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ABSTRACT

Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer
always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the
representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for
the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way
that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-
B0 having a Spatial Attention Layer with XGBoost (ESA-XGBNet) for binary classification of mammograms. For
this, the work is trained, tested, and validated using original and augmented mammogram images of three public
datasets namely CBIS-DDSM, INbreast, and MIAS databases. Maximum classification accuracy of 97.585% (CBIS-
DDSM), 98.255% (INbreast), and 98.91% (MIAS) is obtained using the proposed ESA-XGBNet architecture as
compared with the existing models. Furthermore, the decision-making of the proposed ESA-XGBNet architecture
is visualized and validated using the Attention Guided GradCAM-based Explainable AI technique.
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1 Introduction

Breast cancer (BC) also termed as mammary cancer, is a cruel form of cancer disease significantly
affects women. BC causes breast cells to have abnormal growth and so it acquires the ability to spread
progressively to other organs. Due to this, breasts are highly affected causing higher malformation
among women [1]. This abnormal rupture of cells is done in an uncontrolled behavior. Based on
the statistical survey of GLOBOCAN, around 19 million newer cancer cases have happened in 2020.
Among these, exclusively for women, BC remains the most commonly diagnosed cancer globally. And
from the above statistical survey, it is revealed that BC is not only a major source of death in developed
countries but also it remains as a serious life-threatening health concern in developing nations [2].
There are several factors responsible for the incidence of breast cancer; some of them are age, gender,
genetic mutations, family history, hormonal factors, and lifestyle choices [3]. Digital mammograms
are obtained using mammographic procedures utilizing lower-dose X-rays as a source [4,5] used for
initial cancer screening. MRI representing Magnetic Resonance Imaging offers detailed images of
breast tissue and so exclusively useful for evaluating the extent of cancer in certain situations [6]. The
next one is the biopsy which includes the procedure of collecting a smaller sample of tissues from
the breast for examination under a microscope and this is the definitive methodology for diagnosing
breast cancer [7]. In this way, the proposed research intends to design a Computer-Aided Diagnosis
(CAD) based on earlier detection architecture of EfficientNet-B0 having a Spatial Attention Layer
with XGBoost (ESA-XGBNet) for binary classification of mammograms.

For the application areas employing medical imaging and analysis, the initial challenge is the
limited accessibility of mammogram inputs since deep learning requires a substantial amount of input
images for providing effective classification performance [8]. Subsequently, the next one concerns
feature engineering, that is, the deep learning model provides deep feature maps with some amount
of redundancy [9]. To address these issues, the research intended to design a CAD framework using
the EfficientNet-B0 model, Spatial Attention Mechanism, and XGBoost classifier. Thus, the research
contributions to solving the mammogram classification are as follows:

• Mammograms from three distinct standard databases are fed as input to the proposed CAD
framework. For these inputs, the work proposes an innovative framework that integrates the
algorithms of deep learning and machine learning, employing pre-trained architecture for
feature extrication and building a robust classifier model.

• The input mammograms are noise-removed using adaptive median filtering and contrast-
enhanced using Contrast Limited Adaptive Histogram Equalization (CLAHE). The prepro-
cessed mammograms are augmented sufficiently using appropriate data augmentation.

• The EfficientNet-B0 pre-trained model is enhanced with the spatial attention mechanism layer
for computing attention weights for each spatial location.

• Flatten the above resultant feature vectors and feed as input to the XGBoost classifier.
• Finally, experimentation will be done for the classification of mammogram inputs as benign or

malignant cases using the ESA-XGBNet framework.

The rest of the paper is organized as follows: Section 2 describes the background and literature
study, Section 3 elaborates on the materials and methods regarding pre-processing, augmentation,
and proposed transfer learning with attention mechanism (ESA-XGBNet), Section 4 describes the
experimental setup, results, performance comparison with existing works and analysis, and Section 5
concludes the research with future extension of the proposed work.
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2 Literature Review

The discussion on the previous sub-section states that breast tumors are serious life-threatening
diseases that distress the daily lives of women all around the world. This cancer type is the most
common invasive cancer among women globally, with an estimation of 2.3 million newer incidences
and 685,000 mortalities annually as per the report of the World Health Organization, 2023 [10]. Earlier
detection and accurate diagnosis are crucial for improving survival rates. The design of an AI-based
robust CAD framework is highly helpful in earlier identification and timely interpretation of this
cancer type. The CAD frameworks utilized both machine learning and deep learning techniques for
providing better solutions to the classification problem [11]. The related works corresponding to the
above classification problem are discussed further.

Several literature works utilized Artificial Neural Networks (ANN) for classification problems,
exclusively for breast cancer. Next to this, Support Vector Machines (SVM) models were popularly and
widely used for breast tumor classification. Patel et al. [12] proposed a model that integrates ANN and
hybrid optimum feature selection algorithms for breast tumor classification in the year 2021. For eval-
uation, the work utilized the Mammographic Image Analysis Society mammogram data after suitable
enhancement procedures. The paper attained a maximum of 99% accuracy in MIAS data classification.
However, the work suffered from the problem of overfitting and limited data. Kumari et al. [13]
proposed an innovative way of extracting features, Advanced Gray-Level Co-occurrence Matrix
(AGLCM) was developed for extricating features from mammogram image sets. For preprocessing,
the researchers utilized Contrast Limited Advanced Histogram Equalization (CLAHE) for enhancing
the mammogram details. Texture-based features are derived for the classification phase. For this
research work, the authors employed SVM, ANN, K-Nearest Neighbor (KNN), XGBoost, and
Random Forest (RF) models for the classification phase. Their experimentation provided maximum
classification performance for the combination of CLAHE, AGLCM, and XGBoost algorithms with
around 95% accuracy. Their research has challenges in handling redundant handcrafted features and
overfitting. The author of the work [14] introduced a newer and hybrid framework for the classification
problem. They employed two hybridized optimizations, Harris Hawks and Crow Search Optimization
with ANN and SVM algorithms. They experimented on the mammograms corresponding to the
DDSM database. For this, they achieved the results of around 97% accuracy using the above hybrid
optimization combination together with the ANN algorithm. They faced challenges in metaheuristic
hybridization and tuning of machine learning models.

In addition to the above study, the works of [15–17] experimented with the effectiveness of
radiomics feature extraction in medical images. And they revealed that a wider range of qualitative
features such as information on texture, shape, and intensity characteristics of image inputs are
acquired through radiomic feature extraction. This in turn helps in extracting valuable insights from
the applied image inputs. However, higher dimensional feature representations with more redundant
and irrelevant vectors are generated using the radiomic feature extrication [18]. This makes the above
approach as inferior as compared with the deep feature extrication using CNN models. Over the past
decades, the utilization of Convolution Neural Networks (CNN) for solving biomedical problems has
rapidly increased for medical imaging and analysis, including breast cancer classification [19]. Out of
this, the concept of transfer learning is an emerging one and is used by several researchers for their
classification problems. Exclusively, in the application of breast tumor classification, recent research
studies have reported an accuracy of around 98% using pretrained models namely Visual Geometry
Group-19, Residual Neural Network, and Densely Connected Convolutional Networks.
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In addition to the above points, transfer learning architectures foster faster training since the
architectures were already trained (pre-trained) on larger databases. And can be fine-tuned easily
for deployment of breast cancer classification tasks. This represents that the number of malignant
cases is lower than the number of benign cases for implementation. This can lead to biased model
predictions supporting only the majority classes for classification reporting to overfitting problems.
For tackling this problem, researchers have proposed several strategies, namely class-weighted loss
functions, data augmentation techniques, and attention mechanisms. In detail, rotation, flipping,
scaling, and cropping of image augmentation will increase the amount of minority class data (e.g.,
malignant class images) artificially. Thus, the data augmentation leads to the generation of newer
synthetic samples from the available inputs. This facilitates the classification model to have good
exposure to a more diversified range of input data. And reveals that the generalization ability of
the classification model is improved thereby the risk of overfitting will be reduced exclusively in the
presence of class imbalance. On the other hand, the dynamic focus on informative regions on the image
inputs will be increased through the use of attention mechanisms. For the employed problem of breast
cancer classification, the prioritizing of crucial or malignancy regions in the mammogram inputs is
done using the attention modules. This prioritization of regions is done through the assignment of
adaptive weights for different regions based on their severity presence. And thus the computation
and assignment of adaptive weights using attention mechanisms will support in overcoming the issue
of class imbalance. In this way, the approaches of data augmentation and attention mechanism will
support the research effectively for mitigating the effects of class imbalance. Thus, the proposed work
makes use of the above implementation for extensive enhancement of the overall performance of the
classification framework.

3 Materials and Methods

The paper utilized input mammograms adopted from three distinct benchmark datasets: CBIS-
DDSM (Curated Breast Imaging Subset of DDSM) [16], INbreast [17], and MIAS (Mammographic
Imaging Analysis Society) [18] datasets. The first dataset is a larger dataset (starting from 2000× 2000
resolution) used for several breast cancer research problems. The second one, INbreast contains
higher-quality mammographic information acquired and accumulated as Full-Field Digital Mammo-
graphic (FFDM) data with resolution of 3000 × 4000. The format of mammograms available in this
dataset is DICOM. The third database, MIAS, is a popular and widely used mammographic dataset
with a resolution of 1024 × 1024. In this way, the work utilized CBIS-DDSM (large and diverse),
INbreast (high-quality mammograms), and MIAS (focusses more on microcalcification) datasets for
the evaluation of the proposed work.

3.1 Pre-Processing of Digital Mammograms

To perform experimentation using digital mammograms for earlier breast cancer detection,
the mammograms are preprocessed before classification. The impulse noise in the mammograms is
removed using adaptive median filtering approaches where the noise-distorted pixels are processed
without disturbing the noise-free pixels. This filtering approach is employed to remove any noise spikes
effectively and smooth out the mammograms while preserving the crucial image features. Afterward,
the Contrast Limited Adaptive Histogram Equalization (CLAHE) approach is used for enhancing the
mammogram contrast adaptively. CLAHE adapts the conventional histogram equalization technique
but limits the contrast amplification in local regions. Herein, the parameters of tileGridSize and
clipLimit are fine-tuned as 4 × 4 and 2. The resultant sample preprocessed mammogram image taken
from the INbreast dataset using the aforementioned procedure is illustrated in Fig. 1.
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Figure 1: Mammogram preprocessing (a) original image from inbreast dataset (b) adaptive median
filtered output (c) CLAHE output

3.2 Augmentation of Mammogram Inputs

The preprocessed mammograms are partitioned and stratified with a ratio of 70:30 as training
and testing data together with a cross-validation partition of ten. The data partitioning before
augmentation ensures that the model’s generalization ability is assessed accurately. To generate
multiple amounts of mammograms with the existing images present in CBIS-DDSM, INbreast, and
MIAS databases, the research makes use of augmentation. Here, the mammograms are processed with
two operations involving six rotations with different degrees (45°, 90°, 135°, 180°, 234°, and 270°) and
possible flipping (vertical and horizontal) of mammogram images. This facilitates the classification
model to have good exposure to a more diversified range of input data. And so the generalization
ability of the classification model is improved thereby the risk of overfitting will be reduced exclusively
in the presence of class imbalance. The mammogram images present in the three original databases and
how many mammogram images are augmented on the training data are comparatively summarized in
Table 1. Here, it is revealed that the data augmentation procedure is not applied to the testing data in
order to avoid data leakage and robust evaluation.

Table 1: Mammogram augmentation on the training data of three datasets

Output
targets

CBIS-DDSM dataset INbreast dataset MIAS dataset

Original
mammo
grams

Training data Original
mammo
grams

Training data Original
mammo
grams

Training data

Before
augmen-
tation

After
augmen-
tation

Before
augmen-
tation

After
augmen-
tation

Before
augmen-
tation

After
augmen-
tation

Benign 551 386 3088 76 53 424 56 39 312
Malignant 636 445 3560 72 50 400 51 36 288

3.3 Proposed EfficientNet-B0 Integrated with Spatial Attention (ESA-XGBNet)

The research community is attempting to build several efficient CNN architectures through the
balanced enhancement in width, depth, and resolution. Following this, the EfficientNet architec-
ture provides better model performance with fewer parameters compared to conventional scaling
mechanisms.
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The architecture of the proposed ESA-XGBNet model is illustrated graphically in Fig. 2. The
architecture of the proposed ESA-XGBNet model, depicted in Fig. 2, aims to implement EfficientNet-
B0 augmented with a Spatial Attention Layer and an XGBoost model for the binary classification of
mammograms, contributing to the early detection of breast tumors. The model begins with a stem
convolution block responsible for initial mammogram processing, comprising convolution layers,
normalization, and activation functions. Subsequent blocks consist of MBConv blocks, which are
extensions of Mobile Inverted Residual Bottleneck blocks. These blocks integrate inverted residuals,
linear bottlenecks, and depthwise separable convolutions, with the latter decomposing standard
convolution operations into depthwise and pointwise convolutions to reduce computational costs.
Additionally, the architecture employs a compound scaling approach that combines scaling factors of
resolution, width, and depth in a principled manner to achieve effective and efficient model scaling.

Figure 2: Proposed ESA-XGBNet architecture for breast cancer problem

After MBConv blocks, a spatial attention layer is added to the architecture in order to take
the generated feature maps from the network. After taking this, the spatial attention mechanism
computes attention weights for each spatial location of the applied mammograms. For a feature map
F representing dimensions of H ×W ×C, the global average pooling for getting a global feature vector
(gi) is mathematically illustrated in Eq. (1).

gi = 1
H × W

∑H

h=1

∑W

w=1
Fh,w,i (1)

Now, the attention weights will be obtained by passing the above global feature vector through
a small dense layer (zi) with a sigmoid activation function (σ ). This can be written mathematically
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considering Wattn as the weight parameters of the attention layer as in Eq. (2).

zi = σ(Wattn.gi) (2)

Now, spatial attention map (Sh,w,i) is created by scaling the original feature map (Fh,w,i) with the
attention weights. This can be mathematically defined in Eq. (3).

Sh,w,i = zi.Fh,w,i (3)

Afterward, the original feature map (Fh,w,i) and the attention-enhanced feature map (Sh,w,i) are
summed for obtaining the final feature representation (Oh,w,i) as given in Eq. (4).

Oh,w,i = Fh,w,i + Sh,w,i (4)

The Softmax function, as described in Eq. (2), is utilized to determine learnable weights. This
process involves multiplying the original feature maps by these calculated attention weights, as outlined
in Eq. (3). Consequently, highly informative regions are emphasized while less informative regions are
suppressed in the preprocessed mammogram images. This operation yields attention-weighted feature
maps enriched with crucial information for breast tumor classification. Following this, as depicted in
Fig. 2, a Global Average Pooling (GAP) layer is introduced adjacent to the attention-weighted feature
map elements. This layer is responsible for reducing spatial dimensions, generating a single value per
feature map channel, thereby extracting the most relevant information for each channel. Lastly, a
flatten layer is incorporated, which takes the output of GAP as inputs for the XGBoost classification
model. Consequently, the attention-driven, flattened feature vectors serve as representations of the
applied mammogram image inputs, enhanced through the spatial attention mechanism.

3.4 XGBoost for Tumor Classification

XGBoost (Extreme Gradient Boosting) is an ensemble learning algorithm popularly used for
solving several classification tasks. The algorithm combines the predictions from multiple weak
learners (decision trees) to create stronger predictive decisions. Let Xtrain and Xtest represent the
mammogram-extracted features from EfficientNet integrated with spatial attention mechanisms. Here,
Xtrain and Xtest are the feature sets that correspond to training and testing data. Similarly, ytrain and
ytest are the output labels of the training and testing dataset. The XGBoost algorithm is an ensemble
combination of decision trees, and the sequential addition of trees will be carried out in the training
phases for reducing the residual errors. Specifically, each tree will be added with the intention of
minimizing the overall objective function, which can be mathematically represented in Eq. (5).

Objective (XGBoost) =
∑n

i=1
L

(
yi, ŷi

) +
∑k

k=1
Ω(fk) (5)

In Eq. (5), L represents the loss function, ŷi denotes the predicted label, and Ω(fk) is the
regularization term for each tree. Here, ŷi can be mathematically given in Eq. (6).

ŷi =
∑k

k=1
fk(xi) (6)

In Eq. (6), the term fk(xi) represents the kth tree prediction for the ith sample. As given in Eq. (5),
the objective function supports the training phase for minimizing errors and controlling the model
complexity. The outline of the algorithm for mammogram classification using the proposed ESA-
XGBoost architecture is given below.
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Algorithm 1: Algorithm of the proposed ESA-XGBNet for mammogram classification
Step 1: Loading and Preprocessing of Mammograms

• Loading mammogram images with labels from CBIS-DDSM, INBreast, and MIAS datasets.
• Preprocessing of mammogram images including data augmentation.

Step 2: Dataset Partitioning
• Partition of preprocessed mammogram data into training and testing sets.

Step 3: Loading of pretrained transfer learning model
• Load an EfficientNet-B0 architecture with weights pretrained on the larger Image

Net database.
Step 4: Inclusion of Spatial Attention Layer

• Adding of spatial attention layer after the last layer of the EfficientNet-B0 architecture.
• Applying global average pooling for getting a global feature vector as given below

gi = 1
H × W

∑H

h=1

∑W

w=1 Fh,w,i (Eq. (1))

• Now, the attention weights will be obtained by passing the above global feature vector
through a small dense layer (zi) with a sigmoid activation function as depicted below.
zi = σ(Wattn.gi) (Eq. (2))

• Creation of a spatial attention map (Sh,w,i) by scaling the original feature map (Fh,w,i) with the
attention weights as depicted below. Sh,w,i = zi.Fh,w,i (Eq. (3))

Step 5: Combining Original and Attention-Enhanced Features
• Summing of the original feature map (Fh,w,i) and the attention-enhanced feature map (Sh,w,i).
• Obtaining the final feature representation (Oh,w,i) as depicted below. Oh,w,i = Fh,w,i+Sh,w,i (Eq. (4))

Step 6: Flatten the feature vectors for XGBoost inputs.
Step 7: Training of XGBoost Algorithm as illustrated in Eqs. (5) and (6).
Step 8: Make predictions using the test data
Step 9: Evaluation and Performance Analysis
Step 10: Interpretability using Explainable Artificial Intelligence (XAI)

4 Experimental Results and Discussion

The experimentation and its outcomes attained using the proposed ESA-XGBNet architecture
evaluated with three distinct standard mammographic databases will be discussed in this section.
The proposed CAD framework is evaluated using the mammograms of CBIS-DDSM, INbreast, and
MIAS datasets after preprocessing. The mammographic images after CLAHE-processed is partitioned
and stratified with a ratio of 70:30 as training and testing data together with a cross-validation
partition of ten. The data partitioning before augmentation ensures that the model’s generalization
ability is assessed accurately. Thus, the testing set should remain unchanged to accurately reflect
real-world scenarios where the model encounters new, unaltered data. The adopted EfficientNet-B0
architecture takes the input mammograms of size 224 × 224. The weights that are trained using the
ImageNet database are passed to the model for further learning on input mammograms to capture
deep features. And the architecture includes the fine-tuning of hyperparameters with a batch size of
32, a learning rate of 0.004 with ten epochs, loss function as binary cross-entropy, and the stochastic
gradient descent as optimizer. For the XGBoost algorithm, the number of estimators is fine-tuned
as 100, and the maximum depth as 3. The ten-fold cross-validated results are obtained for the
experimentation. Performance metrics such as Specificity (Spc), Sensitivity (Sen), Accuracy (Acc), F1
score, Precision (Prc) [19–21], and Kappa [5] are employed for comparative analysis. An ablation study
refers to a systematic experimental investigation used for understanding the individual contributions
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of different modules toward the overall performance. Six ablation tests are conducted initially to
validate the effectiveness of the proposed CAD model, examining the impact of EfficientNet-B0
architecture, spatial attention mechanism, Decision Tree algorithm, and XGBoost model on the binary
classification problem. The outcomes of these ablation tests for mammograms from the CBIS-DDSM
database are summarized in Table 2. Herein, Test_1 indicates that the mammogram classification
is performed only using the existing EfficientNet-B0 model, Test_2 and Test_3 denote that the
mammogram classification is performed using the Decision Tree (DT) and XGBoost (XGB) algorithm
applied with the features extracted using the EfficientNet-B0 model respectively. Test_4 indicates that
the mammogram classification is performed using the EfficientNet-B0 architecture integrated with
the Spatial Attention mechanism. Test_5 and Test_6 indicate that the mammogram classification
is done using the combination of EfficientNet-B0+Spatial Attention extracted features with DT
and XGB algorithms, respectively. From this experimentation, it is revealed that the mammogram
classification using the XGBoost algorithm applied with the extracted features of the EfficientNet-
B0+Spatial Attention mechanism contributes more towards the improvement of overall classification
performance.

Table 2: Ablation study to validate the effect of the modules used in the proposed framework with
CBIS-DDSM database

Modules Test_1 Test_2 Test_3 Test_4 Test_5 Test_6

EfficientNet-B0 model � � � � � �
Spatial attention mechanism � � �
Decision tree algorithm � �
XGBoost algorithm � �
Accuracy (%) 83.614 86.493 87.265 88.493 94.110 97.585

The comparative analysis of the proposed architecture involves experimenting with various
models using the EfficientNet-B0 backbone and different classifiers. Initially, a simple EfficientNet-
B0 model is used for end-to-end classification. Then, the EfficientNet-B0 model is employed for
feature extraction, followed by classification using Naïve Bayes (NB), K-Nearest Neighbor (KNN),
Support Vector Machines (SVM), and Decision Tree (DT) classifiers. The experimentation proceeds
by integrating the EfficientNet-B0 model with the Spatial Attention (ESA) mechanism, resulting in
architectures such as ESA-NB, ESA-KNN, ESA-SVM, ESA-DT, and ESA-XGBNet models. The
confusion matrix demonstrating the test results obtained for ESA-XGBNet using three mammogram
datasets is illustrated in Fig. 3.

Tables 3–5 present the performance of various CNN architectures and the proposed ESA-
XGBNet model applied to mammograms from CBIS-DDSM, INbreast, and MIAS databases.
EfficientNet-B0 demonstrates competent classification performance, with accuracies ranging from
83.614% to 87.227% and average precision and F1 scores around 84.5% and 85.6%. Incorporating
deep features from EfficientNet-B0 into different machine learning models improves classification
results significantly. Support Vector Machines (SVM) yield robust accuracies ranging from 86.317%
to 90.732%, with precision and F1 scores in the 87–90% range, owing to their effectiveness in capturing
complex relationships among feature vectors. Decision Trees (DT) and XGBoost classifiers also
demonstrate enhanced performance, with accuracies ranging from 86.493% to 93.069% for XGBoost.
XGBoost particularly excels due to its ensemble learning, distributed computing, and combining
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multiple weak-learner predictions, resulting in improved sensitivity, specificity, precision, and F1
score compared to other models.

Figure 3: Confusion matrix test results obtained for ESA-XGBNet using three mammogram datasets
(a) CBIS-DDSM (b) INbreast (c) MIAS datasets

Table 3: Classification performance of the proposed ESA-XGBNet for CBIS-DDSM database

CNN architectures Sen (%) Spc (%) Acc (%) Prc (%) F1 score (%)

EfficientNet-B0 84.91 82.12 83.614 84.57 84.74
EfficientNet-B0-NB 84.97 84.47 84.737 86.33 85.64
EfficientNet-B0-KNN 85.23 85.07 85.159 86.83 86.02
EfficientNet-B0-SVM 86.67 85.90 86.317 87.65 87.16
EfficientNet-B0-DT 86.81 86.13 86.493 87.84 87.32

(Continued)
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Table 3 (continued)

CNN architectures Sen (%) Spc (%) Acc (%) Prc (%) F1 score (%)

EfficientNet-B0-XGB 87.53 86.96 87.265 88.57 88.05
EfficientNet with spatial
attention mechanism (ESA)

88.77 88.17 88.493 89.65 89.21

ESA-NB 89.03 88.93 88.985 90.28 89.65
ESA-KNN 91.19 90.29 90.775 91.55 91.37
ESA-SVM 92.64 92.33 92.495 93.31 92.97
ESA-DT 94.01 94.22 94.110 94.95 94.48
ESA-XGBNet 97.03 98.21 97.585 98.44 97.73

Table 4: Classification performance of the proposed ESA-XGBNet for INbreast database

CNN architectures Sen (%) Spc (%) Acc (%) Prc (%) F1 score (%)

EfficientNet-B0 85.07 85.53 85.304 84.78 84.92
EfficientNet-B0-NB 86.81 86.62 86.712 86.01 86.41
EfficientNet-B0-KNN 87.38 87.72 87.556 87.08 87.23
EfficientNet-B0-SVM 88.54 89.36 88.964 88.75 88.64
EfficientNet-B0-DT 89.70 90.46 90.090 89.91 89.80
EfficientNet-B0-XGB 90.86 91.56 91.216 91.07 90.96
EfficientNet with spatial
attention mechanism (ESA)

92.59 92.65 92.624 92.27 92.43

ESA-NB 93.17 93.75 93.468 93.39 93.28
ESA-KNN 94.33 94.85 94.595 94.55 94.44
ESA-SVM 95.49 95.94 95.721 95.71 95.60
ESA-DT 96.64 97.04 96.847 96.87 96.76
ESA-XGBNet 97.80 98.68 98.255 98.60 98.21

Table 5: Classification performance of the proposed ESA-XGBNet for MIAS database

CNN architectures Sen (%) Spc (%) Acc (%) Prc (%) F1 score (%)

EfficientNet-B0 89.87 84.82 87.227 84.36 87.03
EfficientNet-B0-NB 90.69 86.31 88.396 85.78 88.17
EfficientNet-B0-KNN 91.50 87.80 89.564 87.23 89.31
EfficientNet-B0-SVM 92.32 89.29 90.732 88.70 90.47
EfficientNet-B0-DT 93.14 90.77 91.900 90.19 91.64
EfficientNet-B0-XGB 93.95 92.26 93.069 91.71 92.82
EfficientNet with spatial
attention mechanism (ESA)

94.77 93.75 94.237 93.25 94.00

(Continued)
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Table 5 (continued)

CNN architectures Sen (%) Spc (%) Acc (%) Prc (%) F1 score (%)

ESA-NB 95.59 95.24 95.405 94.81 95.20
ESA-KNN 96.41 95.98 96.184 95.62 96.01
ESA-SVM 97.22 96.73 96.963 96.43 96.80
ESA-DT 98.04 97.47 97.741 97.24 97.66
ESA-XGBNet 98.86 98.93 98.910 98.86 98.79

As illustrated in Fig. 2, the further direction of research is the inclusion of a spatial attention
mechanism to the aforementioned experimental setup to enhance the breast tumor classification. Thus,
the performance of the EfficientNet-B0 with Spatial Attention Mechanism (ESA) model is found to be
more competent than the standalone architecture as given in Tables 3–5. In this way, the classification
accuracies of 88.493% (CBIS-DDSM), 92.624% (INbreast), and 94.237% (MIAS) are obtained for
breast tumor classification. The supreme classification performance of accuracies −97.585% (CBIS-
DDSM), 98.255% (INbreast), and 98.91% (MIAS), precision scores −98.44% (CBIS-DDSM), 98.60%
(INbreast), and 98.86% (MIAS), and F1 scores of 97.73% (CBIS-DDSM), 98.21% (INbreast), and
98.79% (MIAS), respectively. All the above-attained results are further validated using the Statistical
Kappa (κ) validation. The overall performance comparison and validation of attained results of the
proposed ESA-XGBNet model are graphically illustrated in Fig. 4. From this graphical comparison, it
is evident that the proposed ESA-XGBNet architecture outperforms others with the kappa validation
of 0.952 (CBIS-DDSM), 0.965 (INbreast), and 0.978 (MIAS), respectively.

Figure 4: Performance comparison and validation of attained results–ESA-XGBNet

Even though a classification model discriminates well in identifying abnormalities, it provides a
trade-off between sensitivity and specificity values Fig. 5 illustrates a plot between True Positive Rate
(TPR) and False Positive Rate (FPR) for the employed classification architectures applied with three
datasets. Thus, the plot of Fig. 5 illustrates how well a classification model discriminated between



CMC, 2024, vol.80, no.3 5041

benign and malignant cases. Accordingly, a robust classification model will have a curve that rises
steeply toward the top-right corner of the plot. In Fig. 5, the markers in each performance curve refer
to the twelve employed CNN models as listed in the order of Tables 3–5 for three datasets. Accordingly,
the performance curve of the proposed ESA-XGBNet steps towards the top-right for all the employed
databases.

Figure 5: TPR vs. FPR plot for the proposed models applied for three datasets

Grad-CAM is a common procedure to visualize where a convolutional neural network architec-
ture is looking for target prediction Sample mammogram (INbreast and CBIS-DDSM) visualization
are given in Fig. 6 which interprets where our proposed model focused for its target prediction.
Here, sample benign and malignant labeled mammograms (Fig. 6a1,a2) from the INbreast and CBIS-
DDSM databases are taken. The superimposed visualizations (Fig. 6b1,b2) and their corresponding
heat maps (Fig. 6c1,c2) are generated with the correct prediction labels of Benign and Malignant.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 6: (a1) Preprocessed mammogram (INbreast) with a label of Benign (b1) respective super-
imposed visualization (c1) attention guided Grad-CAM heat maps with the correct prediction of
benign label (a2) preprocessed mammogram (CBIS-DDSM) with a label of malignant (b2) respective
superimposed visualization (c2) attention guided grad-CAM heat maps with the correct prediction of
malignant label
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As a final point of research, the comparison of existing and recent works against the proposed
ESA-XGBNet architecture is summarized in Table 6. Herein, the research works were applied with
diversified and different mammogram databases. And the robust classification performance of breast
tumors is obtained apparently using the proposed CAD framework as depicted in Fig. 2. However,
the work has the potential limitation of added complexity due to the inclusion of a spatial attention
layer with EfficientNet-B0 architecture and this will be taken care in our future extension.

Table 6: Performance comparison with the recent works

Literature works Mammogram data Classification accuracies

Falconi et al. [19] INbreast 90.9%
Ragab et al. [20] DDSM 79%

CBIS-DDSM 87.2%
Baccouche et al. [21] CBIS-DDSM 85.38%

Private Dataset 96.08%
Muduli et al. [22] MIAS 96.55%

DDSM 90.68 %
INbreast 91.28%

Surendiran et al. [23] DDSM 93.3%
Li et al. [24] DDSM 94.7%
Yang et al. [25] MIAS 95.3%

INbreast 96.52%
DDSM 91.2%

Proposed ESA-XGBNet CBIS-DDSM 97.585%
INberast 98.255%
MIAS 98.910%

5 Conclusion and Future Direction

The research intended to propose a robust early-detection CAD framework for a worldwide
societal disease, breast cancer. The input considers diversified mammogram images adopted from three
distinct datasets: CBIS-DDSM, INbreast, and MIAS databases. The methodology involves substantial
experimentation beginning with the choice of dataset and ending with a detailed performance
analysis. Initially, the research preprocessed the input mammograms for their better representation
in balancing contrast and exposure. After noise removal using an adaptive median filter and mam-
mogram enhancement using the Contrast Limited Adaptive Histogram Equalization approach, the
preprocessed mammogram images are then fed into the EfficientNet-B0 architecture. Here, several
experiments have been conducted with the intention of obtaining robust performance for breast
tumor classification. In addition to this, five machine learning models namely Naïve Bayes, K-Nearest
Neighbor, Support Vector Machines, Decision Trees, and XGBoost algorithms are adopted exclusively
for the classification stage. With the aim of improving the classification performance, a spatial
attention layer is included in the EfficienNet-Bo model and so the weighted attention deep feature
vectors are derived for ML-based classification. In this way, the robust classification performance
of 97.585% (CBIS-DDSM), 98.255% (INbreast), and 98.910% (MIAS) accuracy scores are obtained
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using the proposed ESA-XGBNet architecture as compared with the existing models. Furthermore,
the decision-making of the proposed ESA-XGBNet architecture is interpreted and validated using
the kappa metric and Attention Guided GradCAM-based Explainable AI technique. The future
direction of the proposed architecture will include the segmentation of tumors and utilizing breast
ultrasound (BUS) clinical imageries with U-Net-based models to improve the robustness of breast
cancer diagnosis. The preprocessing steps that we employed in our study have necessitated the exclusion
of images that did not meet the required standards such as image quality, and annotations. In addition,
demanding high computational requirements of training deep learning models, the study opted for a
subset of the dataset that allowed us to conduct thorough experiments within a reasonable timeframe
and resource allocation. This subset was sufficient to demonstrate the effectiveness of our proposed
model. Furthermore, while the initial number of images was 1187 (CBIS-DDSM dataset), data
augmentation significantly increased the effective size of our training set. This augmentation provided
the model with diverse examples, enhancing its generalization capabilities without compromising
the integrity of the test set. However, an extensive experimentation will be carried out using all the
images of CBIS-DDSM dataset. And investigating the complexity of the proposed work with different
attention mechanisms applied for distinct medical problems.
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