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ABSTRACT

Recent research advances in implicit neural representation have shown that a wide range of video data distributions
are achieved by sharing model weights for Neural Representation for Videos (NeRV). While explicit methods exist
for accurately embedding ownership or copyright information in video data, the nascent NeRV framework has yet
to address this issue comprehensively. In response, this paper introduces MarkINeRV, a scheme designed to embed
watermarking information into video frames using an invertible neural network watermarking approach to protect
the copyright of NeRV, which models the embedding and extraction of watermarks as a pair of inverse processes of
a reversible network and employs the same network to achieve embedding and extraction of watermarks. It is just
that the information flow is in the opposite direction. Additionally, a video frame quality enhancement module is
incorporated to mitigate watermarking information losses in the rendering process and the possibility of malicious
attacks during transmission, ensuring the accurate extraction of watermarking information through the invertible
network’s inverse process. This paper evaluates the accuracy, robustness, and invisibility of MarkINeRV through
multiple video datasets. The results demonstrate its efficacy in extracting watermarking information for copyright
protection of NeRV. MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV.
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1 Introduction

Implicit Neural Representation (INR) [1–3] emerges as a novel paradigm for parameterizing
diverse signals encompassing images, audio, video, and 3D models. This methodology entails rep-
resenting the signal as a continuous function, mapping the signal’s domain to attribute values
at respective coordinates, known as coordinate-based representation. Post-training, INR weights
facilitate various tasks such as content distribution, streaming, and downstream inference, all devoid of
transmitting or storing raw data. The advent of INR technology, exemplified by Neural Representation
for Videos (NeRV) [4], manifests considerable promise across domains like data compression and
multimedia data processing. Its continual evolution furnishes a fresh technical underpinning for
information hiding technology. Viewing video as a chronological depiction of the visual realm, we
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can discern the RGB (Red, Green, Blue) state corresponding to each timestamp. For a video V t, each
moment T aligns with an RGB video frame. Employing a neural network function f to glean the
mapping between time t and RGB video frames, denoted as V t = f Θ(t), f serves as the implicit neural
representation of video V t, as depicted in Fig. 1a. Implicit representation offers merits such as indepen-
dence from spatial resolution, robust representational prowess, strong generalization capabilities, and
ease of acquisition. Diverging from conventional deep neural networks, typically employed as tools
for processing data classes, implicit representation techniques deploy neural networks to represent
specific multimedia entities. Various multimedia data types can thus be transmuted into implicit neural
network representations, as depicted in Fig. 1b.

Figure 1: Implicit neural representation

With such representation, video can be conceptualized akin to a neural network, streamlining
various video-related tasks. As NeRV technology continues to evolve in video representation, we
anticipate a future where individuals frequently share their trained video content online, akin to the
current sharing of images and videos. This transition replaces the traditional explicit approach with
the direct sharing of network structures learned through training. Consequently, the issue of copyright
protection for implicit representation-oriented NeRVs becomes increasingly pertinent. Given that
NeRV segments videos into frames for training, and Invertible Neural Networks can embed and
extract watermark information within these frames using a single network, we propose a scheme to
address the copyright protection of NeRVs utilizing Invertible Neural Network watermarking. How-
ever, acknowledging potential distortion during rendering and malicious attacks during transmission,
we incorporate a video frame quality enhancement module to mitigate these effects. The scenarios
for use depiction of this scheme are illustrated in Fig. 2. Alice segments the video into frames, selects
a frame for watermark embedding using invertible neural network techniques, trains the NeRV, and
subsequently shares the NeRV model online for public access. Bob acquires the NeRV model and
redistributes it under his name. Upon discovering this, Alice downloads the NeRV model, retrieves the
embedded watermark information through the inverse process of invertible neural networks, validates
her copyright, and prompts Bob to retract the unauthorized publication.

The contribution of this paper is outlined as follows:

1. We propose a watermarking scheme designed specifically to safeguard the copyright of NeRV.
2. Leveraging the reversibility inherent in invertible neural networks, we model the recovery of

secret information as an inverse process of concealment. This enables both the sender and
the receiver to conceal and recover secret information utilizing the same networks, thereby
streamlining the process. Notably, only one network needs to be trained to achieve both
functionalities simultaneously.
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3. Recognizing the potential loss of video frames during the rendering process, as well as the
potential for human-induced damage, we introduce a noise layer to simulate losses attributed
to human factors. Additionally, we devise a frame quality enhancement module aimed at
mitigating these losses, thus ensuring accurate extraction of watermark information.

Figure 2: Application scenarios

2 Related Work
2.1 Video Watermarking

Early techniques for information hiding in videos primarily focused on the original domain of the
video, where the carrier for information hiding is an uncompressed video file. In this approach, the
video sequence is considered as a series of consecutive frames, and a subset of frames is selected from
this sequence as the carrier for information hiding. Subsequently, the pre-processed information to be
embedded (e.g., following encryption or error correction code processing) is incorporated into these
selected video frames using various methods. Such techniques can be categorized into those based on
the null domain and those based on the transform domain.

Information-hiding algorithms operating in the original domain of videos are relatively simpler
to implement. However, in practical applications, video files are often compressed to reduce their size,
storage requirements, and network transmission costs. Consequently, the importance of information-
hiding techniques compatible with compressed video formats has become increasingly significant
and has garnered widespread attention from researchers. Notably, the H.264/AVC (Advanced Video
Coding) standard (also known as MPEG-4 (Moving Pictures Experts Group) Part 10) is one of the
most widely used and mature video coding standards, and information-hiding techniques based on
H.264/AVC hold a predominant position in current research endeavors.

Diverging from previous studies, this paper delves into the unexplored challenge of embedding
watermark information within NeRV video frames. This endeavor is crucial for safeguarding copyright
and preserving ownership rights, given the increasing deployment of NeRV projects in real-world
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applications, with a projected rise in their usage in the future. Thus, addressing copyright concerns
associated with NeRV technology is particularly timely and pertinent.

2.2 Implicit Neural Representation

Implicit neural representation (INR) introduces a novel approach to parameterizing diverse
signals. The fundamental concept involves representing an object as a function approximated by
a neural network, which maps coordinates to corresponding values (e.g., pixel coordinates of an
image and RGB values of pixels). This methodology finds widespread application across various 2D
and 3D visual tasks, including images [5,6], videos [4–8], 3D shapes [9,10], 3D scenes [3,11], and
3D structural appearance [12,13]. In contrast to explicit data representations, continuous implicit
neural representations can efficiently encode high-resolution signals in a memory-efficient manner.
Previously, implicit neural representations were often approximated using multilayer perceptrons,
which take spatial or spatiotemporal coordinates as input and output signals (e.g., RGB values, volume
density) for each point. The current NeRV representation employs a purposefully designed neural
network comprising MLPs (Multilayer Perceptron) and convolutional layers. It takes the frame index
as input and directly outputs all RGB values for that frame.

2.3 Invertible Neural Network

Jing et al. [14] pioneered the combination of invertible neural networks with information-hiding
techniques, modeling secret message recovery as the inverse operation of message hiding. They
utilized the same network to concurrently achieve both information hiding and extraction. Addressing
capacity limitations, Guan et al. [15] and Chen et al. [16] proposed serial and parallel methods,
respectively, for concealing multiple graphs. Xu et al. [17] introduced normalized flow principles
and devised DGM (Distortion-Guided Modulation) and CEM (Container Enhancement Module)
modules to enhance scheme robustness. Yang et al. [18] introduced a three-step training methodology,
incorporating an augmentation module and considering rounding errors to bolster scheme robust-
ness. Luo et al. [19] introduced invertible neural networks into watermarking to safeguard artwork
copyrights. Ma et al. [20] identified the susceptibility of invertible network schemes to low robustness
due to their reliance on reversibility. To address this, they proposed a hybrid watermarking scheme
combining invertible and non-invertible networks. This included a watermark extractor based on
attention mechanisms, facilitating watermark extraction from multiple channels and selecting the
optimal result to enhance scheme robustness. Lu et al. [21] broke new ground by applying invertible
neural networks to video steganography, realizing a selectable video steganography scheme with
substantial capacity.

3 Method

With the advent of neural implicit representation, the future of information communication,
encompassing text, images, videos, and more, may experience a transition towards neural implicit
representation. We introduce a novel approach employing invertible neural network watermarking
for copyright protection of neural representation for videos. Our methodology utilizes NeRV as the
cover, leveraging the strengths of invertible neural network watermarking. Specifically, watermark
information is embedded within the video frames used for neural network fitting, replacing original
frames to generate NeRV, subsequently disseminated on public platforms. Subsequently, extractors
retrieve NeRV, input timestamp to reconstruct video frames, and employ the inverse process of
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invertible neural networks to extract watermarking information, thereby acquiring the embedded
watermark information, as depicted in Fig. 3.

Figure 3: Flowchart of MarkINeRV program structure

The video frame corresponding to a specific moment T is selected, and the watermark information
is initially embedded using an invertible neural network to generate the watermarked video frame.
These frames are utilized to train the fitted neural network, producing NeRV subsequently dissemi-
nated online. Upon retrieval, the receiver executes NeRV to generate the video frame rendered at time
t. Due to NeRV’s training process causing some watermark loss and potential interference from noise,
this study simulates various noise attacks. Additionally, a video frame quality enhancement module
employing a U-net network is devised to ameliorate corrupted video frames. Loss constraints are
incorporated to ensure rendered frames closely resemble watermarked counterparts, yielding enhanced
frames. Finally, these enhanced frames undergo an invertible neural network for watermark extraction.
In contrast to alternative methods that directly embed watermarks into video frames or other locations,
NeRV rendering or malicious attacks during the delivery processes can lead to significant damage to
the watermark information, rendering successful recovery unattainable. Additionally, non-reversible
methods often fall short in achieving blind watermarking capabilities and superior watermark extrac-
tion performance when compared to reversible neural network watermarking techniques, particularly
in terms of watermark invisibility and extraction accuracy.

3.1 Network Architecture

3.1.1 Invertible Block

The concealment and retrieval processes employ identical sub-blocks with shared network param-
eters, albeit with information flow in reverse. The network architecture in this study comprises 8
invertible blocks, each structured as follows:

V l+1 = V l + f
(
W l

)
(1)

W l+1 = W l ⊗ exp
(
σ

(
r
(
V l+1

))) + y
(
V l+1

)
(2)

For the lth concealment block in the forward process, the inputs consist of V l and W l, yielding
outputs V l + 1 and W l + 1, as expressed in Eqs. (1)–(2), where σ denotes the activation function, with
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LeakyReLU (Leaky Rectified Linear Unit) employed herein. Additionally, f (·), r(·), and y(·) represent
densely connected networks. The outputs of the final invertible block, W k and V k, transform the IWT
(Inverse Wavelet Transform), yielding the stego image, V 1, and loss information, r.

In the reverse recovery process, the lth display block with inputs V 4
l + 1 and Zl + 1 and outputs V 4

l

and Zl is depicted in Eqs. (3)–(4).

Zl = (
Zl+1 − y

(
V l+1

4

)) ⊗ exp
(−σ
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(
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)))
(3)

V l
4 = V l+1
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(
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)
(4)

Information flow proceeds in the opposite direction, traversing through the (l + 1)th layer and then
the lth layer. Subsequently, following the initial layer of reversible transformation, the result undergoes
IWT to yield the recovered image, V 5, and the recovered watermark, W 1.

3.1.2 Frequency Domain Transform Module

Watermark information embedded within the pixel domain is susceptible to texture replication
artifacts and color distortion [22]. The frequency domain and high-frequency domain offer superior
suitability for watermark embedding compared to the pixel domain [23]. In this study, we employ
the FDTM (Frequency Domain Transform Module) to partition the video frame into low and
high-frequency wavelet subbands before the invertible transformation. The high-frequency subbands
encapsulate the video frame’s details, while the low-frequency subbands encompass its overall features,
thereby facilitating the network’s seamless fusion of watermark information into the cover video frame.
Relative to direct operations within the original video frame, wavelet transformation exhibits enhanced
visual fidelity, embedding the watermark information into only a few subbands, thus minimally
affecting the video frame as a whole, making detection challenging. Furthermore, the commendable
reconstruction properties of wavelets mitigate information loss and augment watermark embedding
capabilities. Preceding entry into the invertible block, the video frame undergoes processing by the
FDTM, and after Discrete Wavelet Transform, the feature map of size (B, C, H, W) is transformed
into (B, 4C, H/2, W/2), where B represents batch size, H denotes height, W signifies width, and C
indicates the number of channels. Discrete Wavelet Transformation (DWT) reduces computational
costs, thereby expediting the training process [24]. Following the final invertible block, the feature
map (B, 4C, H/2, W/2) undergoes processing by the FDTM for Inverse Wavelet Transform resulting
in the generation of the watermark frame V 1 by restoring the feature map size to (B, C, H, W).

3.1.3 Neural Radiance Video

The architecture of the NeRV network is depicted in Fig. 4. NeRV comprises two main compo-
nents: the MLP block and the NeRV block. The MLP block comprises two linear layers, each followed
by a GELU (Gaussian Error Linear Units) activation layer. On the other hand, the NeRV block is
composed of a 3 × 3 convolutional layer with a step size of 1, a PixelShuffle operation, and a GELU
activation function. The NeRV architecture consists of five NeRV blocks, with magnifications set to
5, 3, 2, 2, 2 for 1080p videos, and 5, 2, 2, 2, 2 for 720p videos. A video V = {vt}T

t=1 ∈ RT×H×W×3

is represented as a function where the input is the timestamp Timestamps(t), and the output is the
corresponding video frame vt ∈ RH×W×3 at that time. The neural network θ is employed to fit a
coding function vt = fθ (t), which correlates to a neural network fθ that executes the coding of the
video by feeding the corresponding Timestamps(t) to the respective RGB image. However, while
deep neural networks excel in numerous complex tasks across various domains, serving as versatile
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function approximators [12], training timestamps t directly as inputs to the neural network may yield
suboptimal results [25]. Mapping low-dimensional timestamps to a high-dimensional space enhances
the neural network’s capability to fit video data with high-frequency information. Therefore, NeRV
employs position coding [12] as the embedding function:

� (t) = (
sin

(
b0πt

)
, cos

(
b0πt

)
, . . . , sin

(
bl−1πt

)
, cos

(
bl−1πt

))
(5)

where b and l are hyperparameters of the neural network, and the input Timestamps(t) are normalized
between (0, 1]. The resulting output is then fed into the neural network.

Figure 4: NeRV module structure

3.1.4 Frame Quality Enhancement Module

Before initiating the reverse process for watermark extraction, this paper introduces a Frame
Quality Enhancement Module (FQEM) to counteract the distortion effects caused by the NeRV
rendering process. FQEM employs a residual convolutional coding and decoding network, as depicted
in Fig. 5. On the left side, six convolutional encoders are utilized to extract features from various
layers of the distorted video frame V 3. Subsequently, these features are inputted into the inverse
convolutional decoder on the right side, along with residuals passed from the preceding layer. The
resulting output is then superimposed on top of each other, completing the restoration of the video
frame. By incorporating FQEM into the watermark extraction process, the rendered video frame V 3

undergoes preprocessing before entering the invertible neural network. This preprocessing aims to
ensure sufficient similarity between it and the video frame V 1, facilitating the invertible neural network
in more comprehensively extracting the watermark information.

V3 V4

Figure 5: Frame quality enhancement module architecture
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3.2 Loss

The network model training loss proposed in this paper comprises five main components.

3.2.1 Embedding Loss LEmb

The purpose of the embedding loss is to ensure that the generated watermarked frame V 1 is
indistinguishable from the original training frame V .

LEmb (θ) =
N∑

n=1

�Emb

(
V (n)

1 , V (n)
)

(6)

In Eq. (6): N represents the number of training samples, and �Emb calculates the difference between
the watermarked frame V 1 and the original training frame V , using the l2 paradigm.

3.2.2 Low-Frequency Wavelet Loss Llow-f

Reference [26] verified that watermark information embedded in high-frequency components is
less detectable than that in low-frequency components. The loss aims to ensure higher visual fidelity
and minimize the impact on the video frame as a whole due to embedding.

Llow−f (θ) =
N∑

n=1

�f

(
H

(
V (n)

)
ll

, H
(
V (n)

1

)
ll

)
(7)

In Eq. (7): N represents the number of training samples, �f calculates the low-frequency difference
between the watermarked frame V 1 and the original training frame V and H (·)ll represents the low-
frequency sub-band operation of extracting video frames.

3.2.3 Extraction Loss LExt

This loss ensures the consistency of the recovered watermark information W 1 with the embedded
watermark information W . Minimizing the difference between the recovered watermark W 1 and the
embedded watermark information W improves the model’s watermark extraction accuracy.

LExt (θ) =
N∑

n=1

Ez∼p(z)

[
�Ext

(
W (n), W (n)

1

)]
(8)

In Eq. (8): N represents the number of training samples, and �Ext computes the difference between
the watermark information W and the recovered watermark W 1.

The total loss function of the invertible neural network comprises a weighted combination of three
components: the Embedding loss, the Low-frequency wavelet loss, and the Extraction loss.

Ltotal (θ) = λ1LEmb + λ2Llow−f + λ3LExt (9)

During the training process, initially, λ2 is set to 0, meaning that the network model undergoes
direct pre-training without considering the effect of Llow-f on the network. This allows the network
model to first acquire the fundamental embedding-extraction capabilities. Subsequently, the Llow-f

constraint term is gradually introduced to further refine the network model, enabling it to embed
watermark information in the high-frequency domain of the training video frames. This step aims
to minimize the overall impact on the video frames resulting from the embedding of watermark
information.
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3.2.4 Neural Radiation Video Loss L

To ensure the effectiveness of the recovered video frames, the l1 and Structural Similarity (SSIM)
losses are used as the loss function of the neural radiation video.

L = 1
T

T∑

t=1

α ‖ fθ (t) − vt ‖1 + (1 − α) (1 − SSIM (fθ (t) , vt)) (10)

In Eq. (10): T is the number of video frames, fθ (t) is the predicted frame, vt is the true frame and
α is a hyperparameter to balance the weight of the l1 and SSIM losses.

3.2.5 MSE Loss for Frame Quality Enhancement Module

In this paper, the training of frame quality enhancement modules and invertible neural networks
are treated as independent processes. The loss of the frame quality enhancement module is constrained
by the Mean Squared Error (MSE), to guarantee that the video frame V 3, enhanced by the frame qual-
ity enhancement module, can be accurately reconstructed into the watermarked frame V 1 generated
by the invertible neural network. This ensures that the generated video frame V 4 and the watermarked
frame V 1 maintain a sufficiently close resemblance, thereby resisting potential damage and loss of
watermarking information caused by the rendering process and any intentional alterations.

MSE = 1
n

n∑

i=1

(V4i, V1i) (11)

In Eq. (11): V 4i is the ith video frame generated by the enhancement module, and V 1i is the ith

watermarked frame.

4 Experiments
4.1 Setting

In this study, we employed the PyTorch platform with Cuda version 11.6 and an Nvidia GeForce
RTX2070 GPU (Graphics Processing Unit) for network modeling. The training utilized NeRV [4]’s
scikit-video dataset “Big Buck Bunny” sequence and UVG (Ultra Video Group) dataset [27], with
citation of NeRV source code. The invertible neural network, which embeds watermarks solely on
the trained dataset, was structured based on modifications of Half Instance Normalization Network
(HINet) [14]. Considering the diversity, high resolution, and authenticity of the DIV2K (Diverse 2K)
[28] dataset, we employed it for training the invertible neural network model. Specifically, the DIV2K
training dataset, comprising 800 images at a resolution of 1024 × 1024, was utilized for training, while
the DIV2K validation dataset, consisting of 100 images at a resolution of 1024 × 1024, was used
for model validation. Furthermore, the DIV2K test dataset, containing 100 images at a resolution of
1024 × 1024, was employed to assess the effectiveness of the network model. We employed the Adam
optimizer with hyperparameters set as follows: λ1 = 5, λ2 = 0.5, λ3 = 1, learning rate = 1 × 10−4.5, and
batch size = 2. The entire network model comprises 8 invertible blocks, with each block incorporating
three DenseNet blocks, encompassing 7 layers of convolutional blocks designated as f (·), r(·), and y(·),
respectively.

4.2 Robustness

Four traditional noise attacks—Poisson, Gaussian, Pepper, and Speckle—are applied individually
to corrupt Video frame V 2, aiming to assess the scheme’s robustness, as depicted in Fig. 6. Although
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Video frame V 2 is subjected to these four noises individually, Video frame V 3, which has been processed
by the frame quality enhancement module, exhibits no visually detectable interference.

Figure 6: Visualisation of the dataset after noise treatment and after the enhancement module

Table 1 presents the experimental results, comparing the PSNR (Peak Signal-to-Noise Ratio)/SSIM
(Structural Similarity) values of video frames, employing various watermarking methods, after being
subjected to the noise layer with the original video frames. The results indicate a notable resilience of
the method proposed in this paper against the aforementioned four types of noise interference.

Table 1: Comparison of anti-interference capability

Noises MarkINeRV Hidden [29] Baluja [30] Rehman et al. [31]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Poisson 52.02165 0.99662 35.56660 0.93387 27.35738 0.80127 25.44673 0.75654
Gaussian 51.99809 0.99661 33.18629 0.90325 26.84235 0.78555 24.62278 0.75032
Pepper 51.98431 0.99660 31.23473 0.87287 26.31545 0.76067 23.94537 0.74642
Speckle 50.65157 0.99589 30.43941 0.85938 25.37853 0.75373 23.27536 0.73974

In addition, the video frames generated by NeRV during the rendering process may lead to
the loss of original watermark information embedded within them. Consequently, we propose the
incorporation of a video frame quality enhancement module, distinct from existing approaches. This
module is designed not only to withstand various types of noise but also to mitigate the loss of
watermark information incurred during rendering. As depicted in Fig. 7, it is evident that methods
lacking this enhancement module fail to extract the watermark.
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Figure 7: Comparison of visualization results of different methods for recovered watermark

4.3 Accuracy

MarkINeRV integrates watermarking information W into the scikit-video dataset “Big Buck
Bunny” sequence and the UVG dataset via a forward invertible neural network. Subsequently,
NeRV is employed for training. Timestamps are then inputted into NeRV to generate video frames
corresponding to these timestamps. These generated video frames undergo processing by a frame
quality enhancement module and finally, the recovered watermarking W 1 is retrieved via the inverse
invertible neural network. Evaluation of the recovered watermarking W 1 is conducted for accuracy
against the original watermarking using four metrics. As depicted in Fig. 8, the values of each metric
under each dataset indicate favorable performance: PSNR surpasses 29 dB, SSIM surpasses 0.91,
MAE (Mean Absolute Error) falls below 8, and RMSE (Root Mean Square Error) falls below 11.

Figure 8: The accuracy of the recovered watermark W 1 with the watermark message W
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The watermarking information, Watermarking W 1, extracted by this scheme exhibits visual
consistency with the original embedded watermarking information, Watermarking W , as demon-
strated in Fig. 9. Furthermore, even upon local enlargement, the watermarking information remains
indiscernible, underscoring the exceptional performance of this paper’s scheme in safeguarding NeRV’s
copyright and validating its feasibility.

Watermarking W Enlarge*5

Watermarking W1 Enlarge*5 Watermarking W1 Enlarge*5 Watermarking W1 Enlarge*5

Watermarking W1 Enlarge*5Watermarking W1 Enlarge*5Watermarking W1 Enlarge*5

Beauty Bosphorus Jockey

RaceNight Flower Pan Big Buck Bunny

Figure 9: Visualisation results of recovered watermarks for different datasets

4.4 Imperceptibility

The invertible network watermarking scheme (MarkINeRV) achieves blind watermarking, aiming
to minimize the distortion rate between Video frame V and Video frame V 1. In evaluating the
imperceptibility of our method and three alternative schemes, we employ the PSNR metric. The Video
frame V is compared with Video frame V 1, as depicted in Table 2, and the experimental data show that
the MarkINeRV scheme outperforms the other schemes in terms of imperceptibility.

Table 2: Comparison of imperceptibility indicators

Methods Video frame V /Video frame V 1 (PSNR)

Beauty Bosphorus Jockey RaceNight FlowerPan Big buck bunny

MarkINeRV 48.99 46.52 44.60 52.86 46.98 46.78
Hidden 35.21 36.71 34.79 36.43 37.68 35.70
Baluja 36.77 36.38 36.59 35.88 35.01 34.13
Rehman et al. 32.91 30.97 29.68 32.92 29.17 33.35

Analysis depicted in Fig. 10 reveals that embedding the watermark within video frames from
both the scikit-video dataset’s ‘Big Buck Bunny’ sequence and the UVG dataset yields inconspicuous
alterations. A comparison of Video frame V 1 generated by four methods against Video frame
V demonstrates the difficulty in discerning the presence of watermark information. Experimental
findings confirm the imperceptibility of the watermark embedded via our method, achieving the
objective of blind watermarking regardless of its presence within the video frame.
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Figure 10: Visualisation results comparing Video frame V 1 with Video frame V

4.5 Ablation Study

Traditional deep learning robust watermarking techniques such as HiNet [14] and Initial Sequence
Number (ISN) [21] are not directly applicable to our task. These methods rely on reversibility and
do not adequately consider the susceptibility of video frames to corrupting watermarks embedded
within video frames during the NeRV training process. Hence, MarkINeRV introduces a video frame
quality enhancement module before the watermark extraction operation to mitigate the impact of
the NeRV training process. By incorporating the FQEM structure, the PSNR between WaterMarking
W and WaterMarking W 1 is enhanced from 6.94 dB to 29.06 dB, as demonstrated in Table 3. The
experimental findings underscore the significant contribution of FQEM in ensuring the successful
extraction of watermark information.

Table 3 : Effectiveness of network architecture and design strategies

FQEM Low-frequency wavelet loss FDTM Comparison of WaterMarking W and WaterMarking
W 1 (PSNR)

× √ √ 6.94 dB√ × √ 15.83 dB√ √ × 17.28 dB√ √ √ 29.06 dB

5 Conclusion

In this paper, we propose for the first time a scheme to protect Neural Representations for Videos
using invertible neural network watermarking (MarkINeRV), which achieves copyright protection
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for NeRV. MarkINeRV uses invertible neural networks to embed and extract watermarks on video
frames, modeling the embedding and extraction of the watermarks as a forward and inverse process of
the invertible network, while adding a video frame quality enhancement module to the intermediate
process to compensate for the loss of watermark information caused by the NeRV rendering process
and to achieve copyright protection for neural radiation videos in implicit neural representations.
Experiments are conducted to evaluate the feasibility of the coming scheme in terms of accuracy,
robustness, and invisibility, respectively.

(1) Accuracy: Due to the excellent performance of the invertible neural network in the information
hiding direction, the PSNR of watermark information recovery reaches 35 dB.

(2) By designing the video frame quality enhancement module to offset the effects caused by the
rendering process as well as vandalism, the scheme has good robustness.

(3) An invertible neural network embeds the watermark information into the high-frequency
region by frequency domain transform module to achieve good invisibility.

The results show that the copyright owner can achieve the embedding and extraction of the
watermark by using MarkINeRV to verify the copyright of the neural radiation videos. The future will
be devoted to the reduction or even elimination of loss information in invertible networks to ensure
higher extraction accuracy.
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