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ABSTRACT

Feature Selection (FS) is a key pre-processing step in pattern recognition and data mining tasks, which can
effectively avoid the impact of irrelevant and redundant features on the performance of classification models.
In recent years, meta-heuristic algorithms have been widely used in FS problems, so a Hybrid Binary Chaotic
Salp Swarm Dung Beetle Optimization (HBCSSDBO) algorithm is proposed in this paper to improve the effect
of FS. In this hybrid algorithm, the original continuous optimization algorithm is converted into binary form
by the S-type transfer function and applied to the FS problem. By combining the K nearest neighbor (KNN)
classifier, the comparative experiments for FS are carried out between the proposed method and four advanced
meta-heuristic algorithms on 16 UCI (University of California, Irvine) datasets. Seven evaluation metrics such as
average adaptation, average prediction accuracy, and average running time are chosen to judge and compare the
algorithms. The selected dataset is also discussed by categorizing it into three dimensions: high, medium, and low
dimensions. Experimental results show that the HBCSSDBO feature selection method has the ability to obtain a
good subset of features while maintaining high classification accuracy, shows better optimization performance. In
addition, the results of statistical tests confirm the significant validity of the method.
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1 Introduction

With the development of the information industry, science and technology, and the gradual
maturity of modern collection technology, thousands of applications have produced a huge amount
of data information, and various data information also provides a guarantee for the development of
technology. At the same time, the data analysis and processing are also faced with a big challenge,
because the data dimension is too large to get more valuable information. Therefore, dimension
reduction is very important in the process of data pre-processing [1].

FS extracts a significant portion of features from the original dataset and uses predetermined
assessment metrics to eliminate characteristics that are unnecessary, redundant, or noisy in order to
reduce dimension. In contrast to Feature Extraction, which also performs the function of dimension
reduction, Feature Extraction accomplishes this through the creation of new feature combinations,
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while FS does not need to modify original features, so FS has been widely used in text mining and other
fields [2]. FS can be divided into three types: filter, wrapper, and embedded. When selecting features, the
filter method can select important features based on the internal relationship between features without
combining the learning method. Although this method is simple, it usually has low classification
accuracy [3]. The wrapper approach evaluates the quality of selected features by combining them
with a machine learning model, and the evaluation process is achieved by searching for subsets of
features repeatedly until certain stopping conditions are met or the desired optimal subset of features
is obtained. This method can obtain higher classification accuracy, but at the same time has greater
computational complexity. The embedded method is to embed feature selection into learner training.
Compared with the wrapper, it saves more time, but easily increases the training burden of the model.

An increasing number of algorithms have been used in the field of FS as a result of the ongoing
development of meta-heuristic algorithms [4]. The meta-heuristic algorithm is an optimization algo-
rithm generated by simulating physical phenomena or biological behaviors in nature. Thanks to the
advantages of the simple model, easy implementation, and high robustness, meta-heuristics have been
successfully implemented in several optimization domains. Nevertheless, as stated by the No Free-
Lunch (NFL) theorem [5], it is impossible for any method to successfully solve every optimization
issue, which also encourages researchers to innovate and improve the algorithm constantly, so as to
apply the optimization algorithm to a broader field. In the field of FS, Song et al. [6] considered that
the particle updating mechanism and population initialization strategy adopted by the traditional
Particle Swarm Optimization (PSO) did not consider the characteristics of the FS problem itself,
which limited its performance in dealing with high-dimensional FS problems. So they proposed a Bare-
Bones Particle Swarm Optimization (BBPSO) based on mutual information. By combining with the K
nearest neighbor (KNN) classifier, the effectiveness of the proposed algorithm was verified on multiple
datasets, and the classification accuracy was greatly improved. A better binary Salp Swarm Algorithm
(SSA) for FS was developed by Faris et al. [7]. To enhance the algorithm’s exploration performance,
crossover operators were added and continuous SSA was transformed into binary form using various
transfer functions. The suggested method’s higher performance was confirmed when compared to the
other 5 algorithms over 22 UCI (University of California Irvine) datasets. Emary et al. [8] proposed a
binary Grey Wolf Optimization for FS, which binarized the continuous algorithm through the S-type
transfer function and verified the method on multiple datasets. It has provided an important reference
value for the subsequent improvement of Grey Wolf Optimization for FS. Mafarja et al. [9] proposed
two improved Whale Optimization Algorithm for FS, which demonstrated better classification
performance through verification on UCI datasets and comparison with other algorithms. Researchers
have also proposed many hybrid optimization algorithms and applied them to FS problems. Enhanced
Chaotic Crow Search and Particle Swarm Optimization (ECCSPSOA), a hybrid binary introduced
by Adamu et al. [10] accomplished the organic merger of Particle Swarm Optimization and Crow
Search Algorithm and included the opposition-based learning technique. The algorithm’s search space
was enlarged, and several chaotic initialization procedures were employed to enhance its optimization
efficiency, resulting in significant improvements. For high-dimensional imbalanced data containing
missing values, a particle swarm optimization-based fuzzy clustering FS algorithm (PSOFS-FC) was
proposed by Zhang et al. [11]. It shows superiority over state-of-the-art FS methods in handling high-
dimensional unbalanced data with missing values by exhibiting remarkable classification performance
on several public datasets. To solve high-dimensional FS issues, Song et al. [12] suggested a variable-size
cooperative coevolutionary particle swarm optimization method (VS-CCPSO) and evaluated it against
six other algorithms on twelve datasets. The experimental results demonstrated that the algorithm is
more advantageous in handling high-dimensional FS problems. In addition, literature [13–15] also
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proposed different hybrid algorithms for FS, provides new ideas and directions for the application of
swarm intelligence optimization algorithms in feature selection.

Dung Beetle Optimization (DBO) [16], as a new meta-heuristic algorithm, shows strong opti-
mization ability in the benchmark function, but there are also problems such as easy to entrap in
local optima and exploration and exploitation ability imbalance. Therefore, a hybrid Dung Beetle
Optimization is proposed in this paper. The original rolling dung beetle update is replaced with
the salp swarm method, which has a unique leader and follower mechanism and enhances the
algorithm’s capacity to explore the solution space. Subsequently, the population is initialized using
chaotic mapping, augmenting the DBO’s population diversity. Finally, the mutation operator is added
to stealing population position updates in the DBO to improve the ability of the algorithm to jump
from local optima. By converting the improved DBO into binary form through transfer function, a
Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization (HBCSSDBO) is proposed and applied
to FS. The main motivation for the decision to merge DBO and SSA was the strong merit-seeking
capability of DBO and the unique leader, and follower search mechanism of SSA. The complementary
advantages of the algorithms are realized. The goal of merging these two algorithms is to create a
hybrid feature selection algorithm that is more effective. The following highlights this paper’s primary
contributions:

• Introducing a unique feature selection approach for dung beetle optimization in hybrid salp
swarms. Combining the salp swarm optimization method with the dung beetle optimization
algorithm makes good use of the features that make each approach distinct.

• Using this hybrid algorithm combined with a KNN classifier greatly improves classification
accuracy.

• The effectiveness of the hybrid algorithm as applied to the FS problem is explored by comparing
it with four better-known meta-heuristics on 16 UCI benchmark test datasets, and by employing
a variety of evaluation criteria as well as multiple perspectives from high, medium, and low
dimensionality.

• The Friedman test was employed to see whether there was a significant difference between the
outcomes produced from the comparison approach and the suggested hybrid feature selection
method.

2 Relate Works
2.1 Dung Beetle Optimization

Dung Beetle Optimization (DBO) is a new swarm intelligence optimization algorithm inspired by
simulating the social behavior of dung beetles in nature. In this algorithm, the original author divided
the dung beetle population into four different agents (ball-rolling dung beetles, brood balls, small dung
beetles, and stealing dung beetles) according to a certain proportion to simulate different dung beetle
behaviors. The specific proportion division is shown in Fig. 1.

2.1.1 Dung Beetle Ball Rolling Behavior

To keep the ball moving in a straight course, dung beetles in the wild must pay attention to astro-
nomical signals. The locations of the beetles are continually shifting as they roll. The mathematical
model of dung beetles’ ball-rolling is shown in Eq. (1):

x(t + 1) = xi(t) + α × k × xi(t − 1) + b × �x,

�x =| xi(t) − X w | (1)
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where xi(t) is the position of the i-th dung beetle in the t-th iteration, α is a natural coefficient, assigned
−1 or 1, k represents the deflection coefficient and k ∈ (0, 0.2), b represents a random constant and
b ∈ (0, 1). X w denotes the global worst position.

Figure 1: Proportion division of dung beetle population

A dung beetle must dance to figure out its new course when it comes across an obstruction that
prevents it from moving ahead. This dancing behavior is described as follows:

xi(t + 1) = xi(t) + tan(θ)|xi(t) − xi(t − 1)| (2)

from |xi(t) − xi(t − 1)| in the above formula, we can see that the position update of dung beetles is
affected by current and historical data. Where θ ∈ [0, π ], it is important to note that the dung beetle’s
location will not be updated if θ is 0, π /2 or π .

2.1.2 Brood Balls

Dung beetles roll their balls to a secure spot, conceal them, and then lay their eggs to create a safer
habitat for their larvae. In order to replicate the locations where female dung beetles deposit their eggs,
the following boundary selection approach is suggested:

Lb∗ = max(X ∗ × (1 − R), Lb),

Ub∗ = min(X ∗ × (1 + R), Ub) (3)

where X ∗ represents the local optimal value, the problem’s lower and upper limits are denoted by Lb
and Ub, respectively. R = 1 − t/Tmax, and Tmax is the maximum number of iterations. Lb∗ and
Ub∗ are the lower and upper boundaries of the spawning area, respectively. As can be seen from the
above formula, the spawning boundary is dynamically determined by the R value, so the position of
the brood ball is also dynamically updated, as shown below:

Xi(t + 1) = X ∗ + b1 × (Xi(t) − Lb∗) + b2 × (Xi(t) − Ub∗) (4)

where b1 and b2 represent two independent 1 × D random vectors, D is the dimension of the
optimization problem.
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2.1.3 Small Dung Beetles

The ideal foraging region is first determined to direct tiny dung beetles to forage, and the foraging
border is specified as follows in order to mimic the foraging behavior of these insects:

Lbb = max(X b × (1 − R), Lb),

Ubb = min(X b × (1 + R), Ub) (5)

where X b represents the global optimal position, Lbb and Ubb represent the lower and upper optimal
foraging boundary, respectively. Thus, the location of the little dung beetle is updated as follows:

xi(t + 1) = xi(t) + C1 × (xi(t) − Lbb) + C2 × (xi(t) − Ubb) (6)

where C1 is a random number that follows a normal distribution, C2 represents a random number
belonging to (0, 1).

2.1.4 Stealing Dung Beetles

Certain dung beetles in the wild take dung balls from other dung beetles. The following is an
updated position of the thief:

xi(t + 1) = X b + S × g × (|xi(t) − X ∗| + |xi(t) − X b|) (7)

where S is a constant, g is a 1 × D random vector.

2.2 Salp Swarm Algorithm (SSA)

In 2017, Mirjalili et al. introduced a novel intelligent optimization technique called the Salp Swarm
Algorithm (SSA) [17]. SSA, a relatively new swarm intelligence optimization method, mimics the
swarm behavior of salps traveling and feeding in a chain in the deep sea. They often exhibit their
chain activity as discrete units that are joined end to end and move sequentially. The first person in
the salp chain is the only one who is considered the leader; the others are followers. A leader directs
the followers to walk in a chain behavior toward food at each iteration. The situation of slipping into
local optimum is much reduced while traveling since the leader performs global exploration while the
following completely conducts local exploitation. The leader’s position is updated as follows:

x1
j =

{
Fj + c1((ubj − lbj) × c2 + lbj)c3 ≤ 0
Fj − c1((ubj − lbj) × c2 + lbj)c3 > 0

(8)

where Fj represents the position of the food, ubj and lbj are the upper and lower bounds, respectively,
c2 and c3 are two random number between [0, 1], x1

j is the position of the leader. c1 is a very
important parameter in the algorithm, which controls the balance between global exploration and
local exploitation, and its expression is as follows:

c1 = 2e−( 4t
tmax )

2

(9)

where t is the current iteration number, tmax is the maximum iteration. After the leader’s position is
updated, the followers’ position is updated as follows:

xi
j = 1

2
(xi

j + xi−1
j ) (10)

where xi
j is the position of the j-th individual in the i-th iteration, and the value of i is greater than 1.
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3 The Proposed Algorithm

The FS problem is a binary problem with an upper bound of 1 and a lower bound of 0. Obviously,
the continuous DBO cannot deal with this problem, so we convert the continuous algorithm into
binary form through Eq. (11) [18,19], so as to search in the solution space.

xi(t + 1) =
⎧⎨
⎩1 if

1

1 + e(−10∗(xi(t)−0.5))
> r

0 otherwise
(11)

where r is the random number in [0, 1].

To address the imbalance between exploration and exploitation and the tendency for local optima
to easily stagnate in the current DBO, this paper adopts the following strategies to improve the
original DBO.

3.1 Chaotic Mapping

Chaos is an aperiodic phenomenon with asymptotic self-similarity and orderliness. Due to its
unique randomness, ergodicity, and complexity, it is widely used as a global optimization processing
mechanism to effectively avoid the dilemma of local optima in the process of data search optimization
in the field of decision system design [20]. In recent years, chaotic strategies have been widely used in
intelligence optimization algorithms.

In order to solve problems such as low population diversity and unsatisfactory search results in the
random initialization stage of DBO, the Bernoulli chaotic mapping method is introduced. It makes
the dung beetle populations traverse solution space better in the initialization phase, and improves
the overall optimal search performance. The histogram of the Bernoulli chaotic mapping sequence is
depicted in Fig. 2, and its expression is as follows:

xi+1 =
{

xi/(1 − a), xk ∈ (0, 1 − a]
(xi − 1 + a) /a, xi ∈ (1 − a, 1)

(12)

where a is control factor, 0.479 is used to achieve better mapping results in this paper.

Figure 2: Histogram of the Bernoulli chaotic mapping sequence
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3.2 Improved Ball-Rolling Dung Beetles

The ball-rolling dung beetle plays an important role in the DBO, and its updated position has a
crucial impact on the global exploration of the algorithm in the solution space. Moreover, SSA has
a unique leader and follower mechanism, strong global exploration ability, and a simple structure to
implement. Thus, in order to enhance the algorithm’s capacity for global exploration, we include SSA
into DBO to update the location of the ball-rolling dung beetle. Simultaneously, the original SSA
is improved upon and the Levy flight strategy is introduced to the leader position update in order to
disrupt the ideal position, hence facilitating a larger exploration of the solution space by the algorithm.
Levy flight strategy [21] is a random behavior strategy used to simulate step size and direction during
a random walk or search. The leader’s position in the improved SSA is updated as follows:

x1
j =

{
Levy. ∗ Fj + c1((ubj − lbj) × c2 + lbj)c3 ≤ 0
Levy. ∗ Fj − c1((ubj − lbj) × c2 + lbj)c3 > 0

(13)

The aforementioned variables have been explained above, where the calculation formula of Levy
flight operator is shown as follows:

Levy = (s1, s2, · · · , sn) , si = μ

|v| 1
λ

, i = 1, 2, · · · , n (14)

where v follows the standard normal distribution (the mean is 0 and the variance is 1), μ follows
Gaussian distribution (the mean is 0 and the variance is σμ), and σμ is calculated as Eq. (15):

σμ =

⎡
⎢⎢⎣

� (1 + λ) × sin
(

π × λ

2

)

�

(
1 + λ

2

)
× λ × 2

λ−1
2

⎤
⎥⎥⎦

1
λ

(15)

where λ falls in the (1, 3), and the value in this paper is 1.5, Γ(x) is the gamma function.

3.3 Mutation Operator

The behavior of the stolen dung beetle is precisely around the dung ball (global optimal location),
which aims to address the issue that DBO is prone to be trapped in local optima. As a result, it
plays a significant role in the capacity of DBO to exploit situations locally. In order to prevent the
stealing dung beetle from stopping forward search due to finding the local optimal position, a mutation
operator is added to the position update of the stealing dung beetle. After each stealing dung beetle
position update is completed, mutation operation is carried out with a certain probability p, which can
effectively ensure that the DBO is not easily trapped in local optima, and enhance the local exploitation
ability of the DBO. When p > rand, the inverse operation is performed on the current individual,
otherwise it remains unchanged, as shown in Fig. 3. The probability p is calculated as follows:

p = 0.9 + −0.9 ∗ (t − 1)

M − 1
(16)

where t and M represent the current and maximum iterations, respectively.
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Figure 3: Mutation of stealing dung beetle in DBO

By enhancing the DBO using the aforementioned tactics, the algorithm’s capacity to break out
of local optima is effectively increased, its scope for global exploration is broadened, and a healthy
balance between its capabilities for local exploitation and global exploration is struck. The flow chart
applied to FS specifically is shown in Fig. 4. The following is the specific process of HBCSSDBO
feature selection methods:

Figure 4: Flow chart

1. Import the data and divide it into training and test sets. Determine the fitness function and the
parameter initialization settings.
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2. Initialization of chaotic mapping for dung beetle populations according to Eq. (12).
3. Using an enhanced SSA to update a rolling dung beetle’s location within a DBO.
4. The p-value at the moment of the stealing dung beetle’s position update determined whether

to carry out a mutation operation. The locations of breeding dung beetles, tiny dung beetles,
and stealing dung beetles were updated in accordance with Eqs. (4), (6), and (7), respectively.

5. The characteristics that are iteratively chosen are supplied into the KNN classifier for training
after the dung beetle population is binarized based on the transfer function.

6. Calculate the fitness value corresponding to the selected feature, if t < Tmax, then return to
step three.

7. Output results.

3.4 Fitness Function

Choosing the lowest feature subset from the original features and increasing classification
accuracy are the two goals of the multi-objective optimization problem known as the FS problem.
Based on the foregoing, the fitness function of the FS issue is determined to be as follows in order to
attain a balance between the two objectives [22].

fitness = αρR (D) + β
|X |
|N| (17)

where ρR (D) represents the classification error rate by KNN classifier, |X | represents the number of
feature subsets obtained from algorithm optimization, the total number of features in the dataset is
represented by the symbol |N|. α and β are used to achieve the balance between classification accuracy
and the number of feature subsets, and α ∈ [0, 1], β = 1 − α.

4 Experimental Results
4.1 Datasets

The performance of the HBCSSDBO method for FS is verified in this study using 16 standard
datasets that are all taken from the UCI Machine Learning Repository [23]. Table 1 displays each
dataset’s parameters, which are categorized into three groups based on the number of features in each
dataset: low, medium, and high dimensions.

Table 1: Datasets parameters

No. Dataset No. of instances No. of features Dimension

1 Breastcancer 699 9 Low
2 BreastEW 569 30 High
3 CongressEW 435 16 Medium
4 Exactly 1000 13 Low
5 Exactly2 1000 13 Low
6 HeartEW 270 13 Low
7 IonosphereEW 351 34 High
8 KrvskpEW 3196 36 High
9 M-of-n 1000 13 Low
10 SonarEW 208 60 High

(Continued)
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Table 1 (continued)

No. Dataset No. of instances No. of features Dimension

11 SpectEW 267 22 Medium
12 Tic-tac-toe 958 9 Low
13 Vote 300 16 Medium
14 WaveformEW 5000 40 High
15 WineEW 178 13 Low
16 Zoo 101 16 Medium

4.2 Parameter Settings

One supervised learning technique that classifies new instances based on how far they are from the
training set is the K nearest neighbor (KNN) approach [24]. It is widely used in pattern recognition,
artificial intelligence, and other fields, so this paper selects KNN as a classifier combined with
HBCSSDBO to apply to the FS problem and K = 5. Experiments have shown that when K is set
to 5, better classification results can be obtained on numerous datasets [25]. By applying K-fold cross-
validation, the dataset is divided into K segments. The test set is comprised of one segment, while the
training set is made up of the other (K-1) segment, whose data segments are randomly shuffled.

Intel(R) CoreTMi7-6700 machine with 3.4 GHz CPU (Central Processing Unit) and 8 GB of
RAM (random access memory) was used to run the HBCSSDBO algorithm and other comparative
algorithms. The comparison algorithms include the original DBO [16], SSA [17], hybrid Gray Wolf
Particle Swarm Optimization (BGWOPSO) [26], and Gravity Search Algorithm (GSA) [27]. The
parameters in each algorithm can be found in Table 2, and the comparison algorithm is converted
into binary form by Eq. (11) to ensure the comparability and fairness of the experiment to the
greatest extent possible. It is noteworthy that every algorithm’s population number in this work is
set consistently at 30, the number of iterations at 100, the upper and lower bounds of the search at 1,
and the number of independent operations at 10. For the value of the weight parameter α in the fitness
function is 0.99 [28].

Table 2: The configuration parameters of different methods

Methods Parameters Values

HBCSSDBO c2, c3, s [0, 1], [0, 1], 0.5
DBO k, b, s 0.1, 0.3, 0.5
SSA c2, c3 [0, 1], [0, 1]
BGWOPSO c1, c2, c3 0.5
GSA G0 100

4.3 Experimental Evaluation Indices

To validate the suggested approach, a variety of evaluation indices are used in this study, including
average classification accuracy (in %), mean fitness value, best and worst fitness values, fitness value
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variation, average number of picked features, and average computational time. The following formula
is used to determine the index:

(1) Average classification accuracy

Acc = 1
N

∑N

k=1
FK (18)

where FK is the highest classification accuracy for the K-th run, N is the number of runs.

(2) Mean fitness value

Fit = 1
N

∑N

k=1
F ∗

K (19)

where F ∗
K is the best fitness value for the K-th run.

(3) The best fitness value

Max = min
1≤K≤Nr

F ∗
K (20)

(4) The worst fitness value

Min = max
1≤K≤Nr

F ∗
K (21)

(5) Fitness value variance

STD =
√

1
N − 1

∑N

K=1
(F ∗

K − Fit)2 (22)

(6) Average number of selected features

SIZE = 1
N

∑N

k=1
T ∗

K (23)

where T ∗
K is the number of selected features at the K-th run.

(7) Average computational time

Avgtime = 1
N

∑N

k=1
timeK (24)

where timeK is the time of running the algorithm for the K-th time.

5 Experimental Results and Discussion

The outcomes of using the HBCSSDBO algorithm on 16 datasets are displayed in Table 3. The
computed time, mean fitness, average accuracy (in%), and feature selection are among the outcomes.
Ten runs of the method were performed for each dataset. Among these, the algorithm gets the best
accuracy of 100% on the datasets M-of-n and Exactly. On the WineEW and Zoo datasets, it also
achieves more than 99% accuracy, followed by more than 98% accuracy on the Breastcancer and
CongressEW datasets. With respect to the total number of characteristics picked, the BreastEW
dataset has the fewest features chosen—just three. Secondly, KrvskpEW and WaveformEW have the
highest amount of features picked (13.9 and 17.6, respectively), while WineEW has the fewest features
selected (3.3). In terms of computational time, WineEW, SonarEW, and SpectEW datasets spend the
least time, with 13.73, 13.76, and 13.78 s, respectively.
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Table 3: The optimization results of the HBCSSDBO algorithm

No. Dataset Average accuracy (%) Mean fitness Feature selected Computational time (s)

1 Breastcancer 98.92 0.02 4.20 15.43
2 BreastEW 96.90 0.03 3.00 15.69
3 CongressEW 98.39 0.02 5.30 14.60
4 Exactly 100.00 0.00 6.00 16.03
5 Exactly2 78.65 0.22 6.90 16.17
6 HeartEW 90.56 0.10 4.00 14.42
7 IonosphereEW 96.71 0.03 4.50 15.04
8 KrvskpEW 98.69 0.02 13.90 32.05
9 M-of-n 100.00 0.00 6.00 16.37
10 SonarEW 97.56 0.03 8.10 13.76
11 SpectEW 89.81 0.10 6.10 13.78
12 Tic-tac-toe 84.82 0.16 7.00 15.85
13 Vote 97.83 0.02 4.00 14.04
14 WaveformEW 86.02 0.14 17.60 58.34
15 WineEW 99.43 0.01 3.30 13.73
16 Zoo 99.50 0.01 5.20 14.06

Average 94.61 0.06 6.57 18.71

The original DBO and the original SSA are compared, respectively, to confirm the efficacy
of fusion, and this process is done to validate the hybrid algorithm’s usefulness. To confirm the
algorithm’s improved performance, the hybrid Gray Wolf Particle Swarm Optimization method and
the Gravity Search algorithm are chosen for comparison. The running results of each algorithm
are shown in Tables 4 to 10. The results are average accuracy, average number of selected features,
average fitness value, average best fitness value, average worst fitness value, variance of fitness value,
and average computational time, respectively, and the optimal value is bolded. Each algorithm runs
independently 10 times.

As shown in Table 4, the classification accuracy of HBCSSDBO on 14 datasets is higher than that
of other comparative algorithms, and the average classification accuracy on all datasets is as high as
94.61%, which is 1.18%, 1.09%, 0.88%, and 0.88% higher than that of BDBO (Binary Dung Beetle
Optimization), BSSA (Binary Salp Swarm Algorithm), BGWOPSO (Binary Grey Wolf Optimization
Particle Swarm Optimization), and BGSA (Binary Gravitational Search Algorithm), respectively. The
proposed hybrid method, original DBO, and SSA all have 100% classification accuracy on the M-
of-n dataset; on the Vote dataset, the hybrid approach and SSA have 97.83% classification accuracy.
In addition to the above two datasets, the classification accuracy of the HBCSSDBO is superior to
the two original algorithms. The feasibility and effectiveness of the hybrid algorithm are proven. The
accuracy of HBCSSDBO, BGWOPSO, and BGSA is 100% on Exactly and M-of-n datasets, and the
proposed algorithm only lags behind these two algorithms on Tic-tac-toe and Vote datasets. To sum
up, HBCSSDBO has higher classification accuracy.
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Table 4: Average classification accuracy of each algorithm (in %)

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 98.92 97.99 98.27 98.27 98.42
BreastEW 96.90 96.55 96.02 95.13 95.66
CongressEW 98.39 97.24 97.93 98.05 98.16
Exactly 100.00 97.15 96.95 100.00 100.00
Exactly2 78.65 77.55 77.85 78.00 78.15
HeartEW 90.56 87.41 88.70 87.41 87.41
IonosphereEW 96.71 96.29 94.71 94.43 93.43
KrvskpEW 98.69 98.34 98.15 98.64 98.50
M-of-n 100.00 100.00 100.00 100.00 100.00
SonarEW 97.56 96.59 96.59 95.85 95.61
SpectEW 89.81 88.30 88.68 88.87 89.43
Tic-tac-toe 84.82 84.14 83.82 85.45 83.66
Vote 97.83 97.50 97.83 98.00 98.33
WaveformEW 86.02 85.34 84.81 85.58 85.99
WineEW 99.43 98.00 97.43 98.00 98.86
Zoo 99.50 96.50 98.50 98.00 98.00
Average 94.61 93.43 93.52 93.73 93.73

Table 5 shows that, out of all the comparable methods, the suggested approach ranks highest
with an average of 6.57 selected features across all datasets. Its number of selected features on only 5
datasets lags behind other comparative algorithms and is in a leading position on the other 11 datasets.
Combined with the analysis of the FS accuracy, it has been demonstrated that the suggested algorithm
performs better while using FS.

Table 5: Average number of selected features of each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 4.20 3.50 3.8 4.30 4.60
BreastEW 3.00 3.50 3.60 4.20 8.70
CongressEW 5.30 4.80 4.50 5.50 5.10
Exactly 6.00 6.20 6.10 6.00 6.00
Exactly2 6.90 5.90 6.50 6.50 6.20
HeartEW 4.00 4.40 4.40 4.60 4.70
IonosphereEW 4.50 4.50 8.10 10.50 10.20
KrvskpEW 13.90 15.60 18.40 21.00 20.80
M-of-n 6.00 6.00 6.00 6.00 6.00
SonarEW 8.10 9.00 16.70 20.80 26.00
SpectEW 6.10 7.50 9.10 8.80 9.60

(Continued)
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Table 5 (continued)

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Tic-tac-toe 7.00 7.10 6.30 7.90 7.10
Vote 4.00 3.60 5.20 5.60 5.50
WaveformEW 17.60 22.20 22.20 27.80 23.50
WineEW 3.30 3.60 4.30 4.20 3.80
Zoo 5.20 5.80 6.30 6.20 6.60
Average 6.57 7.03 8.19 9.37 9.65

When comparing the average fitness, the best and worst fitness, and the variance of different
algorithms, the results are displayed using scientific counting, and the optimal results are bolded in
order to prevent data differences from being too minor and challenging to see. Table 6 shows that
compared to other comparison algorithms, HBCSSDBO has a higher average fitness value across all
datasets. Based on the aforementioned analysis, the proposed algorithm shows stronger optimization
ability. However, in Table 7, the best fitness value found by the HBCSSDBO on all datasets is superior
to other algorithms, which shows that the algorithm has a stronger optimization breadth and verifies
the improvement of the global exploration ability in the algorithm improvement strategy. Moreover,
this is still the case in Table 8, where the worst fitness value found by the HBCSSDBO is smaller than
other algorithms on 12 datasets. It is proved that the HBCSSDBO is less prone to stagnate in local
optima. Combined with the variance of fitness value in Table 9, the variance obtained on half of the
datasets is smaller than other algorithms. For datasets Exactly, KrvskpEW, SonarEW, WineEW, etc.,
although the variance of the proposed algorithm is not optimal, it is still at the forefront of many
algorithms, which shows that HBCSSDBO has better robustness.

Table 6: Mean fitness value of each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 1.535E-02 2.383E-02 2.132E-02 2.187E-02 2.078E-02
BreastEW 3.166E-02 3.533E-02 4.062E-02 4.959E-02 4.583E-02
CongressEW 1.924E-02 3.031E-02 2.330E-02 2.278E-02 2.139E-02
Exactly 4.615E-03 3.298E-02 3.489E-02 4.615E-03 4.615E-03
Exactly2 2.167E-01 2.268E-01 2.243E-01 2.228E-01 2.211E-01
HeartEW 9.658E-02 1.281E-01 1.152E-01 1.282E-01 1.283E-01
IonosphereEW 3.385E-02 3.809E-02 5.471E-02 5.825E-02 6.806E-02
KrvskpEW 1.688E-02 2.076E-02 2.339E-02 1.931E-02 2.065E-02
M-of-n 4.615E-03 4.615E-03 4.615E-03 4.615E-03 4.615E-03
SonarEW 2.550E-02 3.530E-02 3.659E-02 4.452E-02 4.780E-02
SpectEW 1.036E-01 1.192E-01 1.162E-01 1.142E-01 1.090E-01
Tic-tac-toe 1.581E-01 1.649E-01 1.672E-01 1.529E-01 1.696E-01
Vote 2.395E-02 2.700E-02 2.470E-02 2.330E-02 1.994E-02
WaveformEW 1.428E-01 1.507E-01 1.559E-01 1.497E-01 1.446E-01
WineEW 8.196E-03 2.257E-02 2.876E-02 2.303E-02 1.424E-02

(Continued)
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Table 6 (continued)

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Zoo 8.200E-03 3.828E-02 1.879E-02 2.368E-02 2.393E-02
Average 5.687E-02 6.867E-02 6.816E-02 6.646E-02 6.652E-02

Table 7: The best fitness value of each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 1.046E-02 1.157E-02 1.046E-02 1.046E-02 5.556E-03
BreastEW 9.761E-03 1.852E-02 1.000E-03 1.819E-02 2.052E-02
CongressEW 1.875E-03 1.325E-02 6.250E-04 6.250E-04 2.500E-03
Exactly 4.615E-03 4.615E-03 4.615E-03 4.615E-03 4.615E-03
Exactly2 2.049E-01 2.106E-01 2.175E-01 2.099E-01 2.133E-01
HeartEW 5.808E-02 5.885E-02 5.808E-02 9.397E-02 5.962E-02
IonosphereEW 1.532E-02 1.176E-03 1.650E-02 3.123E-02 3.123E-02
KrvskpEW 1.191E-02 1.219E-02 1.358E-02 1.696E-02 1.175E-02
M-of-n 4.615E-03 4.615E-03 4.615E-03 4.615E-03 4.615E-03
SonarEW 1.167E-03 8.333E-04 2.500E-03 3.667E-03 3.667E-03
SpectEW 5.922E-02 7.790E-02 7.926E-02 7.972E-02 6.058E-02
Tic-tac-toe 1.374E-01 1.344E-01 1.188E-01 1.240E-01 1.137E-01
Vote 2.500E-03 6.250E-04 2.500E-03 2.500E-03 2.500E-03
WaveformEW 1.238E-01 1.414E-01 1.443E-01 1.350E-01 1.320E-01
WineEW 1.538E-03 1.538E-03 2.308E-03 1.538E-03 2.308E-03
Zoo 3.125E-03 3.750E-03 3.125E-03 3.125E-03 3.125E-03
Average 4.064E-02 4.349E-02 4.249E-02 4.625E-02 4.197E-02

Table 8: The worst fitness value of each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 2.581E-02 4.006E-02 3.182E-02 4.940E-02 4.940E-02
BreastEW 6.233E-02 5.323E-02 7.985E-02 7.985E-02 7.342E-02
CongressEW 4.864E-02 5.877E-02 6.190E-02 5.052E-02 2.776E-02
Exactly 4.615E-03 2.883E-01 2.917E-01 4.615E-03 4.615E-03
Exactly2 2.315E-01 2.433E-01 2.365E-01 2.433E-01 2.315E-01
HeartEW 1.314E-01 1.704E-01 1.688E-01 1.887E-01 1.872E-01
IonosphereEW 5.834E-02 5.834E-02 1.014E-01 1.019E-01 1.164E-01
KrvskpEW 2.320E-02 3.289E-02 4.036E-02 2.709E-02 2.935E-02
M-of-n 4.615E-03 4.615E-03 4.615E-03 4.615E-03 4.615E-03
SonarEW 7.344E-02 9.775E-02 7.527E-02 7.694E-02 1.013E-01
SpectEW 1.704E-01 1.882E-01 1.531E-01 1.358E-01 1.535E-01

(Continued)
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Table 8 (continued)

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Tic-tac-toe 1.829E-01 2.036E-01 1.922E-01 1.914E-01 1.922E-01
Vote 6.788E-02 5.200E-02 5.388E-02 7.038E-02 3.988E-02
WaveformEW 1.547E-01 1.793E-01 1.686E-01 1.602E-01 1.619E-01
WineEW 3.136E-02 5.888E-02 6.042E-02 5.965E-02 5.811E-02
Zoo 5.200E-02 1.021E-01 1.015E-01 5.388E-02 5.450E-02
Average 8.270E-02 1.145E-01 1.139E-01 9.364E-02 9.285E-02

Table 9: Variance of adaptation values for each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 5.090E-03 1.113E-02 8.035E-03 1.360E-02 1.239E-02
BreastEW 1.669E-02 7.226E-03 1.945E-02 1.659E-02 1.888E-02
CongressEW 1.655E-02 1.721E-02 1.850E-02 1.476E-02 8.155E-03
Exactly 9.143E-19 8.971E-02 9.037E-02 9.143E-19 9.143E-19
Exactly2 7.619E-03 1.217E-02 5.533E-03 9.600E-03 6.656E-03
HeartEW 2.334E-02 3.207E-02 3.179E-02 3.683E-02 4.328E-02
IonosphereEW 1.772E-02 1.898E-02 2.490E-02 1.928E-02 2.415E-02
KrvskpEW 3.799E-03 6.492E-03 8.353E-03 2.818E-03 5.216E-03
M-of-n 9.143E-19 9.143E-19 9.143E-19 9.143E-19 9.143E-19
SonarEW 2.532E-02 3.454E-02 3.055E-02 2.311E-02 3.569E-02
SpectEW 3.416E-02 3.109E-02 2.496E-02 2.044E-02 3.716E-02
Tic-tac-toe 1.531E-02 2.308E-02 2.116E-02 2.295E-02 2.243E-02
Vote 1.885E-02 1.811E-02 1.889E-02 2.682E-02 1.601E-02
WaveformEW 9.910E-03 1.107E-02 8.185E-03 7.578E-03 9.770E-03
WineEW 1.203E-02 2.298E-02 2.092E-02 1.919E-02 1.928E-02
Zoo 1.540E-02 3.274E-02 3.291E-02 2.559E-02 2.565E-02
Average 1.386E-02 2.304E-02 2.278E-02 1.620E-02 1.779E-02

Table 10 illustrates this, even though the HBCSSDBO only obtains a faster time on six datasets.,
such as Exactly, KrvskpEW, SpectEW, Vote, WaveformEW, and WineEW, the average time of
HBCSSDBO running in 16 datasets is ahead of other algorithms. Furthermore, in other datasets, the
computing speed of HBCSSDBO is also at the forefront of many algorithms. The hybrid algorithm is
composed of the original DBO and the original SSA, but it does not consume more computing time,
which proves the rationality of the proposed algorithm.

The suggested technique performs better than other comparable algorithms in each of the
aforementioned seven assessment indices. When compared to the BDBO feature selection approach,
the HBCSSDBO feature selection method improves the average prediction accuracy and average
number of chosen features on the entire dataset by 1.18% and 7.2%, respectively. It is evident from
the aforementioned study of the average classification accuracy and the average number of features
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chosen that the suggested approach is capable of selecting the best subset of characteristics while
also guaranteeing a high classification accuracy. The suggested method has significantly improved
in terms of depth of optimization search and exploration ability as well as robustness, according to
the examination of the variance, the best fitness value, and the optimal fitness. These results justify the
fusion algorithm, i.e., the embedded SSA algorithm leader and follower mechanisms effectively help
the dung beetle individuals better explore the solution space, while the mutation operator and chaotic
initialization mapping population ensure that the algorithm does not easily fall into the local optimum
and guarantee the diversity of the population, respectively. Furthermore, the hybrid algorithm is
guaranteed to be efficient because the suggested approach does not result in any extra time overhead
when compared to the two original methods in terms of running time.

Table 10: Computational time of each algorithm

Dataset HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 15.43 15.10 16.78 17.48 14.10
BreastEW 15.69 16.14 14.86 15.67 15.10
CongressEW 14.60 14.55 15.37 15.09 14.60
Exactly 16.03 16.45 17.75 16.88 16.39
Exactly2 16.17 15.83 16.97 17.05 16.35
HeartEW 14.42 14.45 14.49 14.66 14.26
IonosphereEW 15.04 15.90 15.33 14.57 13.78
KrvskpEW 32.05 34.24 37.72 38.94 33.91
M-of-n 16.37 16.26 17.22 16.88 13.84
SonarEW 13.76 14.35 14.80 15.17 13.43
SpectEW 13.78 14.37 15.48 14.90 15.35
Tic-tac-toe 15.85 16.70 16.64 17.75 13.36
Vote 14.04 14.38 14.51 14.69 14.48
WaveformEW 58.34 69.26 66.25 88.58 66.79
WineEW 13.73 14.34 14.41 14.35 14.02
Zoo 14.06 14.70 14.53 14.50 13.98
Average 18.71 19.81 20.19 21.70 18.98

The datasets are split into three datasets of different dimensions based on the varying number
of features, namely high dimensional datasets, medium dimensional datasets, and low dimensional
datasets, in order to further assess the effectiveness of the suggested approach. Specific corresponding
information is given in Table 1. In order to more intuitively verify the superiority of the proposed
algorithm, the average classification accuracy (in %) and the average number of selected features
obtained by each algorithm are presented in the form of bar charts according to three different
dimensions, and the specific results are shown in Figs. 5–7. As can be seen from Fig. 5, on high
dimensional datasets, HBCSSDBO is ahead of other comparative algorithms in terms of classification
accuracy and number of selected features, which also indicates that HBCSSDBO can use fewer features
to obtain higher classification accuracy, showing strong optimization ability. Fig. 6a shows that, for
the medium-dimensional datasets, HBCSSDBO’s classification accuracy trails BGSA only in the Vote
dataset. Fig. 6b shows that, in the Vote and CongressEW datasets, the number of selected features
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is marginally higher than the original DBO. It is still in the leading position compared with other
algorithms. Fig. 7a shows that all methods work well and achieve high classification accuracy for low-
dimensional datasets. Still, it is evident that HBCSSDBO outperforms other algorithms in the majority
of datasets. However, as Fig. 7b illustrates, the suggested technique does not choose as many features
as other algorithms do—at least not as much as it does for large dimensional datasets.
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Figure 5: Average classification accuracy (a) and number of selected features (b) for high-dimensional
datasets
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Figure 6: Average classification accuracy (a) and number of selected features (b) for medium dimen-
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datasets
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To sum up, HBCSSDBO can obtain higher classification accuracy when applied to FS, can extract
feature subsets more effectively from original datasets, especially in medium and high dimensional
datasets, and does not perform poorly on low dimensional datasets. Overall, it is still ahead of the
comparative algorithms.

To assess the statistical significance of the earlier obtained results, the experimental data were
subjected to a Friedman test [11]. Where 5% was used as the significance level for this test. Table 11
displays the test’s findings.

Table 11: The Friedman ranking, statistical test, critical value, and p-value of the studied algorithm
with BDBO, BSSA, BGWOPSO, and BGSA

HBCSSDBO BDBO BSSA BGWOPSO BGSA

Breastcancer 1 5 3 4 2
BreastEW 1 2 3 5 4
CongressEW 1 5 4 3 2
Exactly 1 4 5 2 3
Exactly2 1 5 4 3 2
HeartEW 1 3 2 4 5
IonosphereEW 1 2 3 4 5
KrvskpEW 1 4 5 2 3
M-of-n 1 2 3 4 5
SonarEW 1 2 3 4 5
SpectEW 1 5 4 3 2
Tic-tac-toe 4 1 2 3 5
Vote 5 4 1 3 2
WaveformEW 1 5 4 2 3
WineEW 1 5 2 4 3
Zoo 1 3 4 5 2
Sum 23 57 52 55 53
Average 1.375 3.75 3.6875 3.125 3.0625
F (t) 25.57
p-value 3.87E-05
Critical value 9.487729

A pairwise Benjamin-Hochberg post hoc test with adjusted p value using HBCSSDBO as a control
algorithm was significant for HBCSSDBO vs. BDBO (p= 0.000107511, adj = 0.0125), HBCSSDBO
vs. BSSA (p = 0.000107511, adj = 0.025), HBCSSDBO vs. BGSA (p = 0.001340641, adj = 0.0375) and
HBCSSDBO vs. BGWOPSO (p = 0.007526315, adj = 0.05). Specific results are shown in Table 12.
Consequently, it is evident from the statistical analysis findings above that there is a substantial
difference between the other analyzed methods and the suggested approach.
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Table 12: Benjamini–Hochberg test

Algorithm p-value Rank adj α

BDBO 0.0001075 1 0.0125
BSSA 0.0001075 2 0.025
BGSA 0.0013406 3 0.0375
BGWOPSO 0.0075263 4 0.05

6 Conclusions

In this paper, HBCSSDBO, a new hybrid algorithm, is proposed to solve the feature selection
problem. The method combines the respective features of DBO and SSA, realizes the organic
integration of the two algorithms, and effectively solves the feature selection challenge. The average
fitness value, average classification accuracy, average number of selected features, variance of fitness
value, average running time, and optimal and worst fitness values are the seven-evaluation metrics
that are used to assess the performance and stability of the proposed method on 16 UCI datasets. In
addition, HBCSSDBO is compared with four meta-heuristic feature selection methods, which include
BDBO, BSSA, BGWOPSO, and BGSA. Based on several assessment criteria, the trial findings indicate
that HBCSSDBO is the best option. Its average classification accuracy is 94.61%, and it has an average
of 6.57 chosen features. In the analysis of the method in terms of the optimal and worst fitness values
as well as the variance of the fitness values, we can see that the hybrid method has a great improvement
in both the optimization searching accuracy and robustness. In addition, the hybrid method does not
incur more time loss in terms of running time. These results show that HBCSSDBO is more competitive
in solving the feature selection problem. The final statistical test verifies the significant effectiveness
of the method.

In our future research, we will explore the application of the proposed method to the feature
selection problem in different domains such as data mining, medical applications, engineering appli-
cations, and so on. We will try to combine machine learning algorithms other than KNN to study the
performance of the HBCSSDBO method.
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