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ABSTRACT

Chinese Clinical Named Entity Recognition (CNER) is a crucial step in extracting medical information and is of
great significance in promoting medical informatization. However, CNER poses challenges due to the specificity of
clinical terminology, the complexity of Chinese text semantics, and the uncertainty of Chinese entity boundaries. To
address these issues, we propose an improved CNER model, which is based on multi-feature fusion and multi-scale
local context enhancement. The model simultaneously fuses multi-feature representations of pinyin, radical, Part of
Speech (POS), word boundary with BERT deep contextual representations to enhance the semantic representation
of text for more effective entity recognition. Furthermore, to address the model’s limitation of focusing just on
global features, we incorporate Convolutional Neural Networks (CNNs) with various kernel sizes to capture multi-
scale local features of the text and enhance the model’s comprehension of the text. Finally, we integrate the
obtained global and local features, and employ multi-head attention mechanism (MHA) extraction to enhance the
model’s focus on characters associated with medical entities, hence boosting the model’s performance. We obtained
92.74%, and 87.80% F1 scores on the two CNER benchmark datasets, CCKS2017 and CCKS2019, respectively. The
results demonstrate that our model outperforms the latest models in CNER, showcasing its outstanding overall
performance. It can be seen that the CNER model proposed in this study has an important application value in
constructing clinical medical knowledge graph and intelligent Q&A system.
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1 Introduction

The medical field has witnessed a rapid growth in medical information technology, leading to a
significant focus on the informatization of Electronic Medical Record (EMR) [1]. During hospital
visits, EMR are commonly utilized to record the patient’s physical health status and capture the
entire process of medical diagnosis. It is an indispensable medical data resource in healthcare services,
as it provides patients with reliable medical evidence, assists doctors in grasping patients’ physical
health status, and supports clinical experiments and research [2]. It is usually stored as various data
types, including unstructured free text that computers cannot automatically extract and recognize [3].
In order to effectively utilize the unstructured free texts, it is essential to employ entity extraction
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methods, such as Named Entity Recognition (NER) [4]. NER aims to extract valuable information
from the text. While NER has achieved considerable success in English, Chinese Named Entity
Recognition (CHNER) [5] poses greater complexity and difficulties. The complexity of CHNER
is largely attributed to the abundance of homophones and the absence of clear boundaries in the
language. These factors pose significant challenges, distinguishing it from other languages when it
comes to recognizing named entities in Chinese text.

Previous research in CHNER has explored various approaches, including dictionary-based [6],
rule-based [7], and machine learning-based methods [8]. These approaches have shown a degree of
achievement in CHNER tasks. Although very accurate, these methods rely significantly on manual
annotation and feature engineering, which can be a laborious and resource-intensive job [9]. With
the ongoing advancements in science, technology, and computing power, there is a growing trend
toward utilizing deep learning techniques in CHNER. Deep learning techniques have demonstrated
superior performance across various domains. Particularly, Long Short-Term Memory (LSTM) [10]
based neural network models have gained significant popularity in CHNER tasks. Among these
models, the BiLSTM-CRF (Bidirectional LSTM with Conditional Random Fields) [11] model has
emerged as a prominent approach and achieved noteworthy results in CHNER tasks. Nevertheless, the
majority of existing CHNER models rely on character-based [12] or word-based [13] vector models.
On the one hand, character-based models alone may not capture sufficient semantic information
compared to word vectors. On the other hand, relying solely on unique word vector-based models
may result in inadequate representation due to inaccuracies in the word-splitting tool, leading to
subpar performance [14]. Moreover, existing CHNER methods frequently focus on global context
information and overlook the importance of local context information, which are also essential for
accurate entity recognition. Because of these reasons, CHNER models cannot fully consider semantic
information when extracting the named entities from Chinese text. To solve these problems, we propose
a multi-feature fusion and multi-scale local context enhancement for CNER model. Our contribution
can be summarized as follows:

1. We propose a new feature extraction method based on multi-feature fusion and multi-scale
local context enhancement, which comprehensively considers the multi-feature semantic of
Chinese characters and simultaneously extracts deep global and local semantic information
from Chinese Electronic Medical Record (CEMR) text.

2. We propose a multi-scale local context enhancement method based on multiple Convolutional
Neural Networks (CNNs) with different kernel sizes to capture local contextual features from
various scales, ranging from fine-grained to coarse-grained. This enables the model to delve
deeper into the semantic information of the text.

3. We conduct extensive experiments on the publicly available CEMR datasets CCKS2017 and
CCKS2019. The experimental results prove the validity of the model and verify the importance
of each component in the model.

2 Related Work

In the initial phases of NER, dictionary-based and rule-based approaches were mainly used. The
dictionary-based and rule-based methods primarily rely on manual formulation, where entities are
recognized by domain experts, formulating specific rules, and then combining them with a dictionary
using pattern matching. Still, due to the specificity of rule formulation and the incompleteness of the
dictionary, the limitations of this method are significant, not only consuming a lot of effort and time
but also not making it easy to expand the dataset. Machine learning-based approaches use supervised
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learning to convert NER tasks into sequence labeling tasks or classification tasks, in which the process
often involves building many feature projects, typically Hidden Markov Models (HMMs) [15] models
and Conditional Random Fields (CRFs) [16] models. Although this approach substantially improves
over previous methods, it still requires extensive labeling by experts in the specialized domain. In
addition, it still has a high time cost for training.

Deep learning technology has quickly advanced in recent years, making it the dominant strategy
in NER research. Deep learning utilizes neural networks to automatically extract features of objects
and has demonstrated success [17]. Huang et al. [11] proposed the BiLSTM-CRF model for sequence
annotation tasks, which has significantly enhanced the accuracy of NER. Zhang et al. [18] proposed
a lattice LSTM model specifically designed for NER, which incorporates the words’ meaning into the
word vector model, significantly improving Chinese boundary segmentation’s ability. Wu et al. [19]
proposed a network structure for NER based on CNN-LSTM-CRF, which jointly trained the NER
and word segmentation models, enhancing the ability to accurately recognize entity boundaries in
Chinese text. Xue et al. [20] proposed a centralized attention model that integrated BERT pre-training
and collaborative learning to enhance feature representation in the parameter sharing layer, resulting
in improved accuracy in extracting medical text entities and relations. Zhao et al. [21] proposed
an adversarial training-based lattice LSTM model that integrated character and word embeddings,
which incorporated adversarial perturbations into the lattice LSTM structure, with the specific goal
of enhancing recognition performance in the context of Chinese clinical texts. Li et al. [22] enhanced
CNER by including dictionary data and radical properties of Chinese characters to improve the
contextualized representation of words in their model. Kong et al. [23] introduced a CNN model
that employs a multi-level CNN structure to capture contextual information, making use of GPU
parallelism and enhancing model performance. An et al. [24] enhanced CNER by incorporating a
multi-head attention mechanism, which integrates a multi-head attention mechanism with a medical
dictionary, enabling more efficient capturing of the relationship between Chinese characters and multi-
level semantic features. Guo et al. [25] used the Transformer layer of the soft-dictionary structure
to replace the traditional LSTM, and the soft-dictionary system of the Transformer layer not only
supports parallel computation to save a lot of time but also captures more contextual dependencies
and correlations.

In summary, deep learning-based NER has shown promising results and is gaining traction
for practical NER tasks. Therefore, we propose a multi-feature fusion and multi-scale local context
enhancement method for CNER. By extracting multi-feature embedding and fusing multi-scale local
contextual features, our approach enables the model to better comprehend Chinese clinical text
information, thereby improving overall model performance.

3 Proposed Method

The model’s architecture, shown in Fig. 1, consists of four neural network layers: a feature
embedding layer, a feature extraction layer, a multi-head attention (MHA) mechanism layer, and a
CRF layer. Below are the detailed details of each layer:
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Figure 1: The overall model architecture

3.1 Feature Embedding Layer

To obtain as much rich semantic information as possible from the sequence, we extract sequence
features from five different perspectives: pinyin feature, radical feature, Part of Speech (POS) feature,
word boundary feature, and deep contextual word-level feature BERT.
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3.1.1 Pinyin Feature

Pinyin, as the official standard for the pronunciation of Chinese characters, contains a wealth of
semantic information. For dealing with low-frequency and unknown words, pinyin can also provide
valuable pronunciation information. This feature is particularly important in medical texts that
contain a large number of specialized clinical terms, because the same Chinese character may have
completely different meanings under different pinyin. For example, although the Chinese character
“ ” in “ ” (ENG: Traditional Chinese Medicine) and “ ” (ENG: stroke) have the same character
form, they have different pinyin, which leads to obvious differences in their semantics. The former
refers to traditional Chinese medicine, while the latter represents an acute cerebrovascular disease.
Therefore, simply converting Chinese characters into word-level vectors may lose this semantic
information. In order to distinguish the different meanings expressed by polyphonic and homophonic
characters in Chinese, we can assist the word-level semantic expression of Chinese characters by
integrating pinyin features. Specifically, the pinyin vector consists of 27 dimensions: the first 26
dimensions correspond to the 26 letters in the pinyin system, while the last dimension is used to
represent the tones of the Chinese character. To construct a pinyin vector, we first obtain the pinyin of
each Chinese character in the corpus. Then, we count the number of occurrences of each pinyin letter
in the first 26 dimensions of the vector, and combine it with the tone information in the last dimension
to construct a comprehensive 27-dimensional pinyin vector. The construction process of the pinyin
vector is as follows:

Qpinyin = Epinyin
[
Fpinyin (X)

]
(1)

where X represents the input sequence, the Fpinyin function maps the input sequence to a sequence of
pinyin sequence, Epinyin represents the mapping table between pinyin and the input sequence, and Qpinyin

represents the pinyin vector.

3.1.2 Radical Feature

The radicals of Chinese characters are important in understanding the composition and meaning
of Chinese characters. Radicals are often presented as specific symbols or shapes that help us decipher
the pronunciation and meaning of a Chinese character. In the Chinese character system, characters
sharing the same radicals are often semantically related. For example, “ ” (ENG: flower) and “ ”
(ENG: grass) both contain the radical “ ”, which is also commonly associated with herbs. In the
medical field, many specialized clinical terminology naming entities also show consistent patterns of
radicals. For example, many disease terms carry the radical “ ” such as “ ” (ENG: rash) and “ ”
(ENG: itch). Traditional BERT models may not be able to capture subtle internal feature differences
when dealing with low-frequency or unknown words, and thus extracting radical feature vectors can be
helpful for vector bias of low-frequency or unknown words. To construct the radical vectors, we first
create the radical of each character from the corpus and count the set of all occurrences of the radical.
Then, we extract the radical of the current character and obtain the subscript of the position of the
radical in the set as a one-dimensional radical vector for that character. The process of constructing
its radical vector is as follows:

Qradical = Eradical
[
Fradical (X)

]
(2)

where X represents the input sequence, the Fradical function maps the input sequence to a sequence
of radical sequence, Eradical represents the mapping table between radical and the input sequence, and
Qradical represents the radical vector.
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3.1.3 Pos Feature

POS is the grammatical property or lexical type that words have in a sentence. It describes the
role and grammatical characteristics of a word in a sentence. In CNER, POS provides great help in
extracting named entities. In addition, medical texts also contain a large number of terms with the same
word form but different POS with very different meanings. For example, “ ” (ENG: infection), when
used as a noun, denotes a concept or state that refers to the process of a pathogen spreading into an
organism and causing an abnormal reaction. When used as a verb, it denotes an action or process
that refers to the invasion of an organism by a pathogen that causes an infection. POS helps us to
distinguish these terms and determine their roles and functions in the sentence. Therefore, extracting
POS features helps the model to understand the text more deeply. To construct the POS vector, we
first create the set of all POS, then extract the POS of each character and obtain the subscript of the
position of that POS in the set as the one-dimensional POS vector of that character. The procedure of
constructing the POS vector is as follows:

QPOS = EPOS
[
FPOS (X)

]
(3)

where X represents the input sequence, the FPOS function maps the input sequence to a sequence of POS
sequence, EPOS represents the mapping table between POS and the input sequence, and QPOS represents
the POS vector.

3.1.4 Word Boundary Feature

In general domain datasets, names of places and organizations usually have distinct word
boundaries, such as containing distinct boundary words like “ ” (ENG: province) and “ ” (ENG:
city). However, in CNER, many entities do not have distinct boundaries, such as “ ” (ENG:
rhabdomyosarcoma) and “ ” (ENG: tumor tissue). Therefore, using the word boundary feature
is crucial to addressing the issue of entity boundary ambiguity. To construct the word boundary vector,
we first divide the sequence into words to obtain the word boundary sequence. We then encode the
word boundary sequence using 3 dimensions one-hot encoding to obtain the final word boundary
vector. Table 1 illustrates an example of constructing word boundary vector. The construction process
of the word boundary vector is as follows:

Qboundary = Eboundary
[
Fboundary (X)

]
(4)

where X represents the input sequence, the Fboundary function maps the input sequence to a sequence of
word boundary sequence, Eboundary represents the mapping table between word boundary and the input
sequence, and Qboundary represents the word boundary vector.

Table 1: Example of word boundary vector construction

0 1 0 1 0 0 1
0 0 0 0 0 1 0
1 0 1 0 1 0 0
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3.1.5 Deep Context Word-Level Feature

To more accurately represent semantic information of Chinese clinical texts, we introduce BERT
[26], an unsupervised deep bi-directional language model for obtaining the deep context representation
of each word. BERT utilizes a deep bi-directional transformer encoder as its core architecture. The
transformer architecture incorporates a self-attention mechanism and employs residual concatenation
to mitigate network degradation, resulting in notable improvements in both training speed and model
expressiveness. The sequence is BERT-encoded with a word embedding representation QBERT .

We splice the five obtained features to get the final fused representation vector:

Qfus = QBERT ⊕ Qpinyin ⊕ Qradical ⊕ QPOS ⊕ Qboundary (5)

3.2 Feature Extraction Layer

In order to obtain structural and semantic information of different levels of data, we simulta-
neously extract deep semantic features from both global and local perspectives using BiLSTM and
multi-scale CNNs, respectively.

3.2.1 BiLSTM

To accurately represent the global semantic information of fusion vectors, we employ an LSTM
network for feature extraction. The LSTM structure comprises three gates: the input gate, the output
gate, and the forget gate. These gates allow the LSTM to select and utilize important information while
handling input sequences. They enable selective storage and discarding of data, efficiently addressing
the problem of gradient vanishing or exploding during the processing of lengthy text sequences.

To address the limitation of the hidden vector ht in capturing contextual information in only
one direction and learning semantic dependencies solely in a unidirectional sequence, we enhance the
traditional LSTM by incorporating a BiLSTM. This modification enables better capture of semantic
dependencies over longer distances. The BiLSTM utilizes contextual information from both forward

and backward directions, generating two distinct semantic vectors:
→
ht and

←
ht. Finally, the hidden vectors

from these two opposite directions are concatenated to obtain the complete context semantic vector

Ht =
[→

ht;
←
ht

]
.

3.2.2 Multi-Scale CNNs

Due to the large number of clinical terms in CEMR, there may be strong correlations between
neighboring characters, e.g., “ ” (ENG: stomach cancer) and “ CT” (ENG: stomach CT), the
former is a disease and the latter is an examination. To capture local features between characters,
multiple CNNs with varying kernel sizes are utilized to extract potential local contextual features
within text sequences. This approach makes up for a deficiency in the limitations of BiLSTM, which
primarily captures global features.

For multi-feature fusion sequence Q = (Q1, Q2, . . . , Qn), we perform a convolution operation
using multiple convolution kernels of different sizes. Each convolution kernel is of size k, which means
that each convolution kernel captures the local context features between k neighboring characters.
By applying multiple convolutional kernels of different sizes, we can obtain multiple sets of local
context features of different sizes. The multi-scale convolutional method enhances the model’s feature
extraction in sequence data by capturing local semantic and structural features more effectively. The
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formula for the multi-scale CNNs is as follows:

Okn
t = ReLU

(
wT · Q�t− k−1

2 � : �t+ k−1
2 � + b

)
(6)

Ot = Ok1
t + Ok2

t + · · · + Okn
t (7)

where Q�t− k−1
2 � : �t+ k−1

2 � represents the embedding from
⌊

t − k − 1
2

⌋
to

⌊
t − k + 1

2

⌋
, ReLU is the

activation function, Okn
t represents the convolutional output with convolutional kernel size k, the “+”

denotes the element summation operation, and Ot denotes the fusion feature embedding.

To improve CNER, we utilize a gate mechanism to effectively combine global and multi-scale
local context semantic feature. This gate mechanism is capable of dynamically assigning weights and
deciding how to utilize these features to label named entities. Its formula is as follows:

St = σ
(
Ws1

· Ht + Ws2
· Ot + bt

)
(8)

Gt = [St ◦ Ht] ⊕ [(1 − St) ◦ Ot] (9)

where St is used to evaluate the global and local contextual feature encoding, Ws1
, Ws2

are the trainable
matrices, bt is the bias term, Ot is the local context feature input, Ht is the global context feature input,
and Gt is the output of the corresponding gate mechanism.

3.3 Multi-Head Attention Mechanism Layer

To better capture important features and correlations in a sequence, we employ a attention
mechanism [27]. This mechanism automatically learns the distribution of attention weights at different
locations and scales to enable feature selection and generate more expressive feature representations.
The formula for the MHA is as follows:

Attention (Q, K, V) = softmax
(

QKT

dk

)
V (10)

Ei = Concat (head1, . . . , headn) W o (11)

where headi = Attention
(
QW Q

i , KW K
i , VW V

i

)
(12)

where Q, K and V denote the query, key and value matrices, respectively. dk denotes the scaling factor,
which is used to adjust the range of values for the attention weights.

After obtaining specific contextual representations from multiple heads of attention, we use feed-
forward neural networks (FNN) to better aggregate and encode features from different spaces.

The formula is as follows:

Ei = FNN (Ei) (13)

3.4 CRF Layer

To assign labels to each character based on the final output vector, we employ CRFs for prediction.
CRFs are commonly applied in tasks such as POS tagging and NER, taking advantage of their ability
to model label dependencies. CRFs calculate the probability distribution of a certain random variable
and utilize Viterbi’s technique for decoding. This algorithm takes into account the relationships
between adjacent labels to get the most effective overall label sequence.

Given an input sequence X and the corresponding hidden state sequence obtained from the model
h, the conditional probability of the output label sequence Y can be computed using the definition of
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CRF. The formula is as follows:

s (h, y) =
n∑

i=0

Ayi , yi+1
+

n∑
i=1

Pi, yi (14)

P
(y

h

)
= escore(h, y)∑

y′∈Y(h)

escore(h, y′)
(15)

where A represents the transition score matrix between two labels. Ayi , yi+1
represents the probability

of transitioning from label yi at position i to label yi+1 in the sequence. Pi, yi denotes the probability

of labeling position i as yi. P
(y

h

)
corresponds to the normalized exponential function, and Y (h)

represents all possible label sequences.

4 Experiments
4.1 Datasets

We assessed our model’s performance using two datasets: CCKS2017 and CCKS2019. The
datasets provide an impartial evaluation of our model. Here are the dataset descriptions.

CCKS20171: The dataset is a collection of CEMR released by the 2017 National Conference on
Knowledge Graph and Semantic Computing and donated by Beijing Jimu Cloud Health Technology
Co. (Beijing, China).The dataset comprises 1596 labeled samples, divided into 1198 samples for
training and 398 samples for testing. The dataset has five categories of entities: Symptom, Disease,
Check, Treatment, and Body. The statistics for each entity category are available in Table 2.

Table 2: Entity category of CCKS2017 dataset

CCKS2017 Symptom Disease Check Treatment Body

Train 7831 722 9546 1048 10,719
Test 2311 553 3143 465 3021

CCKS20192: The dataset is a CEMR dataset that Yidu Cloud Technology C released as part of
the 2019 National Conference on Knowledge Graph and Semantic Computing. The dataset consists
of 1379 labeled samples, divided into a training set of 1000 samples and a testing set of 379 samples.
The dataset contains six categories of entities: Anatomy, Disease, Exam, Medicine, Operation, and
Check. The statistics for each entity category are contained in Table 3.

Table 3: Entity category of CCKS2019 dataset

CCKS2019 Anatomy Disease Exam Medicine Operation Check

Train 1486 2116 318 456 765 222
Test 447 682 193 263 140 91

1CCKS2017: https://www.sigkg.cn/ccks2017 (accessed on 22/03/2024).
2CCKS2019: https://www.sigkg.cn/ccks2019 (accessed on 04/04/2024).

https://www.sigkg.cn/ccks2017
https://www.sigkg.cn/ccks2019
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4.2 Evaluation Metrics

We employ common evaluation measures for CNER to evaluate the model’s performance:
precision rate (P), recall rate (R), and F1-score (F1). The formulas for each evaluation metric are
as follows:

P = TP
TP + FP

(16)

R = TP
TP + FN

(17)

F1 = 2 × P × R
P + R

(18)

where TP denotes the count of entity types correctly predicted by the model, FP denotes the count of
irrelevant entities predicted by the model, and FN denotes the count of entity types not successfully
predicted by the model.

4.3 Experiment Setting

The parameter configurations utilized in this work are detailed in Table 4, encompassing a
maximum word length of 128, a batch size of 16, 25 epochs per training session, and the AdamW
optimization algorithm with a learning rate of 2e-5 and a dropout rate of 0.1.

Table 4: Experimental parameter settings

Parameter Value

Maximum sequence length 256
Batch size 16
Number of epochs 25
optimizer AdamW
Learning rate 2e-5
Dropout rate 0.1

4.4 Experiments and Analyses

4.4.1 Models Performance Comparison

This section presents a comparison between our model and other models. The results of the
comparison between our model and benchmark models are presented in Table 5. Additionally, we
compared our model with the latest models, as shown in Tables 6 and 7. The comparison models we
selected include ELMo-lattice-LSTM-CRF [28], ACNN [23], RD-CNN-CRF [5], MKRGCN [29],
MUSA-BiLSTM-CRF [24], AT-LatticeLSTM-CRF [21], FT-BERT-BiLSTM-CRF [30], ELMo-ET-
CRF [31], RGT-CRF [32].

As shown in Table 5, our model exhibits excellent performance on both the CCKS2017 and
CCKS2019 datasets compared to all benchmark models. For the CCKS2017 dataset, our model
achieves 92.00% precision, 93.55% recall, and 92.74% F1 value. On the CCKS2019 dataset, our model
achieves 89.02% precision, 86.78% recall, and 87.80% F1 value. Comparison with the benchmark
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model BERT-BiLSTM-MHA-CRF reveals a maximum F1 value difference of 3.31% and a minimum
of 2.54%. This indicates that the BERT model, after fusing multi-feature embedding and multi-
scale local contextual features, outperforms the BERT-only model in terms of feature representa-
tions, thereby validating the effectiveness of incorporating multi-feature embedding and extracting
multi-scale local contextual features. Additionally, as illustrated in Tables 6 and 7, our model also
outperforms the latest models. On the CCKS2017 dataset, our model increases the F1 value by
0.86% compared to the second-highest model and by 3.1% compared to the lowest model. On the
CCKS2019 dataset, our model increases the F1 value by 1.11% compared to the second-highest model
and by 2.78% compared to the lowest model. The excellent results shown by our model indicate that
incorporating multi-feature embedding can greatly enhance the semantic representation of entities and
make the model have better contextual representation, while using CNN to extract multi-scale local
contextual features makes up for the shortcoming of using BiLSTM alone to extract global contextual
features while ignoring local contextual features, and enhances the effectiveness of feature extraction.

Table 5: Result comparison with benchmark models

Models CCKS2017 CCKS2019
P R F1 P R F1

BiLSTM-CRF 88.12 88.70 88.41 82.31 83.39 82.85
Lattice LSTM 89.01 89.65 89.32 83.20 84.86 84.02
BERT-BiLSTM-CRF 89.33 90.76 90.04 83.24 84.93 84.08
BERT-BiLSTM-MHA-CRF 89.81 90.69 90.20 84.74 84.45 84.49
Our model 92.00 93.55 92.74 89.02 86.78 87.80

Table 6: Result comparison of CCKS2017 with latest models

Models CCKS2017

P R F1

ELMo-lattice-LSTM-CRF 90.20 90.06 90.13
ACNN 90.19 90.78 90.49
RD-CNN-CRF 90.63 92.02 91.32
AT-Lattice LSTM-CRF 88.98 90.28 89.64
FT-BERT-BiLSTM-CRF 92.06 91.15 91.60
MUSA-BiLSTM-CRF 92.67 90.97 91.81
MKRGCN – – 91.88
Our model 92.00 93.55 92.74

Table 7: Result comparison of CCKS2019 with latest models

Models CCKS2019
P R F1

ELMo-lattice-LSTM-CRF 84.69 85.35 85.02

(Continued)



2294 CMC, 2024, vol.80, no.2

Table 7 (continued)

Models CCKS2019
P R F1

ACNN 83.07 87.29 85.13
RGT-CRF 85.36 84.99 85.17
ELMo-ET-CRF 83.65 87.61 85.59
MSD-DT-NER 86.09 87.29 86.69
Our model 89.02 86.78 87.80

4.4.2 The Effect of Different Features on the Model

To investigate the impact of various features on the entity recognition performance of CEMR, we
incorporated multi-feature into the BiLSTM-CRF model and carried out experiments. The impact of
distinct characteristics on the model’s entity recognition performance is displayed in Table 8.

Table 8: The effect of different features on the model

Models CCKS2017 CCKS2019

P R F1 P R F1

Pinyin+ BiLSTM+CRF 70.22 71.05 70.63 63.11 64.56 63.83
Radical+BiLSTM+CRF 70.67 71.34 71.00 62.96 64.32 63.13
POS+BiLSTM+CRF 69.78 70.67 70.22 62.41 63.03 62.72
Word boundary+BiLSTM+CRF 68.33 69.76 69.04 63.24 62.93 63.08
Pinyin+Radical+POS+Word
boundary+BiLSTM+CRF

71.13 71.78 71.45 63.67 64.14 63.90

Based on the experimental findings presented in Table 8, incorporating the pinyin feature, radical
feature, POS feature, and word boundary feature into the BiLSTM-CRF model yielded comparable
impacts on entity recognition, with some slight distinctions remaining. Thus, these four characteristics
have a similar level of impact on the model. We combined the four feature vectors and fed them into the
BiLSTM-CRF model. The model achieved the highest precision, recall and F1 values. Consequently,
the values produced by combining many features in the model surpass the results achieved by using
any single feature alone, demonstrating the superior usefulness of using multi-feature.

4.4.3 Impact of Different Number of Heads on the Model of the MHA

The MHA is commonly utilized in tasks like NER to capture inter-sequence relationships by
employing many attention heads concurrently. The impact of the number of attention heads on model
performance has not been thoroughly investigated. We conducted tests on two datasets, CCKS2017
and CCKS2019, to investigate how the number of heads impacts model efficiency.

Fig. 2 illustrates how increasing the number of attention heads at the beginning may improve the
performance of the model. The model’s performance peaks when the number of heads is increased to
8. Increasing the number of attention heads enhances the model’s capacity to characterize complicated
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patterns and represent input sequences more effectively. Yet, as the number of heads increases
further, the performance starts to decline. Increasing the number of attention heads results in more
computational complexity, which impacts performance. We must balance performance improvement
and computational complexity while selecting the number of attention heads.

Figure 2: Impact of different head counts on CCKS2017, CCKS2019

4.4.4 Effectiveness of Multi-Scale CNNs

We performed ablation experiments on CCKS2017 and CCKS2019 datasets to assess the impact
of the multi-scale CNNs module in the proposed model. The Table 9 displays the findings from the
experiments conducted on CCKS2017 and CCKS2019 dataset. The results demonstrate that our entire
model outperforms all others, and eliminating the multi-scale CNNs results in decreased performance.
This highlights the necessity for the model to employ multi-scale local features and validates the
efficiency of multi-scale CNNs.

Table 9: Impact of convolutional neural networks on the model

Models CCKS2017 CCKS2019

P R F1 P R F1

Multi-feature+BiLSTM+MHA+CRF 90.18 94.66 92.30 85.66 87.54 86.59
Multi-feature+CNN+MHA+CRF 90.49 93.43 91.83 89.20 83.23 85.80
Our model 92.00 93.55 92.74 89.02 86.78 87.80

In addition, we used multiple combinations of convolutional kernels for comparison when
extracting context-localized features using multi-scale CNNs. Fig. 3 displays the comparison results
of several sets of convolutional kernels on CCKS2019. The precision, recall, and F1-score are highest
when using 1, 3, and 5 convolutional kernels, and decrease as the window size increases. This decrease
may be attributed to the loss of local contextual information when using larger convolutional kernels,
leading to reduced performance. Therefore, in order to extract as many local contextual features as
possible, we used convolutional kernels with three window sizes of 1, 3, and 5.
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Figure 3: Comparison results of several sets of convolutional kernels on CCKS2019

4.4.5 Separate P, R and F1 for Each Entity Category

For a comprehensive evaluation of our model, Fig. 4 illustrates the Precision, Recall, and F1 for
each entity category individually across the two datasets.

Figure 4: Precision, Recall, and F1 for each entity categories in the CCKS2017, CCKS2019
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5 Conclusion and Future Work

This study introduces a CNER model that incorporates a multi-feature fusion and multi-scale
local context enhancement approach. The model combines the features of pinyin, radical, POS, and
word boundary while also leveraging the deep contextual representation of BERT. In addition, the
fusion of multi-scale CNNs solves the limitation that the original BiLSTM can only extract global
contextual features and enhances feature extraction, thus realizing a comprehensive understanding
of the sentence information. Experimental assessments were carried out on two public datasets,
showcasing the model’s robust performance.

In future research, we will focus on exploring more effective fusion strategies and incorporating
additional information from different dimensions to further improve recognition.

Acknowledgement: None.

Funding Statement: This study was supported by the National Natural Science Foundation of China
(61911540482 and 61702324).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Meijing Li, Runqing Huang; data collection: Runqing Huang; methodology: Meijing
Li, Runqing Huang; analysis and interpretation of results: Xianxian Qi, Runqing Huang; writing—
original draft: Runqing Huang; writing—review and editing: Meijing Li, Xianxian Qi. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data contained in articles. Code no longer publicly available due
to copyright restrictions.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Dash, S. Darshana, D. K. Yadav, and V. Gupta, “A clinical named entity recognition model using

pretrained word embedding and deep neural networks,” Decis. Anal. J., vol. 10, pp. 100426, Mar. 2024.
doi: 10.1016/j.dajour.2024.100426.

[2] A. Boonstra and M. Broekhuis, “Barriers to the acceptance of electronic medical records by physicians
from systematic review to taxonomy and interventions,” BMC Health Serv. Res., vol. 10, no. 1, pp. 231,
Dec. 2010. doi: 10.1186/1472-6963-10-231.

[3] T. Wang, P. Xuan, Z. Liu, and T. Zhang, “Assistant diagnosis with Chinese electronic medical records based
on CNN and BiLSTM with phrase-level and word-level attentions,” BMC Bioinform., vol. 21, no. 1, pp.
230, Dec. 2020. doi: 10.1186/s12859-020-03554-x.

[4] J. Lei, B. Tang, X. Lu, K. Gao, M. Jiang and H. Xu, “A comprehensive study of named entity recognition
in Chinese clinical text,” J. Am. Med. Inform. Assoc., vol. 21, no. 5, pp. 808–814, Sep. 2014. doi:
10.1136/amiajnl-2013-002381.

[5] J. Qiu, Y. Zhou, Q. Wang, T. Ruan, and J. Gao, “Chinese clinical named entity recognition using residual
dilated convolutional neural network with conditional random field,” IEEE Trans. Nanobiosci., vol. 18, no.
3, pp. 306–315, Jul. 2019. doi: 10.1109/TNB.2019.2908678.

[6] Q. Wang, Y. Zhou, T. Ruan, D. Gao, Y. Xia and P. He, “Incorporating dictionaries into deep neural
networks for the Chinese clinical named entity recognition,” J. Biomed. Inform., vol. 92, pp. 103133, Apr.
2019. doi: 10.1016/j.jbi.2019.103133.

https://doi.org/10.1016/j.dajour.2024.100426
https://doi.org/10.1186/1472-6963-10-231
https://doi.org/10.1186/s12859-020-03554-x
https://doi.org/10.1136/amiajnl-2013-002381
https://doi.org/10.1109/TNB.2019.2908678
https://doi.org/10.1016/j.jbi.2019.103133


2298 CMC, 2024, vol.80, no.2

[7] P. J. Gorinski et al., “Named entity recognition for electronic health records: A comparison of rule-based
and machine learning approaches,” arXiv:1903.03985, 2019.

[8] M. Jiang et al., “A study of machine-learning-based approaches to extract clinical entities and their
assertions from discharge summaries,” J. Am. Med. Inform. Assoc., vol. 18, no. 5, pp. 601–606, Sep. 2011.
doi: 10.1136/amiajnl-2011-000163.

[9] Y. Hu et al., “Improving large language models for clinical named entity recognition via prompt engineer-
ing,” J. Am. Med. Inform. Assoc., vol. 13, pp. ocad259, Jan. 2024. doi: 10.1093/jamia/ocad259.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735.

[11] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for sequence tagging,” arXiv:1508.01991,
2015.

[12] J. Yin, S. Luo, Z. Wu, and L. Pan, “Chinese named entity recognition with character level BLSTM
and soft attention model,” J. Beijing Instit. Technol., vol. 29, no. 1, pp. 1520–1532, 2020. doi:
10.1109/TASLP.2020.2994436.

[13] Z. Tang, B. Wan, and L. Yang, “Word-character graph convolution network for Chinese named
entity recognition,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 28, pp. 1520–1532, 2020. doi:
10.1109/TASLP.2020.2994436.

[14] Z. Zhu, J. Li, Q. Zhao, and F. Akhtar, “A dictionary-guided attention network for biomedical named entity
recognition in Chinese electronic medical records,” Expert. Syst. Appl., vol. 231, pp. 120709, Nov. 2023. doi:
10.1016/j.eswa.2023.120709.

[15] M. Awad and R. Khanna, Hidden Markov Model, in Efficient Learning Machines. Berkeley, CA, USA:
Apress, pp. 81–104, 2015.

[16] J. D. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for
segmenting and labeling sequence data,” in Int. Conf. Mach. Learn., San Francisco, CA, USA, 2001, pp.
282–289.

[17] T. Wang et al., “A hybrid model based on deep convolutional network for medical named entity recogni-
tion,” J. Electr. Comput. Eng., vol. 2023, pp. 1–11, May 2023. doi: 10.1155/2023/8969144.

[18] Y. Zhang and J. Yang, “Chinese NER using lattice LSTM,” in Proc. Annu. Meet. Assoc. Comput. Linguist.,
Melbourne, Australia, 2018, pp. 1554–1564.

[19] F. Wu, J. Liu, C. Wu, Y. Huang, and X. Xie, “Neural Chinese named entity recognition via CNN-LSTM-
CRF and joint training with word segmentation,” in Proc. World Wide Web Conf., San Francisco, CA,
USA, 2019, pp. 3342–3348.

[20] K. Xue, Y. Zhou, Z. Ma, T. Ruan, H. Zhang and P. He, “Fine-tuning BERT for joint entity and relation
extraction in Chinese medical text,” in 2019 IEEE Int. Conf. Bioinform. Biomed., San Diego, CA, USA,
2019, pp. 892–897.

[21] S. Zhao, Z. Cai, H. Chen, Y. Wang, F. Liu and A. Liu, “Adversarial training based lattice LSTM for
Chinese clinical named entity recognition,” J. Biomed. Inform., vol. 99, pp. 103290, Nov. 2019. doi:
10.1016/j.jbi.2019.103290.

[22] D. Li, J. Long, J. Qu, and X. Zhang, “Chinese clinical named entity recognition with ALBERT
and MHA mechanism,” Evid. Based Complement. Alternat. Med., vol. 2022, pp. 1–9, May 2022. doi:
10.1155/2022/2056039.

[23] J. Kong, L. Zhang, M. Jiang, and T. Liu, “Incorporating multi-level CNN and attention mechanism
for Chinese clinical named entity recognition,” J. Biomed. Inform., vol. 116, pp. 103737, Apr. 2021. doi:
10.1016/j.jbi.2021.103737.

[24] Y. An, X. Xia, X. Chen, F. X. Wu, and J. Wang, “Chinese clinical named entity recognition via multi-
head self-attention based BiLSTM-CRF,” Artif. Intell. Med., vol. 127, no. C, pp. 102282, May 2022. doi:
10.1016/j.artmed.2022.102282.

[25] S. Guo, W. Yang, L. Han, X. Song, and G. Wang, “A multi-layer soft lattice based model for Chinese
clinical named entity recognition,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, pp. 201, Dec. 2022. doi:
10.1186/s12911-022-01924-4.

https://doi.org/10.1136/amiajnl-2011-000163
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TASLP.2020.2994436
https://doi.org/10.1109/TASLP.2020.2994436
https://doi.org/10.1016/j.eswa.2023.120709
https://doi.org/10.1155/2023/8969144
https://doi.org/10.1016/j.jbi.2019.103290
https://doi.org/10.1155/2022/2056039
https://doi.org/10.1016/j.jbi.2021.103737
https://doi.org/10.1016/j.artmed.2022.102282
https://doi.org/10.1186/s12911-022-01924-4


CMC, 2024, vol.80, no.2 2299

[26] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers
for language understanding,” in Conf. N. Am. Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol.,
Minneapolis, MN, USA, 2019, pp. 4171–4186.

[27] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., Long Beach,
CA, USA, 2017, pp. 6000–6010.

[28] Y. Li et al., “Chinese clinical named entity recognition in electronic medical records: Development of
a Lattice long short-term memory model with contextualized character representations,” JMIR Med.
Inform., vol. 8, no. 9, pp. e19848, Sep. 2020. doi: 10.2196/19848.

[29] Y. Xiong et al., “Leveraging multi-source knowledge for Chinese clinical named entity recognition
via relational graph convolutional network,” J. Biomed. Inform., vol. 128, pp. 104035, Apr. 2022. doi:
10.1016/j.jbi.2022.104035.

[30] X. Li, H. Zhang, and X. H. Zhou, “Chinese clinical named entity recognition with variant neu-
ral structures based on BERT methods,” J. Biomed. Inform., vol. 107, pp. 103422, Jul. 2020. doi:
10.1016/j.jbi.2020.103422.

[31] Q. Wan et al., “A self-attention based neural architecture for Chinese medical named entity recognition,”
MBE, vol. 17, no. 4, pp. 3498–3511, 2020. doi: 10.3934/mbe.2020197.

[32] J. Li, R. Liu, C. Chen, S. Zhou, X. Shang and Y. Wang, “An RG-FLAT-CRF model for named entity
recognition of Chinese electronic clinical records,” Electronics, vol. 11, no. 8, pp. 1282, Apr. 2022. doi:
10.3390/electronics11081282.

https://doi.org/10.2196/19848
https://doi.org/10.1016/j.jbi.2022.104035
https://doi.org/10.1016/j.jbi.2020.103422
https://doi.org/10.3934/mbe.2020197
https://doi.org/10.3390/electronics11081282

	Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Experiments
	5 Conclusion and Future Work
	References


