85 0.70 0.77 0.66 0.92 0.97 0.94 0.75 0.88 0.91
F1-score 0.94 0.79 0.86 0.77 0.85 0.75 0.86 0.97 0.94 0.85 0.90 0.92

LightGBM (300
features)

Precision 0.92 0.85 0.87 0.85 0.94 0.86 0.81 0.98 0.94 0.97 0.92 0.94 0.9467 289.59

Recall 0.96 0.74 0.85 0.70 0.78 0.66 0.92 0.97 0.94 0.75 0.88 0.91
F1-score 0.94 0.79 0.86 0.77 0.85 0.75 0.86 0.97 0.94 0.84 0.90 0.92

LightGBM (500
features)

Precision 0.92 0.86 0.86 0.86 0.93 0.88 0.81 0.98 0.94 0.97 0.92 0.94 0.9477 311.01

Recall 0.96 0.74 0.85 0.71 0.76 0.67 0.92 0.97 0.93 0.75 0.88 0.91
F1-score 0.94 0.80 0.86 0.77 0.84 0.76 0.86 0.97 0.94 0.85 0.90 0.93

LightGBM
(1000 features)

Precision 0.92 0.85 0.87 0.85 0.94 0.88 0.81 0.98 0.94 0.97 0.92 0.94 0.9475 350.16

Recall 0.96 0.75 0.85 0.70 0.78 0.66 0.92 0.97 0.94 0.75 0.88 0.91
F1-score 0.94 0.79 0.86 0.77 0.85 0.75 0.86 0.97 0.94 0.84 0.90 0.92

DiDroid [18] Precision 0.935 0.721 0.759 0.85 0.909 0.677 0.798 0.963 0.917 0.836 0.924 0.895 0.93 –

Recall 0.929 0.643 0.759 0.686 0.789 0.682 0.944 0.967 0.886 0.764 0.835 0.896
F1-score 0.932 0.68 0.759 0.759 0.845 0.679 0.864 0.965 0.901 0.799 0.877 0.896

4.5 Discussion

In recent years, a number of studies have been conducted with the aim of proposing relevant
solutions for the identification and classification of malware in Android mobile environments. Table 6
compares some of these studies, including the one we propose in this paper. To achieve a fair and
equitable comparison, we only selected the works that were evaluated using the CCCS-CIC-AndMal-
2020 dataset. Different techniques were used in these works, including classical machine learning
algorithms such as Random Forest and SVM as well as deep learning algorithms such as CNN and
LSTM. The comparison showed that our approach outperformed the other works in terms of binary
and multi-class classification accuracy.

The experimental results shown that our proposed approach is very effective. This approach made
it possible to minimize the execution time of the model by effectively reducing the dimensionality of the
data while improving the accuracy of the classification. The experimental findings have also shown that
the LightGBM model performs better than other machine learning algorithms on this type of dataset.

Although the proposed approach has been shown to be effective with the CCCS-CIC-AndMal-
2020 dataset and although we believe it can be properly adapted to other types of datasets, it would
be more appropriate to test this approach with other Android malware samples. This will help to
thoroughly investigate the performance of the Attention mechanism and verify its ability to efficiently
analyze other types of features. Another limitation of this approach must be considered in our future
work. The data collected in the CCCS-CIC-AndMal-2020 dataset contains static analysis of Android
applications. This static analysis is very useful in identifying Android malware due to the large number



2758 CMC, 2024, vol.80, no.2

of features we can extract from the application APK file. However, it is not able to detect complex
Android malwares as their malicious actions can only be observed during execution. Therefore, it is
important to extend the current approach to support hybrid application analysis that includes static
data from the application and dynamic monitoring of its behavior at runtime.

Table 6: Comparison with studies using the CCCS-CIC-AndMal-2020 dataset

Paper reference Year Used methods Accuracy

Binary classification Multiclass classification

Musikawan et al. [30] 2023 DNN 0.9772 –
Batouche et al. [31] 2021 Random forest – 0.89
Chopra et al. [32] 2023 CNN, transfer

learning
0.9719 –

Ullah et al. [33] 2022 SVM 0.9664 –
DiDroid [21] 2020 CNN – 0.93
Wang et al. [34] 2023 Bidirectional LSTM – 0.92
Our approach 2024 Attention

mechanism,
LightGBM

0.9871 0.9477

5 Conclusion

In this study, we presented a solution for Android malware detection. Two recent ML techniques
were employed in the solution: the Attention mechanism and the LightGBM classifier. The Attention
mechanism was integrated with a neural network to analyze the dataset’s features and identify which
are important for the classification results. The LightGBM algorithm was chosen for classifying
the samples of the dataset based on a set of features selected according to their importance. The
advantage of our solution is its ability to reduce the size of the features, subsequently minimizing the
execution time, and also improving the accuracy of the classification algorithm. Experimental results
demonstrated that the feature importance technique enhanced the classification accuracy from 98.64%
(without feature reduction) to 98.71% (after feature selection).

Additionally, we tested the proposed approach on the CCCS-CIC-AndMal-2020 dataset, focusing
on static analysis of Android applications. In the future, we plan to investigate other malware datasets
and improve our approach in order to support hybrid features obtained from static and dynamic
analysis of Android applications. We also intend to develop a new method for determining the key
features that characterize the behavior of each malware family so that we could assist security experts
in identifying these malicious applications.

Acknowledgement: The authors extend their appreciation to the Deanship of Graduate Studies and
Scientific Research at Jouf University for funding this work.

Funding Statement: This work was funded by the Deanship of Graduate Studies and Scientific
Research at Jouf University under Grant No. (DGSSR-2023-02-02178).



CMC, 2024, vol.80, no.2 2759

Availability of Data and Materials: The data that support the findings of this study are openly available
at https://www.unb.ca/cic/datasets/andmal2020.html (accessed on 15 January 2024).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Annie, “The state of mobile in 2022,” 2022. Accessed: Jan. 15, 2024. [Online]. Available: https://www.data.

ai/en/insights/market-data/state-of-mobile-2022/
[2] StatCounter, “Mobile operating system market share worldwide,” 2022. Accessed: Jan. 15, 2024. [Online].

Available: http://gs.statcounter.com/os-market-share/mobile/worldwide
[3] T. Shishkova and A. Kivva, “Mobile malware evolution 2021,” 2022. Accessed: Jan. 15, 2024. [Online].

Available: https://securelist.com/mobile-malware-evolution-2021/105876/
[4] A. Nazir et al., “A deep learning-based novel hybrid CNN-LSTM architecture for efficient detection

of threats in the IoT ecosystem,” Ain Shams Eng. J., vol. 15, no. 7, pp. 102777, Apr. 2024. doi:
10.1016/j.asej.2024.102777.

[5] A. Nazir et al., “Advancing IoT security: A systematic review of machine learning approaches for the
detection of IoT botnets,” J. King Saud Univ.-Comput. Inf. Sci., vol. 35, no. 10, pp. 101820, Dec. 2023. doi:
10.1016/j.jksuci.2023.101820.

[6] R. H. Hadi, H. N. Hady, A. M. Hasan, A. Al-Jodah, and A. J. Humaidi, “Improved fault classification for
predictive maintenance in industrial IoT based on AutoML: A case study of ball-bearing faults,” Processes,
vol. 11, no. 5, pp. 1507, May 2023. doi: 10.3390/pr11051507.

[7] J. Abawajy, A. Darem, and A. A. Alhashmi, “Feature subset selection for malware detection in smart IoT
platforms,” Sensors, vol. 21, no. 4, pp. 1374, Feb. 2021. doi: 10.3390/s21041374.

[8] J. Thiyagarajan, A. Akash, and B. Murugan, “Improved real-time permission based malware detection and
clustering approach using model independent pruning,” IET Inf. Secur., vol. 14, no. 5, pp. 531–541, Mar.
2020. doi: 10.1049/iet-ifs.2019.0418.

[9] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross and G. Stringhini, “MaMaDroid:
Detecting Android malware by building markov chains of behavioral models,” ACM Trans. Priv. Secur.,
vol. 22, no. 2, pp. 1–34, Apr. 2019. doi: 10.1145/3313391.

[10] L. Cai, Y. Li, and Z. Xiong, “JOWMDroid: Android malware detection based on feature weighting with
joint optimization of weight-mapping and classifier parameters,”Comput. Secur., vol. 100, no. 7, pp. 102086,
Jan. 2021. doi: 10.1016/j.cose.2020.102086.

[11] N. Xie, Z. Qin, and X. Di, “GA-StackingMD: Android malware detection method based on genetic
algorithm optimized stacking,” Appl. Sci., vol. 13, no. 4, pp. 2629, Jan. 2023. doi: 10.3390/app13042629.

[12] H. Bai, N. Xie, X. Di, and Q. Ye, “FAMD: A fast multifeature Android malware detection frame-
work, design, and implementation,” IEEE Access, vol. 8, pp. 194729–194740, 2020. doi: 10.1109/AC-
CESS.2020.3033026.

[13] Z. Liu, R. Wang, N. Japkowicz, D. Tang, W. Zhang and J. Zhao, “Research on unsupervised feature learning
for Android malware detection based on restricted Boltzmann machines,” Future Gener. Comput. Syst., vol.
120, no. 5, pp. 91–108, Jul. 2021. doi: 10.1016/j.future.2021.02.015.

[14] Y. Wu et al., “DroidRL: Feature selection for Android malware detection with reinforcement learning,”
Comput. Secur., vol. 128, no. 1, pp. 103126, May 2023. doi: 10.1016/j.cose.2023.103126.

[15] S. Alam, S. A. Alharbi, and S. Yildirim, “Mining nested flow of dominant APIs for detecting Android
malware,” Comput. Netw., vol. 167, no. 1, pp. 107026, Feb. 2020. doi: 10.1016/j.comnet.2019.107026.

[16] S. Sharma, P. Ahlawat, and K. Khanna, “DeepMDFC: A deep learning based Android malware detection
and family classification method,” Secur. Priv., vol. 7, no. 2, pp. 23, Oct. 2023. doi: 10.1002/spy2.347.

https://www.unb.ca/cic/datasets/andmal2020.html
https://www.data.ai/en/insights/market-data/state-of-mobile-2022/
https://www.data.ai/en/insights/market-data/state-of-mobile-2022/
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://securelist.com/mobile-malware-evolution-2021/105876/
https://doi.org/10.1016/j.asej.2024.102777
https://doi.org/10.1016/j.jksuci.2023.101820
https://doi.org/10.3390/pr11051507
https://doi.org/10.3390/s21041374
https://doi.org/10.1049/iet-ifs.2019.0418
https://doi.org/10.1145/3313391
https://doi.org/10.1016/j.cose.2020.102086
https://doi.org/10.3390/app13042629
https://doi.org/10.1109/ACCESS.2020.3033026
https://doi.org/10.1016/j.future.2021.02.015
https://doi.org/10.1016/j.cose.2023.103126
https://doi.org/10.1016/j.comnet.2019.107026
https://doi.org/10.1002/spy2.347


2760 CMC, 2024, vol.80, no.2

[17] A. Ananya, A. Aswathy, T. R. Amal, P. G. Swathy, P. Vinod and S. Mohammad, “SysDroid: A
dynamic ML-based Android malware analyzer using system call traces,” Clust. Comput., vol. 23, no. 4,
pp. 2789–2808, Jan. 2020. doi: 10.1007/s10586-019-03045-6.

[18] B. Wu et al., “Why an android app is classified as malware,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 2, pp. 1–29, Mar. 2021. doi: 10.1145/3423096.

[19] A. Martin, R. Lara-Cabrera, and D. Camacho, “Android malware detection through hybrid features fusion
and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset,” Inf. Fusion, vol. 52,
no. 7, pp. 128–142, Dec. 2019. doi: 10.1016/j.inffus.2018.12.006.

[20] L. Taheri, A. F. Kadir, and A. H. Lashkari, “Extensible Android malware detection and family classifica-
tion using network-flows and API-calls,” in Int. Carnahan Conf. Secur. Technol. (ICCST), Chennai, India,
Oct. 2019. doi: 10.1109/ccst.2019.8888430.

[21] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. GAGNON, and F. Massicotte, “DIDroid: Android
malware classification and characterization using deep image learning,” in 2020 the 10th Int. Conf. Commun.
Netw. Secur., Tokyo, Japan, Nov. 2020. doi: 10.1145/3442520.3442522.

[22] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and explainable
detection of Android malware in your pocket,” in Proc. 2014 Netw. Distrib. Syst. Secur. Symp., San
Diego,CA, USA, 2014. doi: 10.14722/ndss.2014.23247.

[23] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of current Android mal-
ware,” in Int. Conf. Detect. Intrusions Malware Vulnerability Assess., Bonn, Germany, 2017, vol. 10327,
10.1007/978-3-319-60876-1_12.

[24] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo: Collecting millions of android apps for
the research community,” in 2016 IEEE/ACM 13th Work. Conf. Min. Softw. Repos. (MSR), Austin, TX,
USA, 2016, pp. 468–471.

[25] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward developing a systematic approach
to generate benchmark Android malware datasets and classification,” in 2018 Int. Carnahan Conf. Secur.
Technol. (ICCST), Montreal, QC, Canada, 2018, pp. 1–7. doi: 10.1109/CCST.2018.8585560.

[26] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision tree,” in Proc. 31st Int. Conf. Neural
Inform. Process. Syst. (NIPS’17), Long Beach, CA, USA, 2017, pp. 3149–3157.

[27] A. Ghourabi, “A security model based on LightGBM and transformer to protect healthcare systems from
cyberattacks,” IEEE Access, vol. 10, pp. 48890–48903, 2022. doi: 10.1109/ACCESS.2022.3172432.

[28] E. Brochu, V. M. Cora, and Nando de Freitas, “A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, Dec. 2010.

[29] J. van Hoof and J. Vanschoren, “Hyperboost: Hyperparameter optimization by gradient boosting surrogate
models,” arXiv preprint arXiv:2101.02289, 2021.

[30] P. Musikawan, Y. Kongsorot, I. You, and C. So-In, “An enhanced deep learning neural network for the
detection and identification of Android malware,” IEEE Internet Things J., vol. 10, no. 10, pp. 8560–8577,
15 May, 2023. doi: 10.1109/JIOT.2022.3194881.

[31] A. Batouche and H. Jahankhani, “A comprehensive approach to Android malware detection using machine
learning,” in Information Security Technologies for Controlling Pandemics. Cham: Springer, 2021.

[32] R. Chopra, S. Acharya, U. Rawat, and R. Bhatnagar, “An energy efficient, robust, sustainable, and low
computational cost method for mobile malware detection,” Appl. Comput. Intell. Soft Comput., vol. 2023,
pp. e2029064, 2023. doi: 10.1155/2023/2029064.

[33] S. Ullah, T. Ahmad, A. Buriro, N. Zara, and S. Saha, “TrojanDetector: A multi-layer hybrid approach
for trojan detection in android applications,” Appl. Sci., vol. 12, no. 21, pp. 10755, Jan. 2022. doi:
10.3390/app122110755.

[34] X. Wang, J. Liu, and C. Zhang, “Network intrusion detection based on multi-domain data and
ensemble-bidirectional LSTM,” EURASIP J. Inf. Secur., vol. 2023, no. 1, pp. 5, Jun. 2023. doi:
10.1186/s13635-023-00139-y.

https://doi.org/10.1007/s10586-019-03045-6
https://doi.org/10.1145/3423096
https://doi.org/10.1016/j.inffus.2018.12.006
https://doi.org/10.1109/ccst.2019.8888430
https://doi.org/10.1145/3442520.3442522
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1109/CCST.2018.8585560
https://doi.org/10.1109/ACCESS.2022.3172432
https://doi.org/10.1109/JIOT.2022.3194881
https://doi.org/10.1155/2023/2029064
https://doi.org/10.3390/app122110755
https://doi.org/10.1186/s13635-023-00139-y

	An Attention-Based Approach to Enhance the Detection and Classification of Android Malware
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Evaluation
	5 Conclusion
	References


