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ABSTRACT

In the era of the Internet of Things (IoT), the proliferation of connected devices has raised security concerns,
increasing the risk of intrusions into diverse systems. Despite the convenience and efficiency offered by IoT technol-
ogy, the growing number of IoT devices escalates the likelihood of attacks, emphasizing the need for robust security
tools to automatically detect and explain threats. This paper introduces a deep learning methodology for detecting
and classifying distributed denial of service (DDoS) attacks, addressing a significant security concern within IoT
environments. An effective procedure of deep transfer learning is applied to utilize deep learning backbones,
which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.
By leveraging several deep architectures, the study conducts thorough binary and multiclass experiments, each
varying in the complexity of classifying attack types and demonstrating real-world scenarios. Additionally, this
study employs an explainable artificial intelligence (XAI) AI technique to elucidate the contribution of extracted
features in the process of attack detection. The experimental results demonstrate the effectiveness of the proposed
method, achieving a recall of 99.39% by the XAI bidirectional long short-term memory (XAI-BiLSTM) model.

KEYWORDS

DDoS attack classification; deep learning; explainable AI; cybersecurity

1 Introduction

The advent of the Internet of Things (IoT) has heightened cybersecurity research by integrating
numerous devices into networks to deliver complicated services. By 2025, it is estimated that there
will be 75 billion smart devices, which will transform everyday life [1]. The transportation, healthcare,
manufacturing, and agriculture industries, among others, are becoming increasingly dependent on
IoT technology [2]. This technology is rapidly expanding and connecting a wide range of products,
from businesses and residences to transportation. It is reshaping daily duties and how people conduct
their personal and professional activities, potentially decreasing the demand for human labor while
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increasing the intelligence of our daily lives [3]. However, the rapid expansion of IoT devices poses
substantial security issues due to their interconnected nature, sensors, and massive data creation. Also,
they are numerous, diverse, need little computational power, and typically operate at the periphery of
computer networks. These devices frequently have fundamental vulnerabilities because of their limited
computational capability, affordable design, and lack of regular security upgrades [4,5]. As a result,
consumers are more vulnerable to cyberattacks. Different manufacturers’ security requirements can
lead to new types of attacks on IoT systems, despite numerous security measures in place. Connecting
IoT devices to an unprotected network exposes them to a variety of threats, even if they are otherwise
safe. Therefore, it must preserve user privacy while combating cyberattacks such as distributed denial
of service (DDoS), which change over time and pose new risks on a daily basis. The complexity of
the number of [oT devices and networks allows attackers to transform basic devices into destructive
botnets to launch potentially damaging attacks [6]. Traditional cybersecurity techniques frequently
focus on protecting against local attacks or breaches inside a limited network environment. Yet, the
environment of IoT offers a new level of complexity.

IoT attacks present new challenges that surpass the capabilities of traditional security measures.
These attacks can vary from minor invasions of privacy to complex, systematic attacks on intercon-
nected networks [7]. IoT system attacks are more widespread and severe than local transmission
attacks, which are limited to nodes near a small domain, causing significant damage [8,9]. The
crucial necessity to secure user privacy and prevent more sophisticated assaults drives the urgency
of addressing IoT security challenges. Unlike isolated breaches, IoT assaults may have far-reaching
implications, affecting not only individual users but whole networks and infrastructures. As a result,
the focus should be on developing robust security procedures tailored to the intricate nature of IoT
systems, necessitating advanced detection techniques. Deep learning (DL) models are particularly
well-suited for identifying subtle attack patterns in network traffic. To address concerns about the
opaque nature of artificial intelligence (Al), explainable Al (XAI) techniques can be employed [10],
improving transparency and interpretability. By integrating deep learning models with explainable
Al transparent DDoS detection systems can be developed to mitigate risks and facilitate informed
decision-making and response actions. Such an approach fosters trust among stakeholders and
enhances DDoS detection in dynamic and complex environments, where the impact of these attacks
can be most severe.

This study aims to introduce a framework for identifying incoming DDoS attacks through deep
learning models with an effective transfer learning mechanism that relies on the interpretations of
attack features. We evaluate two datasets sourced predominantly from the IoT network, featuring
diverse network flows. Additionally, the study seeks to elucidate the generated predictions by analyzing
the data features’ contribution to the decision-making process using XAl techniques. The main
contribution of this study is three-fold:

- A DDoS detection framework is introduced to identify DDoS attacks in IoT environments
automatically. The proposed deep learning model formulates generic discriminating descrip-
tors of network data with various pre-trained deep backbones to scrutinize and classify
potential threats in network traffic.

- Local interpretable model-agnostic explanations are provided to explain the decision-making
process of deep learning models with effective model fine-tuning, which increases the trans-
parency and reliability of the detection process.

- In addition to accuracy measurements, the performance of the DDoS detector is evaluated in
terms of time complexity, which is done by rigorously conducted experiments demonstrating
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a range of potential threat scenarios, i.e., binary network flows, detection of 8 attacks, and
detection of 34 attacks.

The rest of this paper is organized as follows: Section 2 reviews the prior work; the methodology
of the DDoS detection system is presented in Section 3; Section 4 discusses the experimental results;
and Section 5 concludes this paper.

2 Related Work

This section presents recent research work dedicated to detecting DDoS attacks in IoT networks
and explaining DDoS features utilizing XAl techniques.

2.1 DDoS in IoT Networks

In recent years, researchers have dedicated substantial efforts to examining attacks within IoT
networks, utilizing traditional statistical methods and machine learning algorithms to differentiate
between normal activity and malicious behavior. Various machine learning and DL models were
utilized to consider diverse features of DDoS flows using the Canadian Institute for Cybersecurity
10T (CICIoT2023) dataset [1 1], leading to varying results due to the utilization of different techniques.
Abbas et al. [3] presented a unique technique for detecting large IoT device threats via federated
learning, which employs a deep neural network for accurate classification. Sharmin et al. [1 2] examined
reconnaissance assaults on IoT devices utilizing time-based features and flag qualities and employed
Bayesian optimization to pick a representative sample for the best flow duration range.

Wang et al. [13] proposed a hybrid intrusion detection model that combines deep neural network
(DNN) and bidirectional long short-term memory (BiLSTM) to develop a lightweight [oT intrusion
identification system. The model reduces feature dimensionality, extracts nonlinear and bidirectional
long-range features, and dynamically quantifies its unit structure. Khan et al. [14] investigated the
utilization of supervised machine learning algorithms to identify abnormal behavior by applying
the synthetic minority over-sampling technique (SMOTE). The outcomes revealed that Random
Forest is the most efficient model in comparison to prior works. Additionally, the authors found
that removing highly correlated features improves performance but reduces computational response
time. Yaras et al. [15] developed a hybrid deep learning algorithm using convolutional neural network
(CNN) and long short-term memory (LSTM) models to detect DDoS attacks. The proposed model
was tested on the CICIoT2023 and telemetry of network_IoT (ToN_IoT) [16]. Table 1 provides a
summary of the previous research conducted on the CICIoT2023 dataset.

Table 1: A summary of the previous research on CICIoT2023

Ref. Technique Task Recall (%)

[3] Federated learning with DNN 2-classes 99.00

[12] Multiclass model 8-classes 88.00
34-classes 70.00

[13] DL-BiLSTM 8-classes 93.13

(Continued)
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Table 1 (continued)

Ref. Technique Task Recall (%)

[14] Random Forest (RF) 2-classes 99.49
8-classes 95.52
34-classes 96.54

[15] Hybrid deep learning 2-classes 99.99
9-classes 99.96

2.2 DDoS Explanation

Previous studies have employed various XAl techniques to elucidate DDoS attacks, with the
goal of enhancing the understanding of attack patterns, behaviors, and detection mechanisms.
Gyamfi et al. [17] utilized low-cost IoT sensors for effective intrusion detection, using a network
of cameras to record location information. They performed compatibility checks between datasets
and features, integrating them to create a new loT dataset using an explainable AI technique.
Hasan et al. [18] developed an explainable ensemble DL based intrusion detection system (IDS)
framework that improves the transparency and robustness of DL-based IDSs in IoT networks.
The framework’s efficacy was evaluated using the ToN_IoT dataset and extreme learning machines
model. Bashaiwth et al. [19] studied the LSTM predictions on CIC datasets using local interpretable
model-agnostic explanations (LIME) [20], shapley additive explanations (SHAP), Anchor, and local
rule-based explanations (LORE) techniques. They conducted binary and multiclass classifications.
The binary classification demonstrated high performance across all three datasets, whereas the
multiclass classification showed good performance only for the first two versions. However, the LSTM
model struggled to differentiate between certain attacks, resulting in poor classification performance.
Hassan et al. [21] utilized machine learning techniques to detect malicious traffic data in vehicle ad hoc
networks (VANETS) and proposed an IDS capable of identifying threats from 14 types of malicious
attacks. Wei et al. [22] proposed a framework for detecting normal and malicious DDoS attack traffic,
utilizing Kernel SHAP to understand the multilayer perceptron (MLP) classifier prediction results.
Tabassun et al. [23] used XAI techniques such as SHAP, LIME, and explain like I'm 5 (ELIY) to
classify DDoS attacks in IoT networks using machine learning and deep learning models. The results
reveal that SHAP offers both local and global explanations, LIME provides local explanations, and
ELI5 highlights important features. Antwarg et al. [24] employed Kenal SHAP to explain anomalies
in the knowledge discovery in databases (KDD) dataset using autoencoder’s unsupervised model.
The approach explained the influence of low and high reconstruction error characteristics, proving
its resilience in comparison to existing LIME explanation methods.

Senevirathna et al. [25] proposed a new framework for scaffolding attacks in security contexts,
combining XAI outputs with domain knowledge to identify target features. The approach identifies
essential aspects an attacker would conceal while building a model and presents an effective attack
detection method. The authors utilized various models including MLP, support vector machine
(SVM), RF, LSTM, gaussian naive bayes (GNB), and k-nearest neighbour (KNN), with MLP
achieving an F1-score of 99.40. Arreche et al. [26] developed a framework for evaluating black-box
XALI algorithms for network intrusion detection. The framework evaluates global and local scopes,
examining six metrics for SHAP and LIME, including network security and Al. It is being tested
with three datasets and seven Al algorithms adaptive (ADA), LSTM, DNN, light gradient boosting
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machine (LGBM), MLP, RF, and KNN, serving as a baseline for network security. The authors
achieved a recall score of 99.98 using the KNN model. Do et al. [27] utilized XAI algorithms such
as LIME, SHAP, gradient-weighted class activation mapping (Grad-CAM), and guided backprop-
agation (GBP) to analyze network traffic patterns, distinguishing between malicious and benign
connections. The authors empirically found that XAI algorithms like SHAP and LIME can identify
complex correlations between characteristics and anomalies, enabling precise identification of benign
traffic. The authors used different models such as RF and CNN and achieved a recall score equal to
99.90. Table 2 summarizes previous research that utilized explainable Al techniques to explain DDoS
attacks.

Table 2: A summary of previous research utilized XAl to explain DDoS attacks

Ref. Model Explainable-Al Dataset

[17] XGBoost TreeSHAP IoTID20

[18] CNN SHAP, LIME ToN_IoT

[19] LSTM LIME, SHAP, Anchor, and LORE CICDDoS2017/2018/2019

[21] RF SHAP, LIME IIoT

[22 MLP Kernel SHAP CICDDo0S2019

[23] Decision tree SHAP, ELIS, and LIME Artificial dataset

[24] Autoencoder Kenal SHAP NSL-KDD

[25] MLP SHAP SGNIDD, NLS-KDD

[26] KNN SHAP, LIME RoEduNetSIMARGL2021
CICIDS-2017, NSL-KDD

[27] RF LIME, SHAP, Grad-CAM, and GBP MQTTset, CICIDS-2017

However, there is still a demand for handling the impact and utilization of any explained features
in the training procedure, providing effective feedback for the training engine, i.e., linear regression
in our study. We demonstrate in this work how several deep architectures can interpret and explain
the extracted features from network traffic and update the weights accordingly. Additionally, the time
complexity of model training is calculated and discussed—usually neglected in the existing approaches.
We have also performed more evaluation experiments on a new dataset that has been released recently
with diverse traffic data, including unknown attacks, demonstrating real-world scenarios.

3 Methodology
3.1 DDoS Evaluation Datasets

This paper examines DoS/DDoS attacks using the recent intrusion data for DDoS detection
systems, primarily based on the CICIoT2023 [11] and CICDDOS2019 [28] datasets, chosen due to

their diverse range of DDoS network flows, demonstrating real-world scenarios and posing significant
detection challenges.

3.1.1 CICIoT2023 Dataset

The CICIoT2023 dataset [1 1] is a comprehensive IoT attack dataset that was released to advance
the development of security analytics applications within real IoT environments. It includes 33 distinct
attacks across seven categories, including DDoS, DoS, Recon, Web-based, Brute Force, Spoofing, and
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Mirai, executed within an IoT network consisting of 105 devices. DDoS includes acknowledgment
(ACK) fragmentation, User Datagram Protocol (UDP) flood, SlowLoris, internet control message
protocol (ICMP) flood, reset finish (RSTFIN) flood, PSH acknowledgment (PSHACK) flood,
hypertext transfer protocol (HTTP) flood, UDP fragmentation, transmission control protocol (TCP)
flood, synchronize (SYN) flood, and SynonymousIP flood. DoS includes TCP flood, HTTP flood,
SYN flood, and UDP flood. Brute Force includes Dictionary brute force, Spoofing includes address
resolution protocol (ARP) spoofing and domain name system (DNS) spoofing. Recon includes
Ping sweep, operating system (OS) scan, Vulnerability scan, Port scan, and Host discovery. Web-
based includes structured query language (SQL) injection, Command injection, Backdoor malware,
Uploading attacks, cross-site scripting (XSS), and Browser hijacking. Mirai includes generic routing
encapsulation internet protocol (GRE-IP) flood, Greeth flood, and UDPPlain.

The CICIoT2023 experiment investigates the utilization of IoT devices in smart home environ-
ments, with 105 devices participating in the attacks. The topology is separated into two components:
a router that connects the network to the Internet with a Windows 10 desktop computer, and a
Cisco switch that connects seven Raspberry Pi devices. These devices carry out assaults and criminal
behaviors, exhibiting a unique feature of CICI0T2023. The Cisco switch is linked to the second
component via a Gigamon Network Tap, which captures all [oT traffic and routes it to two network
monitors. These monitors use Wireshark to store traffic, allowing for full-duplex, non-intrusive, and
passive access to network traffic without interfering with routine operations. The device includes
two networks and two monitoring ports, with one connected to attackers and the other to victims’
networks. A network tap and two traffic monitors are used to monitor network traffic, with each
packet saved on different computers. Wireshark monitors network activity, which is saved in pcap
format. Mergecap combines pcap files for each experiment. Each assault is unique on all relevant
devices, targeting rogue IoT devices in all circumstances. This technique helps assess potential risks
and vulnerabilities in IoT systems. Tables 3 and 4 present data statistics for binary classification and
eight-class classification tasks, respectively. Fig. | also depicts the data statistics for 34-classes in the
multiclassification experiment.

Table 3: The data statistics for the binary classification task

Class Training Validation Testing
Attack 3,487,879 387,542 968,856
Benign 84,021 9336 23,339

Table 4: The data statistics for the (8-classes) classification task

Class Training Validation Testing
DDoS 2,601,180 289,020 722,550
DoS 618,159 68,685 171,711
Mirai 201,316 22,368 55,921
Benign 84,021 9336 23,339
Spoofing 37,356 4151 10,377

(Continued)
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Table 4 (continued)

Class Training Validation Testing
Recon 27,026 3003 7508
Web 1867 207 518
Brute force 975 108 271
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Figure 1: The data statistics for the (34-classes) classification task

3.1.2 CICDDoS2019

The CICDDoS2019 dataset [28] was proposed by the Canadian Institute of Cybersecurity as
a new version of CICDDo0S2017 and CICDDoS2018. The dataset was created using the B-Profile
technology, which profiles abstract human interactions and generates real benign background traffic.
It incorporates 25 users’ abstract behavior based on HTTP, HTTPS, FTP, SSH, and email protocols
to provide realistic background traffic. This dataset consists of benign and DDoS network flows that
match real-world data. It contains several current DDoS reflection attacks, including such as Port
Map, lightweight directory access protocol (LDAP), network basic input/output system (NetBIOS),
UDP, Microsoft SQL server (MSSQL), UDP-Lag, SYN, DNS, network time protocol (NTP), simple
network management protocol (SNMP) and more, making it an excellent choice for accurately
reflecting the current environment, as many outdated datasets are no longer functional. Table 5 shows
the statistics of the CICDDo0S2019 dataset.

3.2 The Generic Framework of DDoS Detection

This paper proposes a new systematic framework for DDoS detection to classify the network
flows based on the purpose of its occurrence, whether it is a natural induction or a malicious attack,
this framework consists of five stages: data preparation, feature engineering, data split, deep learning
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models, and LIME explanation. Fig. 2 displays the major phases adopted in the proposed DDoS
detection framework, which are detailed in the following subsections.

Table 5: The CICDDo0S2019 statistics

Class Training Validation Testing
Attack 240,148 26,683 66,709
Benign 70,438 7827 19,566
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Figure 2: The generic pipeline of the DDoS detector

3.2.1 Data Preparation

To ensure the dataset is adequately prepared for training and evaluating the deep learning model,
several steps were undertaken. This included extracting a subset of network flows from the original
data source, which contains both benign and attack flows. All the obtained network flows have been
merged and stored in one comma-separated value (CSV) file, and then label mapping has been done
to map each network flow to its exact attack type. All the categorical columns have been encoded.
After that, the raw data was converted into a format that the model could use. The original 34 labels
were simplified by grouping related classes and assigning new labels to reduce complexity. In two
experiments, the attacks were mapped into eight attacks and one general label to classify network
flows to attack or begin. This approach reduced the complexity of the classification task and made the
process more manageable. Also, label encoding is used to transform categorical data into a numerical
representation that deep learning models can understand. Based on the mapping procedure, each
unique label is allocated a unique integer.

Due to the huge amount of data, twenty-one CSV files with 4,960,973 network flows are obtained
from the original data and combined in one source to train and evaluate the deep learning models. The
data set is divided into three parts: 70% for training, 10% for validation, and 20% for testing. Due to
the use of imbalanced data, the stratification technique is used to guarantee that models are trained
and assessed on subsets of data that accurately represent the overall distribution of classes.
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3.2.2 Feature Engineering

In this work, the procedure of feature engineering includes feature selection and feature standard-
ization. The feature selection step is done manually to select the same features that were obtained by the
authors of CICIoT2023 without implementing any mathematical technique. Feature standardization is
used for data scaling by changing the distribution of characteristics to a standard scale with a mean of 0
and a standard deviation of 1. This paper used the standard scaler method to guarantee that numerical
features contribute equally to the model’s learning process and reduce the influence of differing scales
on the performance of the algorithms. The standard scaler transformation for a feature X is defined

in Eq. (1), where Z is the standardized value, X is the original feature, x is the mean of the feature,
and o is the standard deviation of the feature.
X —
z=""" (1)
o

3.2.3 Deep Learning Backbone Models

This paper employs various deep learning backbones in DDoS detection to provide a reliable and
comprehensive approach for analyzing network traffic data. Extensive experiments were performed
for the procedure of transfer learning using four different pre-trained deep learning models, which
are BILSTM [29], CNN [30], gated recurrent units (GRU) [31], and RNN [32]. Because each of
these models has distinct architectural features, it is possible to thoroughly examine how well they
can address the particular difficulties presented by this research. Utilizing different deep learning
models validates the dataset network flows and their outcomes across multiple methodologies. As
a result, organizations can improve the effectiveness and reliability of their DDoS detection systems,
ultimately enhancing their defenses against cyber threats. These models are used in this paper due to
their architectures which have unique capabilities that make them suitable for DDoS detection tasks
compared to other deep learning and machine learning techniques. They can handle sequential data,
learn hierarchical features, preserve memory and context, adapt to evolving patterns, and leverage
ensemble learning. Fig. 3 shows a visual representation of the operational flow of these models at
every stage, including both the training and testing phases. It details the entire process from the input
of data to the ultimate decision-making.

3.2.4 Feature Explanation

To explain the model prediction and determine the feature contribution, LIME is used. LIME
provides an interpretable and accurate explanation of classifier predictions by learning a local
interpretable model around the prediction [20]. LIME justifies supervised learning model predictions
on a variety of data formats, including text and images. It computes essential characteristics around a
given instance and creates 5000 feature vector normal distribution samples. This technique works by
looking for target variables for a specific number of samples and assigning weights to each row based
on how close it is to the original data label. Also, it determines the important features by using feature
selection techniques such as lasso and principal component analysis (PCA). This technique has been
successfully implemented in XAl for image, text, and tabular data. In this paper, the LIME method
is applied for DDOS network flows, which represent tabular data to determine the contribution of
each feature in predicting the correct attack type. We used a LIME-based XAI procedure to analyze
the contribution of each feature in the traffic data. This helped us to understand how each feature
influenced the final decision and to identify any biases or incorrect decisions in the predicted classes
of network attacks. A thorough investigation has demonstrated that LIME is the most effective method
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for describing traffic data qualities and supporting any prediction generated by a supervised learning
model, which has been also demonstrated in previous empirical studies [33].
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Figure 3: Visual representation of neural network learning process

4 Experimental Results and Discussion
4.1 Experimental Setup

The experiments were conducted on a professional cloud processing platform equipped with
powerful GPUs and CPUs. Several Python and ML libraries were used for implementing the proposed
DDoS classifier, e.g., TensorFlow and Keras. The specifications of the client machine used to initiate
and control the experiments include Nvidia T4 Tensor Core GPU, Intel core i7 of 3.4 GHz, and RAM
of 12 gigabytes (GB). The experiments were performed using identical hyperparameters under the
same configuration. The models’ performance is assessed based on training time complexity and final
prediction results. The binary classification experiment uses binary cross entropy as a loss function,
and the sigmoid as an activation function for the output layer. Also, the Adam optimizer is used with
a learning rate equal to 0.001. A batch size of 128 is used during five epochs, with an early stopping
equal to 3. On the other hand, in the multiclassification tasks, categorical cross-entropy is used as
a loss function, and SoftMax is applied with a batch size of 64 for ten epochs. Table 6 shows the
hyperparameters utilized in each experiment.



CMC, 2024, vol.80, no.3 3795

Table 6: The list of hyper-parameters used in all training experiments

Hyper-Parameter Binary Classification =~ Multi Classification

Loss function Binary cross-entropy ~ Categorical cross-entropy
Activation function  Sigmoid SoftMax

Optimizer Adam Adam

Epochs 5 10

Learning rate 0.001 0.001

Batch size 128 64

Early stopping True True

Four distinct standard metrics are used to evaluate the performance of deep learning models,
which are accuracy, recall, precision, and F1-score. The metrics are calculated in terms of macro
average and weighted average. The weighted averaging metrics tend to the majority class and affect
the final decision in the prediction process; therefore, to ensure the validity of the performance results
for the used models, we measured their performance using macro averaging, which is not affected by
the majority class since it handles all the labels equally by distributing equal weights for each label.

This study focuses on the recall metric, a key metric in DDoS attack detection, to evaluate a
model’s ability to accurately identify all DDoS network flows, aiming to maximize true positives and
minimize false negatives in network flow classification. High recall is essential in DDoS classification
due to the significant cost and damage caused by false negatives. It is also important in this work
because of the imbalanced class distribution in the dataset. The model often accurately identifies the
majority class but fails to identify the infrequent minority class. However, recall is not affected by the
imbalanced distribution since a high recall score ensures accurate classification.

4.2 Classification Results of DDoS Attacks

A thorough analysis of DDoS attacks is presented using various deep learning models. Three
experiments are conducted based on the attack type. The first experiment is conducted to detect and
classify the network flows based on their general nature, whether they are benign or attack flows. The
second experiment presents more detailed results by classifying the detected attacks into eight types.
The third experiment provided more details by classifying them into 34 different attack types. In the
context of DDoS detection, true positive (TP) represents the correctly classified attacks, true negative
(TN) represents the correctly classified non-attacks, false positive (FP) defines non-attacks incorrectly
classified as attacks, and false negative (FN) defines attacks incorrectly detected as non-attacks. The
primary target for this study is achieving a high recall since the recall represents the ratio of correctly
classified DDoS attacks.

Recall estimates the proportion of positive samples identified by a model among all positive
samples, aiming to capture as many attacks as possible while minimizing missed attacks. Optimizing
for recall ensures the model effectively detects most DDoS attacks, even if it indicates tolerating some
false positives that represent normal traffic inaccurately classified as attacks. However, four different
deep learning models are used in each experiment, BILSTM, GRU, RNN, and CNN. Tables 7-9
demonstrate the detailed results of the deep learning models in each experiment. In the binary
classification experiment, the BILSTM model outperformed all the other models with an accuracy of
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99.40, precision of 99.44, recall of 99.39, and F1-score of 99.41 in the weighted averaging measurement.
Regarding the macro-averaging, it achieved a precision of 91.50, a recall of 96.21, and an F1-score of
93.72.

Table 7: Summary of the binary classification results

Model Val Acc Test Acc Weighted Average Macro Average

P R F P R F
BiLSTM 99.40 99.39 99.44 99.39 99.41 91.50 96.21 93.72
GRU 99.37 99.39 99.42 99.39 99.40 91.91 95.56 93.66
RNN 99.33 99.35 99.36 99.35 99.35 92.92 93.04 92.98
CNN 99.35 99.35 99.39 99.35 99.36 91.19 95.49 93.23

Table 8: Summary of multiclassification results (8-classes)

Model Val Acc Test Acc Weighted Average Macro Average

P R F P R F
BiLSTM 99.03 99.04 99.07 99.04 98.97 90.87 66.79 69.62
GRU 99.00 98.98 99.03 98.98 98.91 92.53 66.07 68.87
RNN 96.86 96.86 96.91 96.86 96.72 79.42 63.36 66.47
CNN 99.07 99.00 99.12 99.00 98.92 89.32 65.32 68.35

Table 9: Summary of multiclassification results (34-classes)

Model Val Acc Test Acc Weighted Average Macro Average

P R F P R F
BiLSTM 98.44 98.43 98.35 98.43 98.23 71.18 65.17 65.35
GRU 96.95 98.13 98.10 98.13 97.94 71.88 64.68 64.73
RNN 94.64 95.98 96.04 95.98 95.75 68.95 60.90 61.11
CNN 98.32 97.87 98.90 97.87 98.17 76.11 64.28 64.41

In the second experiment, it achieved an accuracy of 99.04, a weighted precision of 99.07, a
weighted recall of 99.04, a weighted F1-score of 98.97, a macro precision of 90.87, a macro recall of
66.79, and a macro F1-score of 69.62. Also, in the 34-class experiment, it got an accuracy of 98.43, a
weighted precision of 98.35, a weighted recall of 98.43, a weighted F1-score of 98.23, a macro precision
of 71.18, a macro recall of 65.17, and a macro F1-score of 65.35. The second and third experiments
showed a decrease in macro recall due to the complexity of identifying the exact type of DDoS attack,
as the model was burdened by the detailed attack type. This paper validated the findings obtained
from the CICIoT2023 dataset by evaluating the models using a high-quality dataset collected from
real-world scenarios. This dataset is particularly challenging as it serves as a testbed for assessing the
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algorithms’ capability to detect network attack flows. We used the CICDDo0S2019 dataset to evaluate
the selected models under identical settings, employing consistent hyperparameters for comparison.

The Bi-LSTM model exhibited exceptional performance, achieving an accuracy of 99.82. Addi-
tionally, it demonstrated a recall rate of 99.82, a precision score of 99.82, and an F1-score of 99.82.
These results highlight the robustness and high quality of the model’s performance across various
metrics. Table 10 demonstrates the detailed results of the deep learning models. After validating the
results, the models are compared based on their training time complexity. As shown in Table 11,
the CNN model outperforms the other models in detecting DDoS attacks, demonstrating superior
efficiency with minimal training time.

Table 10: Summary of the classification results on CICDDOS2019

Model Val Acc Test Acc Weighted Average Macro Average

P R F P R F
BiLSTM 99.77 99.82 99.82 99.82 99.82 99.65 99.84 99.74
GRU 99.69 99.73 99.73 99.73 99.73 99.49 99.73 99.61
RNN 99.70 99.77 99.77 99.77 99.77 99.56 99.77 99.67
CNN 99.72 99.71 99.71 99.71 99.71 99.43 99.74 99.58

Table 11: A summary of training time complexity

Experiment Model Step Epoch Training time (minutes)
2-classes BiLSTM 6 ms 174 s 14.5
GRU 5ms 135s 11.25
RNN 3ms 96 s 8
CNN 8 ms 229 s 19
8-classes BiLSTM 12 ms 655 s 109
GRU 7 ms 374 62
RNN 5ms 269 s 44.8
CNN 4 ms 225s 26.25
34-classes BiLSTM 9 ms 530's 80.3
GRU 7 ms 414 s 69
RNN 6 ms 321s 53
CNN 8 ms 229 s 19
CICDDo0S2019 BiLSTM 7 ms 17s 1.41
GRU 6 ms 15s 1.25
RNN 5 ms 12s 1
CNN 4 ms 10s <1

BiLSTM and GRU models need additional training time because of their complex architectures
and increased processing demands. As the number of classes increases, there will be more training time
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for all models. Nevertheless, the importance differs per model. For example, with the BILSTM model,
training time increases dramatically as the number of classes increases, but the CNN model has rather
steady training times across varied class distributions.

Training time varied throughout the experiments, with RNN taking the least time in the 2-classes
experiment, followed by GRU and BiLSTM, and CNN taking the longest. However, the model archi-
tecture plays a significant role in determining training time complexity. Variations in model parameter
values, such as step size and epoch, can also influence training time complexity. This demonstrates the
tradeoff between high performance and accurate results, which necessitates an extensive amount of
time for training the model. However, the results indicate that incorporating explainable Al techniques
into network security systems allows organizations to understand complex decisions made by Al
models, improving the transparency and reliability of automated defense mechanisms. This builds
trust in Al-powered security solutions. Understanding how Al models differentiate between normal
network traffic and malicious attacks enables proactive response strategies, reducing DDoS attacks
and downtime. This reduces the risk of misidentifying events as attacks and unauthorized resource
usage. It also enhances the system’s ability to detect insider threats and abnormal activities.

4.3 The Impact of Feature Explanation on DDoS Detection

The LIME-based XAI technique is employed to explain the contribution of each feature in the
decision-making process during the prediction phase. The XAl technique utilizes tabular data through
four steps: generating perturbed instances, predicting using a black-box model, fitting an interpretable
model, and explaining the prediction. In the first step, it produces perturbed instances from the original
data, randomly perturbing certain attributes while maintaining others constant. Then, the black-box
model is used to predict labels for perturbed instances, allowing for a better understanding of how
changes in feature values affect the model’s predictions. Then, an interpretable model, in our case
linear regression, is applied to the altered instances and their accompanying predictions, serving as a
surrogate of the black-box model’s behavior at the closest distance to the original data. LIME does
not directly deal with optimization but focuses on finding an interpretable model that best explains
the model’s predictions in the local neighborhood of a data point. It uses a sampling-based approach
to generate perturbed instances of input data, reducing the likelihood of getting stuck at local optima.

Finally, the XAI model examines interpretable model coefficients or decision rules, providing
explanations for the most important elements driving model prediction in a given instance. The
outcome of this process is evaluating the contribution of each feature by assigning weights for each
feature to determine the power of its effect on the prediction result and determine whether this
effect is negative or positive. Fig. 4 shows six instances from the binary classification task, with 0
indicating benign network flow and 1 indicating an attack. In the first three instances, features such
as information assurance technical (IAT), Max, Total Size, DNS, and Rate have a positive effect by
helping the model correctly classify the instance into its correct class label. On the other hand, features
such as header length have a positive impact on the left three instances while harming the right three
stances.

The contribution of features varies based on their value, target class label, and situation. Fig. 5
shows the feature explanations for the 8-class task with one instance per class. The 0 refers to Benign,
1 refers to Brute-Force, 2 indicates DDoS, 3 refers to DoS, 4 represents Mirai, 5 refers to Recon, 6
indicates Spoofing, and 7 refers to Web. As can be observed from the figure, the prediction probabilities
for 1 and 7 are 82% and 85%, respectively, indicating the model’s confusion in class label prediction.
The vast majority of the features have a positive impact on the final result, which reflects how the
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model accurately classifies network flows into their specific attack type. However, some features have
a negative impact, such as the HTTP feature.
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Figure 4: The feature explanation for six instances in the binary classification task
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Figure 5: The feature explanation for eight instances in the multiclassification task

5 Conclusion

This paper presents an efficient approach for automatically detecting DDoS attacks in IoT
environments. The proposed model investigates and combines various deep learning algorithms and
uses XAl to interpret the model predictions. Three different experiments were conducted with varying
levels of attack-type complexity to test the system. In all experiments, BILSTM outperformed the
other models, with recalls of 99.39%, 66.79%, and 65.17%, respectively. On the other hand, the CNN
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model outperformed the other models in detecting DDoS attacks, demonstrating superior efficiency
with minimal training time. The CNN model is highly parallelizable, which means it can efficiently
perform parallel computations on the used GPU. This model reduces parameters through parameter
sharing, resulting in faster and more stable training. This demonstrates the tradeoff between high
performance and accurate results, which necessitates an extensive amount of time for training the
model. The primary limitation of this study lies in the benchmarking dataset, which is quite large. This
posed challenges in extracting and interpreting the entire traffic data thoroughly, potentially impacting
the model’s generalization ability. Although the evaluation was performed on another recent DDoS
dataset, further processing could be applied to filter the traffic DDoS categories, thereby enhancing
the quality of learnable features. Many future directions may include developing a federated learning
framework for detecting IoT network attacks and creating reliable datasets to improve the accuracy
of deep learning models for detecting DDoS attacks.
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