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ABSTRACT

Intelligent electronic devices (IEDs) are interconnected via communication networks and play pivotal roles in
transmitting grid-related operational data and executing control instructions. In the context of the heightened
security challenges within smart grids, IEDs pose significant risks due to inherent hardware and software vulner-
abilities, as well as the openness and vulnerability of communication protocols. Smart grid security, distinct from
traditional internet security, mainly relies on monitoring network security events at the platform layer, lacking
an effective assessment mechanism for IEDs. Hence, we incorporate considerations for both cyber-attacks and
physical faults, presenting security assessment indicators and methods specifically tailored for IEDs. Initially, we
outline the security monitoring technology for IEDs, considering the necessary data sources for their security
assessment. Subsequently, we classify IEDs and establish a comprehensive security monitoring index system,
incorporating factors such as running states, network traffic, and abnormal behaviors. This index system contains
18 indicators in 3 categories. Additionally, we elucidate quantitative methods for various indicators and propose a
hybrid security assessment method known as GRCW-hybrid, combining grey relational analysis (GRA), analytic
hierarchy process (AHP), and entropy weight method (EWM). According to the proposed assessment method, the
security risk level of IEDs can be graded into 6 levels, namely 0, 1, 2, 3, 4, and 5. The higher the level, the greater the
security risk. Finally, we assess and simulate 15 scenarios in 3 categories, which are based on monitoring indicators
and real-world situations encountered by IEDs. The results show that calculated security risk level based on the
proposed assessment method are consistent with actual simulation. Thus, the reasonableness and effectiveness of
the proposed index system and assessment method are validated.
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1 Introduction

Intelligent electronic devices (IEDs) in smart grids are devices that function as power monitoring,
metering, protection, control, and communications [1–5]. Deploying IEDs is an inevitable trend to
enable advanced power automation. However, IEDs have brought significant security risks to smart
grids due to the complex application, diverse functional types, and unsound credibility mechanisms
[6–9]. If attackers gain control of IEDs, they can obtain and manipulate relevant data, perform
malicious operations, bypass professional protection, launch attacks on a global scale, and potentially
cause severe consequences [10–13], such as the blackouts in Ukraine and Venezuela [14–18]. Therefore,
ensuring the secure operation of IEDs has been recognized as a crucial issue for power grids.

The assessment of IEDs’ safety state can help operation and maintenance personnel in monitoring
the real-time operating state of IED, detecting device anomalies, and taking preventive measures to
avoid potential security risks, thereby ensuring the safe and stable operation of the power system.
Currently, IEDs in smart grids have various types, multiple communication protocols (such as Modbus,
DNP3, IEC 61850, IEC 60870, and DL/T 698.45), and a large number of nodes. Additionally, the
impact of IEDs on the smart grid differs in various business scenarios when they are attacked [19–
22] Traditional security assessment methods based on network traffic are inadequate in providing a
comprehensive analysis of IEDs. This situation highlights the urgent need for a more practical and
reasonable security assessment method for evaluating the operation state of IED.

1.1 Related Work

To assess and enhance IEDs’ security, researchers have conducted extensive studies on power grid
security, categorizing their work into three levels: device, system, and protocol.

At the device level, reference [23] designed a security evaluation index system for user-side
power smart terminals that function in electricity metering, incident alarm, and quality monitoring.
Meanwhile, fuzzy comprehensive analysis method is introduced to the security analysis of power
smart terminals. While, this work only targets specific terminals, and indicators are general and vague.
Reference [24] proposed a security situation assessment method based on information entropy for
intelligent distribution transformer terminals. However, the testing indexes include only peak traffic,
power consumption, and alarm events, which are not comprehensive. To predict the running states
of power industrial terminal, reference [25] proposed an anomaly detection method based on long
short-term memory (LSTM) neural network and used the open Numenta Anomaly Benchmark (NAB)
data for algorithm verification. Reference [26] constructed an information security protection research
framework of power systems covering the chip layer, terminal layer, and interactive layer, laying a
foundation for further research on IEDs’ security protection. Reference [27] constructed a security
protection architecture, risk evaluation index system, and evaluation model for power generation
acquisition terminals in a new energy plant (PGATNEP), thus realizing the quantitative evaluation
of PGATNEP and improving the cyber security defense capability of PGATNEP. Based on the three
levels of terminal itself security, terminal network security and terminal business application security,
reference [28] established quantitative indicators for analyzing the impact of power terminals after
being attacked, so as to determine the depth and breadth of the impact of the attack on power
terminals and provide a realistic basis for the next defense measures. Reference [29] analyzed the
main security problems faced by the smart distribution terminal deployed in the distribution station
and proposed an support vector machine (SVM)-based smart distribution terminal security situation
assessment method. This work used the similar indexes to reference [24] (i.e., peak traffic, power
consumption, and alarm events). Reference [30] proposed a power terminal security monitoring
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method based on business logic consistency, which can effectively correlate “time label”, “equipment
status characteristics” and “business processes”, and realize security monitoring of power industrial
control terminals from the business level. However, the indicators only include energy consumption,
voltage, current, and memory usage. Reference [31] designed a data analysis platform based on data
mining for the power grid smart terminal and the platform can be used for performing various
experiments, e.g., security assessment. Table 1 shows the comparisons of device level work.

Table 1: Comparisons of different device level work

Reference Object Indicator Method Other

[23] User-side power
smart terminals

General and vague Fuzzy
comprehensive
analysis method

None

[24] Distribution
transformer
terminals

Non-
comprehensive

Information
entropy

None

[25] Power industrial
terminal

Non-
comprehensive

LSTM None

[26] IED None None Information
security protection
framework

[27] Power generation
acquisition
terminals

Non-
comprehensive

Correlation
analysis

Security protection
architecture

[28] Power terminals Non-
comprehensive

None None

[29] Smart distribution
terminal

Non-
comprehensive

SVM None

[30] Power terminal Non-
comprehensive

Business logic
consistency

None

[31] Power grid smart
terminal

None None Data analysis
platform

At the system level, to quantify the effect of substation cyber vulnerabilities on power supply
adequacy, reference [32] proposed a holistic power system adequacy assessment framework consid-
ering cyber-attacks. In this framework, the consecutive attack and individual attack are modeled by
Markov game and static game, respectively. Aiming at the problems of slow monitoring speed and low
accuracy of current power grid monitoring methods, reference [33] proposed a smart grid data flow
abnormal state monitoring method based on entropy sequence, which has high monitoring accuracy
and strong practicability. Reference [34] proposed a novel quantitative vulnerability assessment and
ranking model for distribution automation systems (DAS). This model can be used for analyzing
the potential consequences of cyber-attacks. In addition, the attack processes are modeled as a series
of attack-defense games (ADGs) and relationships among different vulnerabilities are analyzed by
introducing vulnerability adjacency matrix. Based on this, the operators can rank the vulnerabilities
and take corresponding measures to enhance the cyber security of the DAS. Reference [35] established
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a smart grid information security risk assessment (ISRA) method combining the D-AHP method
and the Grey theory method. This work established a smart grid ISRA system according to the
characteristics and development reality of smart grid technology. The proposed system includes 5
first-level indexes as an intelligent terminal, a wireless communication channel, password security,
application code and embedded system, and corresponding 13 secondary indexes. Reference [36]
achieved holistic system risk assessment in the smart terminal process for industrial control systems
based on probability description. Table 2 shows the comparisons of system level work.

Table 2: Comparisons of different system level work

Reference Object Indicator Method Other

[32] Substation None None Power system
adequacy
assessment
framework

[33] Smart grid data
flow

Abnormal feature Entropy sequence Abnormal state
monitoring

[34] Distribution
automation
systems

None ADG Quantitative
vulnerability
assessment and
ranking model

[35] Smart grid
information
security

Comprehensive D-AHP and grey
theory

None

[36] Industrial control
systemsl

None Probability
description

System risk
assessment
framework

At the protocol level, reference [37] used time window division and deep packet inspection to trans-
form the content of end-to-end communication in an actual production environment into a sequence
of control actions. Then, according to the control protocol’s semantic features, semantic vector model
and One Class SVM (OCSVM) are used for realizing the construction of an abnormal behavior
recognition model. However, this model is limited to the IEC104 protocol. Reference [38] proposed
a multi-layered intrusion detection system (IDS) tailored for the cyber security of IEC 61850-based
substations. The proposed IDS consisted of access control detection, protocol whitelisting detection,
model-based detection, and multi parameter-based detection. It offers a significant advancement in
protecting modern substations against cyber-attacks. Reference [39] proposed an anomaly-detection
method for MMS and GOOSE packets based on OCSVM. This method including three steps, i.e.,
3-phase preprocessing, normal behavior learning, and anomaly detection. The 3-phase preprocessing
(single packet process, sequence packet process, and packet traffic process) is used for grouping MMS
and GOOSE packets into different sets of data. Table 3 shows the comparisons of protocol level work.
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Table 3: Comparisons of different protocol level work

Reference Object Indicator Method Other

[37] IEC104 protocol Abnormal feature Semantic vector
model and
OCSVM

Abnormal behavior
recognition

[38] IEC61850-based
substation

None Access control and
protocol
whitelisting

Multi-layered IDS

[39] MMS and GOOSE
packets

Abnormal feature OCSVM Anomaly-detection
method

Based on the above analysis, there are some concerns about current studies. (1) The research
object is relatively simple, and the assessment methods are difficult to be directly applied to the
security assessment of complex and diverse IEDs. (2) Current security assessment methods are mainly
a combination of network traffic analysis and machine learning methods, lacking the analysis of
abnormal behaviors of IEDs. Above all, few schemes can be directly used for assessing the security of
IEDs in smart grids. Hence, it is essential to propose a security assessment method, which integrates
multiple factors and has wide applicability, for IEDs in smart grid.

1.2 Contributions

The paper presents significant contributions to the field of IED security monitoring and assess-
ment in smart grids.

(1) IEDs are categorized into four categories based on their encryption status and control capa-
bilities. This classification enables a more efficient security assessment of various IED types by taking
into account their inherent characteristics and vulnerabilities in the communication environment.

(2) A comprehensive security monitoring index system is constructed for IED, comprising
monitoring indicators related to the running state, network traffic, and abnormal behaviors of IEDs.
By incorporating diverse data from IED monitoring points, the index system covers various aspects
of IED security, including terminal operation, network, and behavior security. This ensures a holistic
evaluation of IED security.

(3) Quantitative methods are introduced for evaluating IED security using the established mon-
itoring index system. Seven security assessment index values are determined, including factors like
security risk levels in IED running state, network traffic volatility, and frequency of specific cyber-
attacks. These indices serve as a foundation for further security assessment and analysis of IEDs.

(4) When quantifying frequency of specific cyber-attacks, this paper innovatively proposed
message data length checking method based on ASN.1 syntax encapsulation, context data length
quantification method based on the IEC61850 data model, whitelist access control method based on
service source address, and GOOSE message configuration information check method based on SCD
File. These methods are implemented by checking the syntax and semantic features of service messages,
and extracting the application layer content (e.g., service type, service data fields, and addresses) of
messages.
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(5) A novel IED security assessment method, called the GRCW-hybrid method, is introduced.
This method integrates Grey relational analysis (GRA), analytic hierarchy process (AHP), and entropy
weight method (EWM). The rationality and effectiveness of the proposed monitoring indicators and
assessment method are validated through a case study.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, security monitoring technologies for
IEDs are analyzed, IEDs are classified, and a security monitoring index system for IEDs is built. In
Section 3, the quantitative methods for three types of security monitoring indicators, namely, running
state, network traffic, and abnormal behaviors are presented. In Section 4, an IEDs security assessment
method, which combines GRA, AHP, and EWM, is proposed. In Section 5, the rationality of the
proposed monitoring indicators and security assessment method is verified through a case study. In
Section 6, a summary and a future outlook are given.

2 Monitoring Indicators for IEDs Security Assessment

Unlike devices on the Internet, the electric power services provided by IEDs in the smart grid
have stringent real-time and continuous requirements, directly impacting the secure operation of
the primary power system. Various types of IEDs exist in smart grids, each with distinct software
and hardware systems, communication protocols, services supported, and network environments.
Therefore, establishing comprehensive and specific security monitoring indicators is essential for
assessing IEDs’ security.

The quantity of monitoring information depends on the available monitoring technologies for
an IED. Therefore, from the perspective of data sources required for IEDs’ security assessment, this
section initially presents the security monitoring technologies to be utilized, categorizes IEDs within
the smart grid, and outlines the security monitoring indicators for various types of IEDs.

2.1 Security Monitoring Technologies

Based on the different locations of IEDs monitoring and referring to [40–42], we divide security
monitoring technologies into two categories: device-based monitoring technology and network-
based monitoring technology (including system-based and protocol-based technologies). Device-
based monitoring technology is used for monitoring the operating data of IEDs, such as the software
running states of the device, computing resource utilization (i.e., CPU utilization, memory utilization),
and important file modification information. Network-based monitoring technology is used for
monitoring network traffic, such as traffic feature data, abnormal alarm message information, message
semantic features, etc.

(1) Device-based monitoring technology

Some IEDs within the smart grid possess ample computing resources and are capable of self-
checking and reporting information, such as their operational status, external connectivity status,
status of remote port openings, information on local maintenance interface access, tripping and
closing operations, data from meters, status indicators, and other relevant details. However, in
practical applications, most IEDs have restricted computing capabilities and are unable to conduct
self-assessment or report complex device running state information, which undoubtedly hinders the
security evaluation of IEDs. Therefore, given the requirement for the monitoring program to operate
on IEDs with varying computing resources and restricted computing capabilities, an efficient log agent



CMC, 2024, vol.80, no.2 2585

(i.e., adding a log recording process to the IEDs to record the running state data of the IEDs) can be
used to obtain the running state data of the IEDs.

The monitoring method of the lightweight log agent can effectively obtain the running states of
the IEDs, has strong scalability, and can flexibly design the required device information proxy tasks for
engineers. The following is the specific content of using a lightweight log agent to obtain the running
state information of IEDs, and the obtained information can be used for analyzing whether there are
abnormal states in the IEDs.

1© Modification information about important file. Important files refer to the configuration
and system files of IEDs. The modification operations made to important files and their contents
is recorded in the log through the agent.

2© System task call sequence. The running states of the IEDs system tasks is generally delayed,
blocked, ready, suspended, or running. Once the task state is abnormal, the task will be suspended and
cannot participate in the system’s task scheduling. The IEDs system task ID (identity), the number
of task list items, and whether the task is accidentally suspended are recorded in the log through the
agent.

3© Kernel variable information. There are usually some kernel global variables in the IEDs system.
The kernel virtual memory is accessed through the agent, and the values of global variables are
regularly read and stored in the log.

4© System call frequency. The system call frequency of IEDs refers to the frequency that the system
calls a certain task. The events that need to be collected through the agent are set, and the number of
certain tasks called by the system in a unit of time is counted and stored in the log.

5© Process stack state. Due to the relatively scarce resources of embedded systems, the allocation
of resources is relatively demanding, so it is necessary to monitor the occupation of the stack. The
stack size, the number of stack bytes currently in use, the maximum number of stack bytes used, and
the number of unused stack bytes are written to the log through the agent.

6© Memory usage state. Based on dynamic instrumentation technology, the agent executes and
throws out program-derived feature data through the probe, and writes the feature data to the log.

7© Software running state. When the IEDs system software is running, it may crash or stop serving
due to some unexpected factors. A monitoring task can be designed to obtain the application name
and application running states by calling the system function, and then the information is recorded in
the log.

(2) Network-based monitoring technology

The security of IEDs is not only related to the running states of the device but also related to the
network traffic and abnormal behaviors (i.e., malicious attacks). Therefore, network traffic analysis
technology [43] and protocol analysis technology [44] need to be combined to monitor abnormal
network traffic events and malicious attacks. Network traffic analysis technology extracts all IEDs
network traffic data based on switch port mapping. After extracting the traffic data, traffic feature
analysis technology is used for obtaining IEDs network traffic features, including bandwidth features
and time-domain features such as period and interval. Protocol analysis technology identifies smart
grid security events through deep analysis tools that support IED communication protocols.
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2.2 Classification of IEDs

Common IEDs found in smart grids encompass protective devices such as line relays, transformer
relays, breaker relays, and bus relays, alongside digital fault recorders, data concentrators, and data
acquisition devices. These IEDs exhibit inherent characteristics across four key aspects: system
details like the operating system and version number, software elements including installed software
authorization, update and upgrade services, and port services, computing factors such as CPU
performance and memory size, and interface specifics related to local hardware interfaces.

Variations in the characteristics of IEDs necessitate the utilization of distinct security monitoring
technologies. For instance, analyzing and extracting the application layer data of communication
messages transmitted by encrypted IEDs using protocol analysis technologies is infeasible. While
decryption and analysis of application layer data is feasible upon obtaining the encryption methods
of IEDs, the resource-intensive nature of analyzing extensive communication messages renders it
impractical. Achieving a thorough and efficient evaluation of IED security necessitates the detailed
categorization of IEDs.

IEDs can be categorized as encrypted or non-encrypted based on the presence of a security chip.
Encrypted IEDs incorporate a standardized security chip with a secure access module (ESAM). Non-
encrypted IEDs, such as those commonly found in substations, lack security chips due to the real-time
data transmission demands necessitating plaintext communication.

Based on its service functionality, IEDs can be classified into control IEDs and non-control
IEDs. The protection and control (P&C) devices at the bay level of substation can control the
opening and closing of breakers, making them control IEDs. Merging units (MUs) only have data
acquisition functionality and no control functionality, making them non-control IEDs. Control IEDs
usually function in self-checking and reporting, such as a P&C device reporting command execution
and function module anomalies, while non-control IEDs do not function in self-checking and
reporting.

Based on the above analysis, IEDs are classified as illustrated in Fig. 1, with corresponding
security monitoring technologies detailed in Table 4 for each type of IED.

IEDs in the 

smart grid

non-encrypted control IEDs 

encrypted control IEDs 

encrypted non-control IEDs 

non-encrypted non-control IEDs 

Figure 1: Types of IEDs

Table 4: Security monitoring technologies of all types of IED

Type of IEDs Monitoring location Available security monitoring technologies

Non-encrypted control IEDs Device side IEDs self-checking and reporting, lightweight log
agent

Network side Network traffic analysis, protocol analysis

(Continued)
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Table 4 (continued)
Type of IEDs Monitoring location Available security monitoring technologies

Encrypted control IEDs Device side IEDs self-checking and reporting, lightweight log
agent

Network side Network traffic analysis
Encrypted non-control IEDs Device side Lightweight log agent

Network side Network traffic analysis
Non-encrypted non-control IEDs Device side Lightweight log agent

Network side Network traffic analysis, protocol analysis

2.3 Security Monitoring Index System for IEDs

Based on the analysis of monitoring technologies in Section 2.1, device-based monitoring tech-
nologies effectively capture the operational status of IEDs, while network-based monitoring technolo-
gies can identify abnormal network traffic and malicious attacks. Consequently, an IEDs security
monitoring index system is developed based on three key aspects: operational status, network traffic,
and abnormal behaviors, as depicted in Fig. 2. The operational status monitoring indicators assess the
operational risk of IEDs from the device perspective; network traffic monitoring indicators describe
the traffic patterns of IEDs from a network perspective; and abnormal behavior monitoring indicators
identify the behavioral traits of IEDs. These three categories of security monitoring indicators are
readily accessible and provide a comprehensive depiction of IED characteristics.

Security monitoring index 

system of IEDs 

Running state 

monitoring 

indicators

Network traffic 

monitoring indicators 

Abnormal behavior 

monitoring indicators

External connectivity state

Local interface state

Power consumption

Software port state

connectivity

Delay

Traffic size

Period 

Interval

Message syntax feature

Message semantic feature

Important file modification 

Kernel variable information

System call frequency

Process stack state

Process name

System call sequence

Memory usage state

Hardware runing 

state

Software runing 

state

Network 

communication 

state

Figure 2: Security monitoring index system for IEDs

In Fig. 2, the specific content of each type of monitoring indicator is as follows:
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(1) Running state monitoring indicators

The running states of IEDs mainly refer to the software and hardware environment, as well as
the communication environment. The running state monitoring indicators of IEDs include hardware
running state, software running state, and network communication state. The hardware running
state mainly includes the external connectivity state, local interface state, power consumption, etc.
The external connectivity and local interface state can be obtained by monitoring the abnormal
information reported by IEDs. For IEDs with built-in power consumption monitoring modules,
power consumption information can be obtained through collection and reporting. For other IEDs,
the power consumption information can be calculated by monitoring the voltage and current. The
software running state mainly refers to the software port state, which can be obtained by the
monitoring agent (i.e., lightweight log agent) deployed on the IEDs. The network communication state
primarily encompasses connectivity and communication delay, which can be monitored through the
heartbeat messages transmitted by IEDs maintaining long connections with the master station.

(2) Network traffic monitoring indicators

The network traffic of IEDs mainly refers to the communication traffic on the network side.
Compared with traditional IT networks, the smart grid operating environment is relatively closed, the
data fields of communication messages are shorter, and the transmission frequency is higher; commu-
nication messages have strong periodicity; communication has high real-time and fast response speed;
data flow is relatively fixed and has a certain time sequence feature. Based on these characteristics and
network traffic acquisition methods, the network traffic monitoring indicators of IEDs in this paper
mainly include traffic size, period, and interval.

(3) Abnormal behavior monitoring indicators

The abnormal behavior of IEDs mainly refers to the features of communication messages on
the network side and behaviors on the device side. Based on the analysis of security monitoring
technologies in Section 2.1, the abnormal behavior monitoring indicators of IEDs in this paper mainly
include message syntax feature, message semantics feature, important file modification, system call
sequence state, kernel variable information, system call frequency, process stack state, and memory
usage state. Among them, message syntax and message semantic features can be obtained through
protocol analysis technology, and other information can be obtained through the monitoring agent
deployed on IEDs.

Based on Section 2.2, when monitoring a specific type of IED, the actual security monitoring
indicator content is shown in Table 5.

Table 5: Security monitoring indicators of all types of IEDs

Type of IEDs Monitoring indicators

Non-encrypted control IEDs Running state monitoring indicators, network traffic monitoring
indicators, abnormal behavior monitoring indicators

Encrypted control IEDs Running state monitoring indicators, network traffic monitoring
indicators, abnormal behavior monitoring indicators (message
syntax and semantics features are not included)

(Continued)
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Table 5 (continued)

Type of IEDs Monitoring indicators

Encrypted non-control IEDs Network traffic monitoring indicators, abnormal behavior
monitoring indicators (message syntax and semantics features
are not included)

Non-encrypted non-control
IEDs

Network traffic monitoring indicators, abnormal behavior
monitoring indicators

3 Quantification of IEDs Security Monitoring Indicators

Section 2 introduces security monitoring indicators for IEDs. Once the relevant monitoring data is
acquired, quantifying the security monitoring indicators and proposing effective assessment methods
are essential for conducting IEDs security assessment. This section outlines quantification methods for
three categories of monitoring indicators: operational status, network traffic, and anomalous behavior.

3.1 Quantification of Running State

Compared with other classification methods, the K-means method is a partition-based clustering
algorithm. Given a data set of n data objects, it divides them into k clusters, with higher similarity
within each cluster and lower similarity between clusters. This method is simple and converges quickly,
allowing for quick classification results [45]. Therefore, for quantifying the running state monitoring
indicators of IEDs, the K-means method has excellent practical engineering application properties.
However, K-means is sensitive to the number of samples K and the selection of initial cluster centers.
Therefore, we construct distinctive initial cluster centers based on the collected monitoring data of the
running state to improve the method’s effectiveness. In addition, the monitoring data unit scale of the
running state is different. To reduce the impact of data unit scales, the monitoring data of the running
state needs to be preprocessed before further security assessment.

Considering the actual application of IEDs, the need for quantifying the running state monitoring
indicators and further security assessment in the rest paper, K in the K-means clustering analysis is
set to 11, corresponding to the 11 levels of running state assessment results from 0 to 10. 11 initial
centroids are determined to construct 11 different degrees of security state centroids. Thus, by using the
K-means method, the value of the running state monitoring indicators of IEDs (i.e., the IEDs’ running
state security risk level D) is obtained, ranging from 0 to 10. The running state security risk level ranges
from 0 to 10, representing the trend of IEDs changing from normal running state to different levels of
abnormal running state.

The quantification process of the running state monitoring indicators is as in Fig. 3.

The key steps are as follows:

Step 1: Collect running state monitoring data of IEDs in different running states and store them
as a sample database.

Step 2: Preprocess the sample database data and select 11 significantly different running states as
initial cluster centers.

Step 3: Traverse all samples, calculate their distances to each cluster center, and assign them to the
cluster where the nearest cluster center is located based on the distance.
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Step 4: Recalculate the cluster centers of each cluster.

Step 5: Repeat steps 3–5 until the position of the cluster center no longer changes or the set
iteration times are reached.

Collect running state monitoring data 
of IEDs in different running states and 

store them as a sample database

Start

Preprocess the sample database data

Extract the current running state data 
and add it to the sample database

End

Select 11 different running states as 
initial cluster centers

Traverse all samples, calculate their 
distances to each cluster center, and 
assign them to the cluster where the 

nearest cluster center is located based 
on the distance

 Recalculate the cluster centers of 
each cluster

Determine the current security risk 
value according to the cluster that the 

current running state belongs to

Convergence or not?

Yes

No

Figure 3: Quantification process of the running state monitoring indicators

3.2 Quantification of Network Traffic

Time-related features have good performance in network traffic analysis. In the traditional
Internet, the network environment is prone to changes, and time-related features are greatly affected.
Using time-related features may lead to poor robustness. However, if time-related features are used
for analyzing specific networks, they will not produce bad effects. In the smart grid, communication
messages have strong periodicity, fixed data flow, and certain time sequence features. Therefore, we
propose to use time-related features to quantify the network traffic monitoring indicators of IEDs.
The quantification process of the running state monitoring indicators is as in Fig. 4.

Read the historical traffic data of IED

Start

Collect IED current network traffic 
packets

Obtain the time-domain features of 
the historical traffic through the self-

learning method

End

Obtain the current time-domain 
features

 Compare the current time-domain 
features with the historical normal 
traffic time-domain features in the 

same period

According to the degree of difference,
obtain the network traffic monitoring 

indicator �

Figure 4: Quantification process of network traffic monitoring indicators
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The key steps are as follows:

Step 1: Read the historical normal traffic data of IEDs.

Step 2: Obtain the time-domain features of the historical normal traffic of IEDs through the self-
learning method of machine learning.

Step 3: Collect IEDs’ network traffic packets.

Step 4: Statistics of traffic packets to obtain the current time-domain features.

Step 5: Compare the current statistical time-domain features with the historical normal traffic
time-domain features in the same period. According to the degree of difference, the network traffic
monitoring indicator value, i.e., the traffic volatility δ, is obtained.

δ =
∣∣Qnow − Qpast

∣∣
Qpast

× 100% (1)

where Qnow indicates the network traffic in a certain period of time, Qpast indicates the network traffic
during a period of time in history.

This method can quickly and efficiently extract network traffic features from a large amount of
network communication data and show the current traffic situation based on the difference between
the traffic features and the historical normal traffic features in the same period.

3.3 Quantification of Abnormal Behaviors

At present, the mainstream protocols used for communication in IEDs include the IEC 61850
protocol, TCP/IP protocol, and DL/T 698.45 protocol. The TCP/IP protocol is the most basic protocol
of the Internet and has a large number of references available, so it will not be further elaborated here.
This paper mainly analyses the IEC 61850 protocol and DL/T 698.45 protocol. By checking the syntax
of service messages, and extracting the application layer content (e.g., service type, service data fields,
and addresses) of messages, the syntax features, semantic features, and anomaly alarms of messages
can be obtained. Based on the characteristics of these two protocols, this section provides quantitative
methods for abnormal behavior monitoring indicators of IEDs from the following five aspects.

(1) Common GOOSE, sampled value (SV), manufacturing message specification (MMS) mes-
sages, and DL/T 698.45 messages all use ASN.1 syntax for data encapsulation. The type and length
of data encapsulated based on ASN.1 syntax can be freely edited. At the same time, most message-
processing programs in the smart grid run on various embedded systems, and memory usage is
controlled by developers. Both of these aspects pose many threats to IEDs. Attackers can achieve
their goals by unreasonably editing the Tag, Length, and Value fields of data encapsulated by ASN.1
syntax. For the data encapsulated by ASN.1 syntax, Tag describes the data type, Length describes data
length, and Value represent real data values.

Therefore, to ensure the security of service messages and IEDs, it is necessary to perform syntax
checks on data encapsulated using ASN.1 syntax. To address this type of threat, we adopt a message
data length checking method based on ASN.1 syntax encapsulation, as shown in Algorithm 1. The
compliance can be judged through strict ASN.1 syntax checks on the length of the Tag, Length, Value,
and actual data. The frequency M1 of such ASN.1 malformed encapsulation attack is calculated and
used for further security assessment.
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Algorithm 1: Message Data Length Checking Method Based on ASN.1 Syntax Encapsulation
Input: raw data data [1, 2, . . . , n] based on ASN.1 syntax encapsulation, representing the first byte to
the nth byte
Output: security state threat ∈ [0, 1], where 0 indicates safe and 1 indicates unsafe
Initialization: threat = 0 and i = 0
1: Let i = i + 1, if i > n, go to step 11; otherwise, let tag = data [i], if tag&0x1F = 0x1F , go to step

10, otherwise, go to step 2.
2: Let i = i + 1, if i > n, go to step 10; otherwise, let length = data [i], if length&0x80 = 0x80, go to

step 3, otherwise, go to step 4.
3: let length_len = length&0x7F , if length_len = 0, go to step 10; if length_len = 1, go to step 4; if

length_len = 2, go to step 5, otherwise, go to step 10.
4: Let i = i + 1, if i > n, go to step 10; otherwise, let length = data [i], if length > 127, go to step 6,

otherwise, go to step 10.
5: Let i = i + 2, if i > n, go to step 10; otherwise, let length = data [i − 1] × 256 + data [i], if length >

1488, go to step 10, otherwise, go to step 6.
6: Let value_len = length and data_actual = n−i, if value_len > data_actual, go to step 10, otherwise,

go to step 7.
7: if tag&0x20 = 0x20, go to step 8, otherwise, go to step 9.
8: Let begin = i + 1 and end = i + value_len, call this procedure recursively with data [begin, . . . , end]

as input. if threat = 1, go to step 10; otherwise, go to step 9.
9: Let i = value_len + i, go to step 1.
10: Let threat = 1, end.
11: Let threat = 0, end.

(2) GOOSE messages are used for transmitting service data, and the Alldata field contains all
control and state data. In practice, Alldata field of a packet contains many data types, and the data
length also differs. Attackers can achieve attacks by editing this field, for example, by constructing
an excessively long data field to cause memory overflow, constructing an empty value data to cause
null reference, or using uninitialized data. Therefore, we adopt a context data length quantification
method based on the IEC61850 data model, as shown in Algorithm 2, to perform length checks on
context data, identify service messages carrying abnormal data, and calculate the frequency M2 of such
abnormal events, which is used for further security assessment.

Algorithm 2: Context Data Length Quantification Method Based on the IEC61850 Data Model
Input: tag value tag_value and data length data_len
Output: security state threat ∈ [0, 1], where 0 indicates safe and 1 indicates unsafe
Initialization: threat = 0
1: if tag_value = 0x83, go to step 2; otherwise, go to step 3.
2: if data_len = 1, go to step 16; otherwise, go to step 15.
3: if tag_value = 0x84, go to step 4; otherwise, go to step 5.
4: if data_len = 2, go to step 16; otherwise, go to step 15.
5: if tag_value = 0x85, go to step 6; otherwise, go to step 7.
6: if data_len ∈ {1, 2, 4, 16}, go to step 16; otherwise, go to step 15.
7: if tag_value = 0x86, go to step 8; otherwise, go to step 9.
8: if data_len ∈ {1, 2, 3, 4, }, go to step 16; otherwise, go to step 15.
9: if tag_value = 0x87, go to step 10; otherwise, go to step 11.

(Continued)
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Algorithm 2 (continued)
10: if data_len ∈ {4, 8}, go to step 16; otherwise, go to step 15.
11: if tag_value = 0x91, go to step 12; otherwise, go to step 13.
12: if data_len = 8, go to step 16; otherwise, go to step 15.
13: if tag_value ∈ {0x81, 0x82, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x90, 0x91}, go to step 14;

otherwise, go to step 15.
14: if data_len < 256, go to step 16; otherwise, go to step 15.
15: Let threat = 1, end.
16: Let threat = 0, end.

(3) Based on the publish and subscribe mode of GOOSE protocol, attackers can control the
subscribed nodes (i.e., IEDs) of a multicast group by modifying the destination multicast MAC
address. At the same time, IEDs do not check the source address, so they cannot identify whether
the attacker is the actual publisher. When IEDs are designed, the main consideration is their service
needs, and checking the source MAC address of received messages is not considered. Therefore, when
attackers use the above method to attack, IEDs cannot identify the malicious control messages, nor
can they detect anomalies. To address this type of attack, we adopt a whitelist access control method
based on service source address, as shown in Algorithm 3, to detect whether service publishers are
legitimate identities and calculate the frequency M3 of such abnormal events, which can be used for
further security assessment.

Algorithm 3: Whitelist Access Control Method Based on Service Source Address
Input: whitelist whitemap = {(appid1, dmac1) , . . .} (appidn, dmacn), where appid is the key of map,
dmac is the value of map. packet = (appid, map) represents GOOSE message.
Output: security state threat ∈ [0, 1], where 0 indicates safe and 1 indicates unsafe
Initialization: threat = 0
1: Let key = appid, where appid ∈ packet.

Let dmacwhitemap = value, (key, value) ∈ whitemap
2: if dmacwhitemap = dmac, where dmac ∈ packet, go to step 3; otherwise, go to step 4.
3: Let threat = 1, end.
4: Let threat = 0, end.

(4) For GOOSE messages, most data fields have a one-to-one mapping relationship with the
service type of the transmitted message, and these field values can be obtained from the substation
configuration description (SCD) file. In practice, IEDs are configured using offline configuration
methods, and the values of these fields that have a mapping relationship will generally not change once
the configuration is completed. Therefore, we use a GOOSE message configuration information check
method based on the SCD file, as shown in Algorithm 4, to identify GOOSE malformed messages that
IEDs may be subjected to, calculate the frequency M4 of such malformed message attacks, and use it
for further security assessment.
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Algorithm 4: GOOSE Message Configuration Information Check Method Based on SCD File
Input: GOOSE message packet = {ether, vlan, goose}, where ether, vlan, and goose consists of various
fields in GOOSE messages, ether = (dmac, type), vlan = (vlan_priority, vlan_id, type), goose =
(appid, length, reserved1, reserved2, apdu), apdu = {static_fields, dynamic_fields}, static_fields =
(gocbref , . . . numdatasetentries), dynamic_fields = (timeallowedtlive, . . . , alldata), alldata =
(data1, . . . , datan). Field rule that are not encapsulated based on ASN.1 is rulenormfieldname = (

valuefieldname

)
,

where normfieldname ∈ norm_fields = (dmac, type, . . . , reserved2). Static field rule that are encapsu-
lated based on ASN.1 is rulestaticfieldname = (

tagfieldname, lengthfieldname, valuefieldname

)
, where staticfieldname ∈

static_fields. Dynamic field rule that are encapsulated based on ASN.1 is ruledynamicfieldname =(
tagfieldname, min lengthfieldname, max lenghfieldname

)
, where dynamicfieldname ∈ dynamic_fields.

Output: security state threat ∈ [0, 1], where 0 indicates safe and 1 indicates unsafe
Initialization: threat = 0
1: Check data fields that are not encapsulated based on ASN.1 and traverse normfieldname, let

fieldname ∈ normfieldname, if the traversal is complete, go to step 3; otherwise, go to step 2.
2: Get the value of fieldname in packet, if value = valuefieldname, go to step 1; otherwise, go to step 7.
3: Check static data fields that are encapsulated based on ASN.1 and traverse static_fields, let

fieldname ∈ static_fields; if the traversal is complete, go to step 5; otherwise, go to step 4.
4: Get the tag, length, value of fieldname in packet, if tag = tagfieldname, length =
lengthfieldname, andvalue = valuefieldname, go to step 3; otherwise, go to step 7.
5: Check dynamic data fields that are encapsulated based on ASN.1 and traverse dynamic_fields, let

fieldname ∈ dynamic_fields; if the traversal is complete, go to step 8; otherwise, go to step 6.
6: Get the tag and length of fieldname in packet, if tag = tagfieldname, length ≥
min lengthfieldname, andlength ≤ max lengthfieldname, go to step 5; otherwise, go to step 7.
7: Let threat = 1, end.
8: Let threat = 0, end.

(5) Due to the vulnerability of IEDs themselves, malicious code attacks pose a significant security
threat to them. Currently, commonly used malware attack detection technologies mainly include
integrity-based detection technologies, feature-based detection methods, behavior-based detection
methods, heuristic detection methods, and machine learning-based detection methods. Considering
the limited resources of IEDs and to avoid affecting the service functions of the power system,
dedicated hosts can be used for detection, that is, the required analysis data is obtained by deploying
information collection agents on IEDs, and analysis is conducted on an independent detection host.
This deployment mode will limit the detection methods that can be used. For example, behavior-based
detection methods have a significant impact on service functions and are not suitable for use.

Reference [46] compared the classification effect of three machine learning methods (i.e., random
forest method, support vector machine and K-nearest neighbor) using probability matrix as input,
and the results showed that random forest method had the most significant and stable classification
effect. Therefore, we use random forest method to detect malicious code attacks, with the following
specific steps:

Step 1: Select a sufficiently large set of malicious and normal codes as the training set, and extract
the N-gram and variable-length N-gram of the code binary sequence as features.

Step 2: Feature selection. Calculate the weighted information gain for each feature, sort them in
descending order according to their weighted information gain, and select several features with high
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scores as effective features. A Boolean vector space is constructed based on whether each training
sample contains these effective features for the classifier to learn.

Step 3: Extract the N-gram and variable-length N-gram of the binary sequence of the code to be
tested as features. Based on whether each code to be tested contains the effective features selected from
the training set, a Boolean vector space is constructed. The random forest method is used for analyzing
this vector space, determine whether IEDs have been attacked by malware, and count the number B
of malicious behavior occurrences detected per unit of time for further security assessment.

B = N/T (2)

where T is the statistical time and N is the number of malicious behavior detected within that time T .

4 Security Assessment Method for IEDs

Considering the need to fully cover IEDs’ security monitoring indicators and the limited comput-
ing resources and capabilities of IEDs, this section proposes the GRCW-hybrid method combining
GRA, AHP and EWM for the security assessment of IEDs.

4.1 Basic Methodology

In this section, we briefly introduce the GRA, EWM, and AHP. Some important features of them
for which our proposal relies are explained.

4.1.1 GRA

Grey system theory was first proposed by Chinese scholar Deng in 1982 [47]. It mainly focuses on
the uncertain systems of “small data” and “poor information” as research objects, mines and extends
the already mastered information in the system, extracts relevant valuable information, and uses the
system’s multi-possibility to transform unknown information into known information, thus achieving
the correct description and effective monitoring of the running state and evolution law of the system.

GRA [48] is an important part of Grey theory. The essence of GRA is to judge the relation
degree between the reference sequence and sequence to be analyzed. Compared with the mathematical
statistics method, GRA does not require large-scale sampled data and satisfies typical probability
distribution law. The GRA calculation is very simple with a small amount of calculation. The
calculation results are consistent with the qualitative analysis, and hence GRA is widely used.

For IEDs, the actual obtainable information is limited, and the obtained information has
uncertain relationships with each other. Therefore, the running IED can be regarded as a grey system,
and the security state changes of the IED can be quantitatively compared and reflected by grey
correlation degree. In addition, GRA requires a small amount of data, which is also beneficial for
the security assessment of IEDs with limited resources and computing capabilities. Meanwhile, in the
process of determining the reference sequence, the optimal value of the assessment index can be used
for determining it.

However, the determination of the optimal value of the assessment index in GRA is too subjective.
Therefore, in the security assessment of IEDs, we use the rated value of some indicators as the optimal
value and use the normal operating data of IEDs when they are not attacked as the optimal value
for other indicators. This way, there is no strong subjectivity in the selection of the optimal value. In
addition, GRA takes the average value of all indicator correlations in each sample and then calculates
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the sample correlation. This method lacks the analysis of primary and secondary indicators. To solve
this problem, introducing indicator weights is a common improvement measure.

4.1.2 EWM and AHP

As mentioned in Section 4.1.1, it is necessary to introduce a weighting method to compensate
for the shortcomings of GRA. Currently, common weighting methods can be divided into objective
weighting methods (e.g., coefficient of variation method, and EWM) and subjective weighting methods
(e.g., expert scoring method and AHP). Among them, AHP has a prominent advantage in determining
weights based on the meanings of the indicators themselves, while EWM has a prominent advantage
in determining weights without considering the actual meanings of the indicators [49,50].

The basic idea of EWM is to determine objective weights based on the size of the variability of the
indicators. According to the characteristics of entropy, when the entropy value of a certain indicator
data is large, it means that the variability of the indicator is smaller and its contribution to the overall
evaluation is smaller; when the entropy value of a certain indicator data is small, it means that the
variability of the indicator is larger and its contribution to the overall evaluation is greater, and weights
of each indicator are determined based on this. EWM only relies on the discreteness of the indicator
data. AHP is a decision analysis method that combines qualitative and quantitative analysis to solve
complex problems with multiple objectives [50].

However, using AHP or EWM alone has certain limitations. AHP has poor objectivity, EWM
cannot absorb the decision maker’s engineering experience, and in extreme cases, EWM might even
produce indicator weights that contradict the actual contribution. We should combine the advantages
and disadvantages of both methods, reduce the subjectivity of weighting while achieving the unity of
subjectivity and objectivity in the weighting of indicators, and make the decision results more authentic
and reliable. Therefore, we adopt combination weight method (CWM) by combining AHP and EWM
to determine the weights of indicators.

4.2 GRCW-Hybrid Method

On the basis of the above, the workflow of the IEDs security assessment method, as shown in
Fig. 5, is designed as follows. First, according to Section 2.1, we determine the type of IEDs that need
to be assessed and monitor the data required for the security assessment of such IEDs (see Section 2.3
for details). Then, we analyze and process the monitored data according to the corresponding
quantitative methods to obtain the monitored indicator values of the IED. Subsequently, we preprocess
the monitored indicator values, establish the GRA model of IEDs, calculate the correlation coefficients
of each monitored indicator value, modify the weights of each indicator based on the CWM, and
calculate the correlation degree of each assessment sample to the reference sample. Finally, we
determine the security assessment results of IEDs based on the graded security risk level.

Although there are differences in monitoring indicators for different categories of IEDs, the
workflow shown in Fig. 5 is fully applicable to the four categories of IEDs we have defined, with
only slight differences in the calculation process due to the differences in monitoring indicators. This
section selects non-encrypted control IEDs to explain the calculation process of the proposed security
assessment method and other types of IEDs can be analyzed and calculated by analogy.

Step 1: Determine the type of IEDs. Based on the classification criteria and monitoring index
system in Section 2, we determine the type and security monitoring indicators of the assessed IEDs.
As stated in Section 2.3, the monitoring indicators for non-encrypted control IEDs include running
states, network traffic, and abnormal behaviors.
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Figure 5: Workflow of the proposed security assessment method for IEDs

Step 2: Extract corresponding monitoring indicators. Obtain the running state data, network
traffic data, and abnormal behavior data of the IEDs.

Step 3: Quantify IEDs’ security monitoring indicators. According to the quantitative method
in Section 3, we obtain the security monitoring indicator values for running state security level D,
network traffic volatility δ, and anomalous behavior (i.e., M1, M2, M3, M4 and B). Through the
statistical analysis, we set the network traffic volatility threshold as 3, the threshold of D, M1, M2,
M3, and M4 within a unit of time as 100, and the threshold of B as 10.

Step 4: Preprocess the monitoring indicator values. After obtaining all the monitoring indicator
values, they need to be standardized to make them dimensionless. Security monitoring indicators
typically include positive indicators and negative indicators, where positive indicators have the
property that a larger value means better performance, while negative indicators have the property
that a smaller value means better performance. All the indicators for IED security monitoring are
negative indicators. The range transformation method (as in (3)) can be used for preprocessing the
IEDs security monitoring indicator values.

For negative indicators:

x′
i = max (xi) − xi

max (xi) − min (xi)
(3)

In (3), x′ is the normalized value of a certain indicator in the ith sample, xi is its original value,
max (xi) and min (xi) are respectively the maximum and minimum values of that indicator among all
the samples.

Step 5: Establish the grey correlation model and calculate the correlation coefficients of each
monitoring indicator value.

When conducting grey relational analysis on IEDs, it is necessary to determine a reference
sequence in advance. The numbers of indicators and samples are set as m and n, respectively. The
original samples are shown in (4).

X0 = (x01, x02, · · · , x0m) (4)
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Meanwhile, the optimal value of each indicator is selected to form a reference sequence, as shown
in (5).

X0 = (xi1, xi2, · · · , xim) (5)

Then, we calculate the difference sequence and determine the maximum and minimum values of
the difference sequence by (6) and (7).

|x0 (j) − xi (j)| (6)

maximaxj |x0 (j) − xi (j)| and miniminj ||x0 (j) − xi (j)|| (7)

Finally, we calculate the correlation coefficient by (8).

ξ (j) = mini minj ||x0 (j) − xi (j)|| − ρ maxi maxj |x0 (j) − xi (j)|
|x0 (j) − xi (j)| + ρ maxi maxj |x0 (j) − xi (j)| (8)

where ρ is the resolution coefficient which is usually set as 0.5.

Step 6: Based on AHP and EWM, the weights of each indicator are modified. After calculating
the weights of each indicator based on EWM [49] and AHP [50], respectively, the combined weight of
each indicator is calculated according to (9).

αi = wihi∑
wihi

(9)

where wi is the weight of each indicator calculated based on EWM, hi is the weight of each indicator
calculated based on AHP, and αi is the final weight of each indicator.

Step 7: Calculate the correlation degree. Eq. (10) is used for calculating the correlation degree of
IED to be assessed.

r (x0, xi) =
∑m

j=1
αjξi (j) (10)

where ξi (j) is the correlation coefficient, the same as that in (8), αi is the same as that in (9).

Step 8: Determine the security assessment results. Based on the security risk level graded in Table 6,
the correlation degree calculation under each sample is determined in the interval, and the final security
risk level of IEDs under different scenarios is obtained.

Table 6: Security risk level grading of IEDs

r 0.9 < r ≤ 1 0.8 < r ≤ 0.9 0.7 < r ≤ 0.8 0.6 < r ≤ 0.7 0.5 < r ≤ 0.6 r ≤ 0.5

Risk level 0 1 2 3 4 5

Based on the above calculation process, the security risk level of IEDs increases with the decrease
in relevance. According to the proposed assessment method for IEDs, the security risk degree of IEDs
can be determined by the correlation degree. It means if the security risk degree is high, the correlation
degree will be low. Therefore, according to the numerical range of the correlation degree, the security
risk level can be graded into six levels, namely 0, 1, 2, 3, 4, and 5. The numerical range of the correlation
degree of each security risk level is shown in Table 6. The higher the level, the greater the security risk.

In Table 6, level 0 indicates that the IEDs are in a safe state. When the risk level is level 1, attention
should be paid. If the risk level does not decrease within a certain period of time, targeted operations
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should be carried out, such as issuing cutting generators or shedding load commands. When the risk
level is level 3, attention should be paid. If the risk level does not decrease within a certain period of
time and no change occurs after intervention, the power grid can be restarted under the condition of
ensuring normal system functions. When the risk level is level 5, the dangerous IEDs should be isolated
or directly removed quickly and accurately to limit the failure scope to a minimum and effectively
prevent the failure from continuing to expand. In practice, the classification and definition of security
risk levels can be adjusted according to the actual situation.

Based on the description of the calculation process of the proposed GRCW-hybrid method
for IEDs, it can be concluded that this method has small computation, high efficiency, and can
achieve the unity of subjectivity and objectivity in weighting while reducing the subjectivity in
weighting. Therefore, the GRCW-hybrid method can effectively improve the efficiency of IED security
assessment.

5 Experiments and Analysis

Protective IEDs play a crucial role in modern power grids. Some malicious actions (e.g., undesired
tripping and failure to operate) may occur because of cyber-attacks. Then the smart grid reliability
is affected by malicious outage events caused by successful malicious actions on protective IEDs
[1]. Therefore, we choose protective IEDs as analysis objects to verify the rationality of the security
monitoring index system and the GRCW-hybrid method.

5.1 Experimental Scenarios

In order to thoroughly validate our proposed method, based on the security monitoring index
system and potential monitoring outcomes outlined in Section 2, we consider 15 scenarios across three
categories: operational status exhibiting abnormal single-type IED monitoring indicators, operational
status exhibiting abnormal two-type IED monitoring indicators, and operational status exhibiting
abnormal three-type IED monitoring indicators, as illustrated in Tables 7–9. Additionally, we consider
the IED operational status under normal conditions as the reference scenario and designate it as
Scenario 0.

Table 7: Scenarios with abnormal single-type monitoring indicators of IED

Scenario Indicator Description

1 Running state Running state is abnormal
Network traffic Network traffic is normal
Abnormal behavior No abnormal behavior occurs

2 Running state Running state is seriously abnormal
Network traffic Network traffic is normal
Abnormal behavior No abnormal behavior occurs

3 Running state Running state is normal
Network traffic Network traffic deviates
Abnormal behavior No abnormal behavior occurs

4 Running state Running state is normal
Network traffic Network traffic deviates greatly
Abnormal behavior No abnormal behavior occurs

(Continued)
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Table 7 (continued)

Scenario Indicator Description

5 Running state Running state is normal
Network traffic Network traffic is normal
Abnormal behavior Message syntax is abnormal and no other abnormal

behavior occurs
6 Running state Running state is normal

Network traffic Network traffic is normal
Abnormal behavior Message context data is abnormal and no other abnormal

behavior occurs
7 Running state Running state is normal

Network traffic Network traffic is normal
Abnormal behavior The source address of message is abnormal and no other

abnormal behavior occurs
8 Running state Running state is normal

Network traffic Network traffic is normal
Abnormal behavior Message configuration is abnormal and no other abnormal

behavior occurs
9 Running state Running state is normal

Network traffic Network traffic is normal
Abnormal behavior There is malicious code and no other abnormal behavior

occurs
10 Running state Running state is normal

Network traffic Network traffic is normal
Abnormal behavior Message syntax, message context data, the source address of

message, and message configuration are abnormal. There is
malicious code

11 Running state Running state is normal
Network traffic Network traffic is normal
Abnormal behavior Message syntax, message context data, the source address of

message, and message configuration are seriously abnormal.
There are many malicious codes

Table 8: Scenarios with two-type abnormal monitoring indicators of IED

Scenario Indicator Description

12 Running state Running state is seriously abnormal
Network traffic Network traffic deviates greatly
Abnormal behavior No abnormal behavior occurs

13 Running state Running state is seriously abnormal

(Continued)
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Table 8 (continued)

Scenario Indicator Description

Network traffic Network traffic is normal
Abnormal behavior Message syntax, message context data, the source address of

message, and message configuration are abnormal. There is
malicious code

14 Running state Running state is normal
Network traffic Network traffic deviates greatly
Abnormal behavior Message syntax, message context data, the source address of

message, and message configuration are seriously abnormal.
There are many malicious codes

Table 9: Scenarios with abnormal three-type monitoring indicators of IED

Scenario Indicator Description

15 Running state Running state is seriously abnormal
Network traffic Network traffic deviates greatly
Abnormal behavior Message syntax, message context data, the source address of

message, and message configuration are seriously abnormal.
There are many malicious codes

These scenarios are designed based on monitoring indicators and real-world situations that
protective IEDs encounter. They consider factors such as resource availability, time constraints,
and technical requirements. The scenarios cover the possible impact and consequences of various
attacks and vulnerabilities that protective IEDs may face, thus representing actual security risks in
the smart grid. Furthermore, these scenarios allow for rigorous validation of the proposed indicators
and methods through repeated experimentation and analysis under various conditions. They can
be refined and updated over time based on simulation feedback, emerging threats, or technological
advancements, ensuring continuous improvement of the assessment index and method.

5.2 Assessment Results and Analysis

Based on the workflow of the IED security assessment proposed in Section 4, various monitoring
indicators and their corresponding quantified values are extracted through simulation.

The quantified values of each indicator under different operation status are shown in Table A1.
The values of the assessment indicator in Table A1 are preprocessed based on Eq. (3), and the
preprocessed assessment indicator values are shown in Table A2. Using Scenario 0 as the reference
scenario (i.e., IED operates normally), the correlation coefficients of each indicator to the reference
scenario are calculated in different scenarios based on Eqs. (4)–(8). The calculation results are shown in
Table A3. The weights of each indicator are calculated based on EWM and AHP methods, respectively
[49,50], and the calculation results are shown in Table A4.
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The combined weight of each indicator is calculated by Eq. (9), and the results are shown in
Table A5. The correlation degree of each scenario to the reference Scenario 0 is calculated based on
Eq. (10), and the results are shown in Table A6. Based on the graded risk levels of IED in Table 3, the
interval in which the correlation degree of each scenario belongs is determined, and the security risk
levels of IED in different scenarios are finally obtained, as shown in Table 10.

Table 10: Security risk level of each scenario

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Risk level 1 2 0 1 1 1 1 1 2 4 5 3 4 5 5

To verify the effectiveness of the GRCW-hybrid method for the security assessment of IEDs, the
simulation scenarios in this paper are mainly focused on the local power grid from the provincial
dispatching center to the 220 KV substation. Based on the typical structure of a smart substation, the
local power grid structure is shown in Fig. 6 and its network simulation model is set up by the OPNET
platform.
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Figure 6: Local power grid structure of provincial dispatching center to substation

All simulations run on a Dell OptiPlex 3050 with a 3.3 GHz CPU and 16 GB ram. The software
environment uses python 2.7+scapy for simulating message sending, Wireshark for simulating message
receiving, and deploying monitoring agents to capture and process messages through switch mirroring
ports. python 2.7+scapy supports the coding and decoding of built-in protocols and custom protocols,
and can freely edit field information, which can well simulate the attack behaviors. In this environment,
various running states of protective IED, DoS attacks, and the abnormal behaviors mentioned in
Section 3.3 are simulated, covering all the scenarios in Tables 7–9. This section compares the actual
simulation results of different scenarios with the security assessment results in Table 10 to illustrate
the rationality of the proposed security monitoring index system and security assessment method.

(1) Comparing Scenario 1 and Scenario 2: In the actual simulation, the software and hardware
operation status and communication environment of the IED in Scenario 2 is worse than that of
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Scenario 1. Therefore, the security risk of Scenario 2 is higher than that of Scenario 1. In Table 10, the
risk level of Scenario 2 is 2, and the risk level of Scenario 1 is 1. The assessment result is consistent
with the actual simulation situation.

(2) Comparing Scenario 3 and Scenario 4. In the actual simulation, IED in Scenario 4 suffers
from DoS attacks, which caused abnormal traffic volatility. Therefore, the security risk of Scenario
4 is higher than that of Scenario 3. In Table 10, the risk level of Scenario 4 is 1, and the risk level of
Scenario 3 is 0. The assessment result is consistent with the actual simulation situation.

(3) Comparing Scenario 2 and Scenario 12. In the actual simulation, the software and hardware
operation status and communication environment of IED in both scenarios are abnormal. In addition,
there is extremely high-frequency traffic communication in Scenario 12, which puts greater pressure on
its normal service functions. Therefore, the security risk of Scenario 12 is higher than that of Scenario
2. In Table 10, the risk level of Scenario 12 is 3, and the risk level of Scenario 2 is 2. The assessment
result is consistent with the actual simulation situation.

(4) Comparing Scenario 2 and Scenario 13. In the actual simulation, the software and hardware
operation status and communication environment of IED in both scenarios are abnormal. In addition,
there are multiple abnormal behaviors in Scenario 13. Therefore, the security risk of Scenario 13 is
higher than that of Scenario 2. In Table 10, the risk level of Scenario 13 is 4, and the risk level of
Scenario 2 is 2. The assessment result is consistent with the actual simulation situation.

(5) Comparing Scenario 4 and Scenario 14. In the actual simulation, IEDs in both scenarios
suffer from DoS attacks, causing abnormal traffic volatility. In addition, there are multiple abnormal
behaviors in Scenario 14. Therefore, the security risk of Scenario 14 is higher than that of Scenario 4.
In Table 10, the risk level of Scenario 14 is 5, and the risk level of Scenario 4 is 1. The assessment result
is consistent with the actual simulation situation.

(6) Comparing Scenarios 5, 6, 7, 8, 9, 10, and Scenario 11. In the actual simulation, the traffic
and running state of these seven scenarios are normal, but there are different abnormal behaviors.
Theoretically, a greater variety of abnormal behaviors corresponds to an increased security risk
for IED.. In practice, malicious code attacks are more threatening than other abnormal behaviors.
Therefore, the security risk of Scenario 9 is higher than that of Scenarios 5, 6, 7, and 8, the security
risk of Scenario 10 is higher than that of Scenario 9, and the security risk of Scenario 11 is the highest.
In Table 10, the risk level of Scenario 11 is 5, the risk level of Scenario 10 is 4, and Scenarios 5, 6, 7,
and 8 have a risk level of 2. The assessment result is consistent with the actual situation.

(7) Comparing Scenarios 11, 12, 14, and Scenario 15. In the actual simulation, Scenarios 11,
14, and 15 all have multiple abnormal behaviors compared with Scenario 12, so the security risk of
Scenario 12 is the lowest. In Table 10, Scenarios 11, 14, and 15 have a risk level of 5, and the risk level
of Scenario 12 is 3. The assessment result is consistent with the actual situation.

The above analysis shows that the assessment result is consistent with the actual simulation
situation and theoretical analysis conclusions, fully verifying the rationality and correctness of the
proposed IED security monitoring index system and security assessment method in this paper.

6 Conclusion

IEDs are highly vulnerable to cyber-attacks due to factors such as outdated system versions,
long operation cycles, and existing vulnerabilities within the system. The security of IEDs presents
a substantial threat to the general stability and safety of smart grids.
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To mitigate these risks, this paper provides a comprehensive analysis of the adopted IED security
monitoring technologies. Recognizing the diverse types of IEDs in smart grids, a classification
framework is proposed to facilitate further security assessment. This leads to the establishment of an
IED security monitoring index system that encompasses running states, network traffic, and abnormal
behaviors. By collecting and processing the relevant monitoring data, quantification methods are
introduced to derive security monitoring indicator values for each type of IED. When quantifying
the frequency of specific cyber-attacks, this paper innovatively proposed relevant detection methods
based on the syntax features, semantic features, and anomaly alarms of messages.

Furthermore, a security assessment method for IEDs is proposed, which incorporates GRA, AHP,
and EWM. The effectiveness of the index system and assessment method is then validated through the
evaluation of 15 IED scenarios, covering various indicators and real-world situations.

Future research will focus on creating test cases for more types of IEDs and improving security
monitoring indicators for IEDs. These efforts will help ensure the secure operation of IEDs in smart
grids, thereby strengthening the system’s resilience against cyber-attacks.
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Appendix A

Table A1: Assessment indicator values under different scenarios

Scenario Indicator
D δ M1 M2 M3 M4 B

0 0 1 0 0 0 0 0
1 5 1 0 0 0 0 0
2 10 1 0 0 0 0 0
3 0 0.5 0 0 0 0 0
4 0 2 0 0 0 0 0
5 0 1 50 0 0 0 0
6 0 1 0 50 0 0 0
7 0 1 0 0 50 0 0
8 0 1 0 0 0 50 0
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Table 1 (continued)

Scenario Indicator
D δ M1 M2 M3 M4 B

9 0 1 0 0 0 0 5
10 0 1 50 50 50 50 5
11 0 1 100 100 100 100 10
12 10 3 0 0 0 0 0
13 10 1 50 50 50 50 5
14 0 3 100 100 100 100 10
15 10 3 100 100 100 100 10

Table A2: Preprocessed assessment indicator values under different scenarios

Scenaio Indicator
D δ M1 M2 M3 M4 B

0 1.0000 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.5000 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000
2 0 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 0.1667 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 0.3333 0.5000 1.0000 1.0000 1.0000 1.0000
6 1.0000 0.3333 1.0000 0.5000 1.0000 1.0000 1.0000
7 1.0000 0.3333 1.0000 1.0000 0.5000 1.0000 1.0000
8 1.0000 0.3333 1.0000 1.0000 1.0000 0.5000 1.0000
9 1.0000 0.3333 1.0000 1.0000 1.0000 1.0000 0.5000
10 1.0000 0.3333 0.5000 0.5000 0.5000 0.5000 0.5000
11 1.0000 0.3333 0 0 0 0 0
12 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 0 0.3333 0.5000 0.5000 0.5000 0.5000 0.5000
14 1.0000 1.0000 0 0 0 0 0
15 0 1.0000 0 0 0 0 0

Table A3: Correlation coefficient of each assessment indicator under different scenarios

Scenario Indicator
D δ M1 M2 M3 M4 B

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 0.7501 1.0000 1.0000 1.0000 1.0000 1.0000

(Continued)
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Table 3 (continued)

Scenario Indicator
D δ M1 M2 M3 M4 B

4 1.0000 0.6000 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000
10 1.0000 1.0000 0.5000 0.5000 0.5000 0.5000 0.5000
11 1.0000 1.0000 0.3333 0.3333 0.3333 0.3333 0.3333
12 0.3333 0.4286 1.0000 1.0000 1.0000 1.0000 1.0000
13 0.3333 1.0000 0.5000 0.5000 0.5000 0.5000 0.5000
14 1.0000 0.4286 0.3333 0.3333 0.3333 0.3333 0.3333
15 0.3333 0.4286 0.3333 0.3333 0.3333 0.3333 0.3333

Table A4: The weight of assessment indicators calculated based on EWM and AHP, respectively

Method Indicator

D δ M1 M2 M3 M4 B

EWM 0.1825 0.0880 0.1459 0.1459 0.1459 0.1459 0.1459
AHP 0.1875 0.0625 0.1774 0.0657 0.0657 0.0657 0.3755

Table A5: The final weight of assessment indicators

Weight Indicator

D δ M1 M2 M3 M4 B

α 0.2295 0.0369 0.1735 0.0643 0.0643 0.0643 0.3672

Table A6: The correlation degree of each scenario to the reference scenario

Correlation
degree

Scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r 0.875 0.747 0.921 0.897 0.863 0.891 0.891 0.891 0.786 0.623 0.491 0.686 0.510 0.490 0.337
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