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ABSTRACT

Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and
healthcare systems worldwide. Various Computer-Aided Diagnosis (CAD) tools, based on breast thermograms,
have been developed for early detection of this disease. However, accurately segmenting the Region of Interest (ROI)
from thermograms remains challenging. This paper presents an approach that leverages image acquisition protocol
parameters to identify the lateral breast region and estimate its bottom boundary using a second-degree polynomial.
The proposed method demonstrated high efficacy, achieving an impressive Jaccard coefficient of 86% and a Dice
index of 92% when evaluated against manually created ground truths. Textural features were extracted from each
view’s ROI, with significant features selected via Mutual Information for training Multi-Layer Perceptron (MLP)
and K-Nearest Neighbors (KNN) classifiers. Our findings revealed that the MLP classifier outperformed the KNN,
achieving an accuracy of 86%, a specificity of 100%, and an Area Under the Curve (AUC) of 0.85. The consistency
of the method across both sides of the breast suggests its viability as an auto-segmentation tool. Furthermore,
the classification results suggests that lateral views of breast thermograms harbor valuable features that can
significantly aid in the early detection of breast cancer.
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1 Introduction

Breast Cancer is one of the most fatal diseases globally. As per 2020 Global Cancer Observatory
(GLOBOCAN) statistics, there were 2.3 million registered cases and 685,000 were fatal,which made it
the second most common cause of death among women [1]. In developed countries, the incidence rate
is higher than in developing countries [2,3]. Cancer is characterized by uncontrolled cell proliferation
[4,5], and if the cells invade other body parts, it is classified as invasive; otherwise, it is categorized
as non-invasive [6]. Identifying cancer early on effectively prevents aggressive treatments such as
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mastectomy [7]. Generally, early detection is conducted through mammography. However, this invasive
procedure causes discomfort and uses an ionizing radiation dose, which increases the chances of
developing radiation-induced breast cancer [8]. On the contrary, thermography is an economical,
radiation-free, and noninvasive screening modality that can also be used, particularly for dense breasts
[9]. This approach relies on the observation that the human body exhibits a level of thermal symmetry
when in a healthy state. Otherwise, it is abnormal. This anomaly signifies a higher metabolic activity,
possibly due to cancerous cells [10].

Thermography measures the surface temperature of the breasts. These temperature variations are
visualized as color-coded maps called thermograms. Analysis involves comparing the temperature
distribution between corresponding regions (contralateral breasts) for abnormalities. To facilitate
this comparison, segmentation techniques are used to isolate the Region of Interest (ROI) from the
thermogram. While various methods exist for segmenting frontal view thermograms, which capture a
larger portion of the breast, there’s a gap in techniques for segmenting lateral view thermograms. These
side-view images hold valuable information for detecting tumors in the lateral breast tissue. Accurate
segmentation of both frontal and lateral views is crucial for developing robust Computer-Aided
Detection (CAD) systems. Successful CAD systems can potentially reduce workload for pathologists
and minimize subjectivity in breast cancer diagnoses [11].

This paper proposes a novel technique for segmenting lateral-view breast thermograms. The
method extracts texture features from the segmented ROIs. A subset of these features is then used
to train a machine learning algorithm to differentiate between healthy and cancerous thermograms.
We evaluated our approach using a dataset of 31 healthy and 26 cancerous subjects acquired with
the Static Infrared Thermography (SIT) protocol at a 90-degree angle. The main contributions of this
paper are twofold:

• We propose a novel technique for segmenting lateral-view breast thermograms. This fills a
critical gap in current methods that focus mainly on frontal views. By including the sides of the
breast, where tumors can also arise, our segmentation approach has the potential to improve
breast cancer detection in thermography

• We explore the feasibility of using machine learning for breast cancer classification based on
the segmented lateral-view thermograms

The rest of the article has been structured in the following manner: Section 2 outlines the
related works on breast cancer detection; Section 3 details our methods and the data set used for
the experiment. The experimental results are explored in depth in Section 4 and discussed further in
Section 5 before all is wrapped up with the conclusion provided in Section 6.

2 Related Work

Research has recently been devoted to breast thermography. For example, in [12], fuzzy active con-
tours were employed to segment cancerous tissue regions on frontal and lateral breast thermograms.
The segmentation results were validated with manually segmented ground truths. The method achieved
91.98% accuracy 85% sensitivity. Madhavi et al. [13] presented a multi-view breast thermogram
analysis by textural feature fusion. The level-set method was used for segmenting lateral breast
thermograms in their method. Rather than periodically resetting the level set function to its initial
state for controlling numerical errors, they employed the level set evolution without re-initialization.
Gray-Level Co-occurrence Matrix (GLCM) features were independently extracted from the frontal,
left-lateral, and right-lateral thermograms. Feature fusion was undertaken on the extracted lateral
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and frontal ROIs to create a composite feature vector. Fused textures achieved 96% accuracy, 92%
specificity, and 100% sensitivity.

In Reference [14], a segmentation approach was proposed to consider spatial information pixels in
breast thermograms. The approach employed a metaheuristic algorithm referred to as the Dragonfly
Algorithm (DA) to seek out the most suitable threshold values for dividing a breast thermogram into
distinct regions that are homogeneous and well-defined. This was applied to the image’s energy curve.
The DA was evaluated using Kapur and Otsu as objective functions and was found to iterate until
it reached an optimal solution. Moreover, four optimization algorithms were applied to the Otsu
and Kapur functions and compared with the DA over eight randomly chosen breast thermograms,
including lateral views. The DA achieved superior performance compared to other implementations
for Otsu and Kapur variants across most metrics, producing thermograms with clear borders.

Kapoor et al. [15] introduced an approach for the automatic segmentation ROI from breast
thermograms and analyzing breast thermogram asymmetry to classify a breast as healthy or abnormal.
The undesirable body part, which included the waistlines and shoulder region, was initially cropped
away to identify the breast limits. The Canny edge detector was then employed to detect edges, and to
estimate bottom breast boundary curves. After decimating the area below the bottom boundaries, the
remaining region was separated into the left and right breasts. Histograms were created, and features
were extracted from each side to analyze the asymmetry of the contralateral breasts. We concur with
asymmetry analysis, as it can serve as a second set of eyes for diagnostics.

Venkatachalam et al. [16] presented a segmentation technique resilient to impediments normally
encountered in breast thermogram datasets, including low contrast, a low signal-to-noise ratio, and
overlapping ROIs. The approach employs the active contour method to segment the ROI affected by
inflammation. Initially, the inflamed ROI is localized, and active contours are automatically initialized
based on the multi-scale local and global fitted image models. The method’s validity was assessed by
comparing its output with ground truths generated by an expert. Their method was resilient against
breast thermograms’ severe intensity inhomogeneity and could precisely segment the inflamed ROI.
Moreover, second-order statistical descriptors were extracted from the ROIs to classify the images as
malignant or benign. The technique was evaluated on two datasets and compared to existing state-
of-the-art methods such as fuzzy C-means, K-means, and Chan-Vese, all of which it outperformed
in accuracy.

3 Materials and Methods

This section details a fully automatic approach for segmenting the ROI from lateral breast
thermograms. We begin by outlining the characteristics of the thermogram dataset used in the study.
The segmentation process itself follows a multi-step approach. First, the thermal images undergo
denoising to remove unwanted noise before edge detection. Morphological operations are then applied
to enhance the extracted edges. Subsequently, the approach leverages information from the image
acquisition protocol to identify crucial areas for isolating the breast boundary. Utilizing the bottom
boundary points, the entire boundary is then estimated. Finally, a binary mask is generated based on
the segmented ROI and overlaid onto the original thermogram to create the final ROI image.

3.1 Dataset

This study utilized thermograms from the Database for Mastology Research (DMR). This
publicly accessible database with thermograms was acquired from volunteers by Federal Fluminense
University in Brazil [17]. It hosts images acquired from numerous views via the Static Infrared



4752 CMC, 2024, vol.80, no.3

Thermography and Dynamic Infrared Thermography (DIT) protocols. For acquisition, a FLIR SC-
620 thermal infrared camera with a resolution of 640 × 480 pixels and a thermal sensitivity of
40 mK. This work used a sample of 101 lateral thermograms (75 normal, 26 abnormal) captured
at 90 degrees angle using the SIT protocol. We selected the DMR dataset because its metadata
includes comprehensive details about how the thermograms were acquired. This rich metadata is
vital for ensuring the reproducibility of our segmentation method. In other words, our method can
be applied to any thermograms acquired using the same protocols as the DMR dataset. Additionally,
unlike some datasets focused on specific demographics, DMR includes thermograms from a broader
patient population. This variety in breast shapes and sizes is essential for developing a generalizable
segmentation method applicable to a diverse patient base.

3.2 Segmentation

3.2.1 Preprocessing

Before removing the breast boundary from undesirable areas, such as the neck and back. The
thermogram was converted to grayscale and denoised with a Gaussian kernel. This filter was adopted
for its simplicity and robustness against noise [18]. In image processing, a two-dimensional variant of
the Gaussian function is used, as defined in Eq. (1).

F (u, v) = 1
2πσ2

exp
(

−u2 + v2

2σ2

)
(1)

where σ is the standard deviation of the Gaussian kernel, and u and v are the respective distances
to the horizontal and vertical centers of the kernel. The Gaussian smoothed image Is is obtained by
convolving the grayscale image I (u, v) with a two-dimensional Gaussian filter, Is = Fσ � I . This work
set a Gaussian kernel to σ = 1.618 balancing noise reduction with edge preservation.

3.2.2 Breast Boundary Extraction

The extraction of the bounding rectangle encompassing the breast region was accomplished by
leveraging a gradient image, which was a guiding mechanism for the extraction procedure. A Canny
edge detector was used to detect edges in the denoised image. This algorithm detects abrupt changes
in image intensity in a small region. It employs a convolution gradient operator to magnify regions
with high spatial derivatives to compute image gradient magnitude at each pixel as ||∇Fσ � I||. The
gradient orientation is then determined at each pixel using Eq. (2).

d̂ = ∇Fσ � I
||∇Fσ � I|| (2)

Non-border pixels are then suppressed via non-maxima suppression. Finally, hysteresis thresh-
olding is used to identify weak and strong edges based on a threshold. This detector is recognized
as the best edge detector due to its superior localization and noise resilience [19], hence its wide
adoption in image processing. A threshold of α = 0.233 was found to produce the desired edges
and was utilized across all images. Fig. 1 demonstrates the application of the Canny edge detector on
grayscale images of lateral breast thermograms. Fig. 1a shows the original grayscale images, while
Fig. 1b presents the gradient images post edge detection. Accurate edge detection ensures precise
delineation of the breast region, minimizing noise and irrelevant data, which is essential for isolating
the ROI. The detected edges are a foundation for further morphological operations and subsequent
analysis steps, contributing to the method’s robustness and consistency. While Canny edge detection
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offers robust performance, exploring alternative edge detectors with less parameter sensitivity such as
deep learning-based edge detection methods could be a future investigation.

Figure 1: Edges generated by the Canny edge detector. (a) Grayscale images. (b) Gradient image

The morphological operations of closing and dilation were employed to connect disconnected
boundaries and enhance the overall boundary. These operations are described in Eqs. (3) and (4).

I · S = (I ⊕ S) � S (3)

I ◦ S = (I � S) ⊕ S (4)

where I denotes the gradient image and S is the structuring element. A 3 × 3 structuring element was
employed for morphological closing and dilation operations. This size was effectively connecting small
gaps in the boundaries while minimizing unintended modifications. Exploring adaptive structuring
element selection based on image features might be an avenue for further improvement. To filter out
the armpit area and an area above it, as shown in Fig. 2, the row yn and column xn of the convex point
formed by the neck and chest area were used as coordinates for decimating the unwanted area. For
the right breast, all objects below this column and its row were removed from the original edge image,
and vice versa for the left side view, leaving only the breast boundary.

3.2.3 Polynomial Curve Fitting

The bottom breast boundary was traced and fitted to a second-degree polynomial to estimate the
bottom boundary curve, as shown in Fig. 3a. Finally, the intersection points of the curve and boundary
points were calculated and marked, as illustrated in Fig. 3b.



4754 CMC, 2024, vol.80, no.3

Figure 2: Coordinate for the convex point of the neck area. (a) Right breast. (b) Left breast

Figure 3: (Continued)
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Figure 3: Estimation of the bottom breast boundary. (a) Fitted curve. (b) Intersection points. (c)
Intersection points after rotation

The dataset contains images of different breast structures; to preserve data across all ROIs, the
intersection of the boundary column xn and the curve (xinterA, yinterA) was rotated about point (xn, yn).
For the right breast, the point was shifted to −15 degrees, and vice versa for the other side. Finally,
we computed the intersection of the fitted curve and the new line that crosses the curve to obtain
(xinterB, yinterB); the curve was then engraved onto the image, as shown in Fig. 3c.

3.2.4 Mask and Region of Interest Generation

After engraving the curve onto the image, a straight line was drawn from (xn, yn) to (xinterB, yinterB)

to close the breast boundary. Morphological closing and dilation operations succeeded in closing the
boundary completely. Ultimately, an image fill operation was employed to populate the identified
breast region with white pixels, creating a mask. This mask was subsequently overlaid onto the original
image, creating an ROI as illustrated in Fig. 4.

The segmentation steps for the right-side thermogram can be summarized as follows:

1. Read a grayscale image Ig and find gradient image Ie with the Canny edge detector as shown
in Fig. 1

2. Identify the coordinates (xn, yn) for the convex point formed by the neck and chest area as
illustrated in Fig. 2 and decimate everything outside that area to form the breast boundary Ib

3. To locate the bottom breast boundary, from Ib, locate point (xt, yt) which defines the start point
of the inframammary folds

4. Trace the boundary of points bounded by coordinates (xt, yt) and find the first pixel for each
column. This results in the bottom boundary points (Xbottom, Ybottom)

5. Fit a second-degree polynomial to the points (Xbottom, Ybottom) and determine the left L = (xinterA,
yinterA) and right R intersection points of this curve with column x and xt as shown in Fig. 3b

6. Rotate the left intersection point (L = xinterA, yinterA) −15 degrees about point (xn, yn) and define
the new point L = (xinterB, yinterB) as the intersection of a straight line from (xn, yn) with the curve

7. Engrave the curve onto the image Ie along with the straight line from (xn, yn) to form Ieng

8. Perform morphological closing, dilation and imfill to form a ROI mask, as depicted in Fig. 4
9. Impose the mask onto the original image to form a ROI image
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The same steps were used for the left-side segmentation but considering some coordinates opposite
the right-side view.

Figure 4: Generated binary masks and ROI for: (a) the right breast; (b) left breast

3.3 Feature Extraction

3.3.1 Textural Feature Extraction

Texture, which characterizes the spatial organization of pixel values, plays a vital role in thermal
image analysis for breast cancer detection, as it can reveal important information about disease
progression [20]. The Gray Level Co-occurrence Matrix (GLCM) technique considers the spatial
relationship between pixel intensities [21]. It generates a feature matrix describing the image’s texture.
In this study, 26 distinct GLCM features were derived from each ROI of breast thermograms. These
features, such as contrast, homogeneity, cluster shade, sum entropy, sum variance, and difference
entropy, were extracted to capture the complexity and heterogeneity of breast tissue, which is crucial
for cancer detection [22].

3.3.2 Feature Selection

The Mutual Information (MI) approach was employed for feature selection. This technique
quantifies how well a feature distinguishes between healthy and malignant cases, thus helping to
identify features with low discriminative power. By eliminating these uninformative features, this can
reduce the dimensionality of the feature space, potentially improving classifier performance [23]. The
feature selection was performed independently for both left and right lateral thermograms using
a threshold value of th = 0.05. This threshold helped eliminate features with low relevance for
cancer classification. The remaining informative features were then combined to form a composite
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feature vector, capturing the salient characteristics of both breasts. This approach resulted in a highly
informative feature set.

3.4 Classifier

To detect breast cancer, we trained two binary classifiers: a K-Nearest Neighbors (KNN) and a
Multi-Layer Perceptron (MLP). These classifiers were trained on a composite feature vector, which
combined textural, morphological, and statistical features extracted from the left and right breast
ROIs. To optimize classifier performance, we employed a 10-fold cross-validation process on the
training set (80% of the data). Hyperparameters, which are settings within the models, were adjusted
during this process. Finally, the classifiers were evaluated on the remaining 20% of the test set. The
effectiveness of the approach was assessed using various performance metrics: precision, accuracy,
F1-score, recall, and Area Under the Curve (AUC). The best performing classifier’s results were then
compared with existing literature to evaluate its effectiveness in breast cancer detection.

4 Results
4.1 Segmentation Results

Fig. 5 depicts the patient’s original breast thermograms and the ROIs segmented by the proposed
method. Nevertheless, the dataset used in this work does not have ground truths for validation. As
a result, they were manually created. These were used to validate the method based on two image
similarity metrics: Dice Index (DI) and the Jaccard Index (JI). These are widely used metrics for
validating segmentation results. They directly compare a ground truth Igt and our method’s ROI Iexp.
They compute the fraction of intersecting and non-intersecting segments and ground truth. They are
theoretically specified in Eqs. (5) and (6).

Figure 5: Segmentation results for a particular instance: (a) right breast (b) left breast
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Jaccard Coefficient : J
(
Igt, Iexp

) =
∣∣Igt ∩ Iexp

∣∣∣∣Igt ∪ Iexp

∣∣ (5)

Dice Coefficient : D
(
Igt, Iexp

) = 2
∣∣Igt × Iexp

∣∣∣∣Igt

∣∣ + ∣∣Iexp

∣∣ (6)

It should be noted that all of the segmented images and ground truths are compared in binary
form, with white pixels representing the ROI. Fig. 6 depicts the overlap between the ground truth
and the generated ROI, and the associated Jaccard and Dice scores for each case. The white region
represents the True Positives (TP), the magenta region represents False Negatives (FN), the green
region shows the False Positives (FP), and the black pixels for True Negatives (TN). In this instance,
the TP area dominates most of the region, resulting in high Dice and Jaccard scores, signifying more
similarity between the ground-truth and the segmented ROI.

Figure 6: Similarity measures between ground-truth and generated ROI: (a) right breast and (b) left
breast

The other performance metrics used in this work are sensitivity (sens), precision (prec), speci-
ficity (spec), accuracy (acc), and Matthews Correlation Coefficient (MCC), which are defined from
Eqs. (7)–(12).
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Accuracy = TP + TN
TP + TN + FP + FN

(7)

F1 Score = 2 × TP
2 × TP + FP + FN

(8)

Specificity = TN
TN + FP

(9)

Sensitivity = TP
TP + FN

(10)

Precision = TP
TP + FP

(11)

MCC = (TP × TN) − (FN × FP)√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

(12)

The approach maintained consistent performance across all metrics on both sides of the breast,
as presented in Table 1.

Table 1: Performance of the segmentation method

Side Jaccard index (%) Dice index (%) MCC

Left 87 93 0.92
Right 84 91 0.90
Avg 86 92 0.91

4.2 Classification Results

ROIs from left and right lateral view thermograms were used for feature extraction. Each lateral
view yielded 26 GLCM texture features, yielding 52 features. The MI was used to perform feature
selection on each view separately. As already discussed, features with MI< 0.05 were dropped leaving
only the more significant ones. As seen in Table 2, this greatly reduced the feature vector to 19. Only
9 GLCM features proved superior in discriminating the healthy class from the unhealthy class in the
right-view breast thermogram, whereas the left side had only 10.

Table 2: Feature selected through mutual information

Left side thermograms Right side thermograms

Homogeneity Kurtosis
Kurtosis Homogeneity
Variance Correlation
Mean Variance
Std Energy
Skewness Std

(Continued)
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Table 2 (continued)

Left side thermograms Right side thermograms

Correlation Mean
Contrast Skewness
Energy Entropy
Entropy

The composite feature vector was used to train two classifiers to detect breast cancer: MLP and a
KNN. The performance results for these models are summarized in Table 3. Fig. 7 depicts their ROC
curves.

The MLP outperformed the KNN classifier.

Table 3: Performance of the segmentation method

Model Sen. (%) Spec. (%) Prec. (%) Acc. (%) F1 score MCC AUROC

MLP 83 100 100 86 0.91 0.65 0.917
KNN 79 100 100 81 0.88 0.51 0.895
Note: Precision (Prec.), Sensitivity (Sen.), Accuracy (Acc.), Specificity (Spec.).

Figure 7: (Continued)
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Figure 7: ROC curves for the classifiers: (a) MLP and (b) KNN

5 Discussion

In this study, we proposed a method for automatically segmenting and detecting breast cancer
from lateral thermograms. First, ROIs were extracted from each image view. Then, manually generated
ROIs were used to validate the auto-segmented ROIs based on image similarity metrics. The average
similarity between the ground-truth and auto-segmented ROI based on the Jaccard index and Dice
score was 86% and 92%, respectively. The model performed consistently on both left and right
view thermograms. This is evidenced by the low standard deviation of the Jaccard index (left-side:
σJL = 0.07, right-side: σJR = 0.106) and Dice score (left-side: σDL = 0.045, right-side: σJR = 0.106).
These results demonstrate that the model’s accuracy in segmenting the left and right view thermograms
was stable across multiple instances. The observed slight differences in performance between the
left and right view thermograms could be attributed to variations in the patient’s orientation during
acquisition.

After extracting GLCM textural descriptors from the ROIs, the MI was calculated from the
GLCMs of each view. This MI helped select the most significant features for differentiating between
healthy and malignant tissue. As shown in Table 2, the left view thermograms offered more distinguish-
ing features (healthy vs. malignant) compared to the right view (only nine features). These informative
features from both sides were then combined into a composite feature vector for training a KNN
and a MLP classifier. Table 3 summarizes the performance of the KNN and MLP models on the
test set. The KNN achieved a high AUC score, indicating strong performance in identifying positive
cases (malignant). However, this came at the expense of a high false negative rate (i.e., low TN),
meaning it missed a significant number of actual malignant cases. This could be attributed to the
class imbalance in our dataset, with more malignant cases than healthy ones. The MLP, on the other
hand, outperformed the KNN across all metrics.
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While the MLP outperformed the KNN across all metrics, most existing investigations, as shown
in Table 4, relied on GLCM features or their derivatives (i.e., Haralick features). This is likely due to
the valuable information GLCM features provide about the spatial relationships between pixels in an
image. It is important to note that some related works as shown in Table 4 did not mention using feature
selection. This is a crucial step in machine learning, as it reduces model complexity by selecting only
the most informative features. Irrelevant features can introduce noise and lead to overfitting on the
training data, ultimately increasing generalization error. Additionally, hyperparameter optimization
could have further improved performance. Hyperparameters are settings within the machine learning
model that can significantly influence its outcome. Despite using only lateral view thermograms,
our work achieved competitive results with an accuracy of 86% and an AUC of 0.92. We believe
incorporating features from the corresponding frontal thermograms could further enhance these
promising results.

Table 4: Comparison of the method with related works

Ref. Descriptors Feature
selection

Size of dataset View(s) Model. Sen.
(%)

Spec.
(%)

Prec.
(%)

Acc.
(%)

AUC

Ours GLCM MI 101 (75 healthy,
26 sick)

Left-90°,
right-90°

MLP 83 100 100 86 0.92

[11] GLCM, GLSZM,
GLRLM, and
NGTDM

t-test 63 (32 normal,
31 abnormal)

Front,
left-90°,
right-90°

LS-SVM 92 100 100 96 –

[16] GLCM, area-based,
and average
intensity-based

– 100 (50 malignant,
50 benign)

Front SVM 91 92 – 91.5 –

[24] Haralick, Hu’s
moment, deviation
of shape, and
vascular

– 155 (81 normal, 74
abnormal)

Front MLP 90.6 91.3 92.8 90.9 0.94

[25] GLCM K-means 100 (45 abnormal,
55 normal)

Front Bayes
network

95.5 100 100 98 0.99

[26] Shape FOS,
Haralick relation
context

– 63 (35 normal, 28
abnormal)

Front CNN 100 100 100 100 1

[27] Statistical, texture
and gabor

– – Front SVM 95 100 – 97 –

[28] Wavelet local energy RSFS and
GA

100 (47 abnormal,
53 normal)

Front SVM 87 94 – 91 –

Overall, this work proposes a novel, non-invasive method for early breast cancer detection using
thermography. By automating image segmentation and classification, it offers a complementary
tool for clinicians. This automation can reduce manual workload, promote consistent and accurate
results, and streamline the clinical workflow. The generated ROIs can allow radiologists to swiftly
identify suspicious areas, thus facilitating faster and more accurate diagnoses. Additionally, these ROIs
decrease the processing burden for classifiers by narrowing the analysis to relevant regions. Integration
of this approach to other CAD systems can further empower radiologists, reduce their workload,
and significantly improve diagnostic efficiency. Furthermore, the potential for self-screening with this
technology paves the way for increased patient autonomy and earlier detection of breast cancer.
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6 Conclusion

Accurate segmentation of the ROI in breast thermograms is crucial for effective breast cancer
detection. However, achieving high accuracy in this process can be challenging. In this study, we
proposed a polynomial fitting-based approach for extracting the ROI from both left and right
lateral breast thermograms captured at a 90-degree angle. The method achieved high reliability,
with an average Jaccard score of 87.2% and an average accuracy of 98.3%. Following segmentation,
textural descriptors were extracted from the ROIs. Then the MI was employed to select the most
relevant GLCM features for differentiating between healthy and malignant tissue. A combined feature
vector comprising ten GLCM features from both left and right breasts was used to train KNN and
MLP classifiers. The MLP classifier achieved promising results, demonstrating 80% specificity, 93%
sensitivity, 90% accuracy, and an AUC of 0.85. Addressing the class imbalance in the dataset and
incorporating features from frontal thermograms could potentially improve these results, as frontal
views offer more additional information. Future work will explore the adoption of deep learning
techniques, which can perform automatic feature extraction. Additionally, we aim to investigate the
use of optimization algorithms to refine model performance and potentially reduce the dimensionality
of the dataset.
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