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ABSTRACT

Due to the limitations of a priori knowledge and convolution operation, the existing image restoration techniques
cannot be directly applied to the cultural relics mural restoration, in order to more accurately restore the original
appearance of the cultural relics mural images, an image restoration based on the denoising diffusion probability
model (Denoising Diffusion Probability Model (DDPM)) and the Transformer method. The process involves two
steps: in the first step, the damaged mural image is firstly utilized as the condition to generate the noise image,
using the time, condition and noise image patch as the inputs to the noise prediction network, capturing the
global dependencies in the input sequence through the multi-attention mechanism of the input sequence and feed-
forward neural network processing, and designing a long skip connection between the shallow and deep layers
in the Transformer blocks between the shallow and deep layers using long skip connections to fuse the feature
information of global and local outputs to maintain the overall consistency of the restoration results; In the second
step, taking the noisy image as a condition to direct the diffusion model to back sample to generate the restored
image. Experiment results show that the PSNR and SSIM of the proposed method are improved by 2% to 9% and
1% to 3.3%, respectively, which are compared to the comparison methods. This study proposed synthesizes the
advantages of the diffusion model and deep learning model to make the mural restoration results more accurate.
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1 Introduction

As a cultural heritage of a country or region, ancient frescoes carry a wealth of social, religious,
and historical information. However, due to the long-term influence of environmental factors, mural
images are usually faded or even mutilated. With the rapid development of artificial intelligence,
intelligent restoration technology has attracted extensive attention from researchers [1,2].

In the field of image restoration, traditional deep learning techniques like Convolutional Neural
Networks (CNNs) and Generative Adversarial Networks (GANs) [3] have achieved significant results.
CNNs, with their hierarchical feature extraction and reconstruction capabilities, can effectively restore
local structures and textures of images. GANs, through adversarial training between the generator and
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the discriminator, can produce repair results that are highly like the original images. However, these
traditional methods still have limitations when dealing with complex image structures and textures. For
example, CNNs primarily focus on local information when processing images, making them relatively
weak in capturing global dependencies. This can lead to difficulties in maintaining consistency between
the restored areas and the surrounding regions in images with complex structures and textures.

To solve these problems, the Transformer [4] structure emerges due to its powerful global
information-capturing ability and self-attention mechanism. The Transformer overcomes the limi-
tations of CNNs in terms of restricted receptive fields and uses attention mechanisms to achieve
dynamic interaction and computation of features from different regions of the image. This improves
the quality and efficiency of image restoration. Notably, the ViT (Vision Transformer) model proposed
by Dosovitskiy et al. [5] applies the Transformer to images. Through global attention mechanisms, it
captures global information in images, providing the model with a larger receptive field and greater
flexibility in the restoration process.

In addition, the diffusion model, as an emerging generative model, also shows great potential in
the field of image restoration. Diffusion models transfer pixel information from neighboring regions
by designing diffusion functions to fill in missing pixels and restore image integrity. Compared with
GAN, diffusion models have better generalization ability and stability, and they can generate high-
quality restoration results [6]. In particular, the Denoising Diffusion Probabilistic Model (DDPM)
[7] generates samples through an iterative denoising process [8], making the generated images more
coherent and realistic in both detail and global structure [9].

Currently, research combining diffusion models [10] and Transformers [11] is relatively limited
and still faces issues such as insufficient detail, limitations in capturing global structure, and lengthy
training processes. In this study, we propose a Transformer and DDPM-based picture restoration
model. This model combines the global information-capturing ability of the Transformer with the
high-quality generation capability of DDPM. It aims to address key issues in the restoration of ancient
mural images, such as the recovery of missing textures and the improvement of incomplete data
coverage. By introducing ViT as the core structure and incorporating DDPM’s denoising diffusion
process, our model can adaptively adjust the scale of the attention mechanism during the restoration
process. This enables better handling of image restoration tasks of varying sizes and complexities.
Next, we describe in detail the structure, working principle, and experimental validation results of
the model.

In conclusion, the main contribution of this work is four-fold:

1. We propose a method of cultural relics image restoration based on the diffusion model and
ViT for the problems of missing structure and texture and incomplete data coverage of cultural
relics murals due to improper preservation.

2. We design forward diffusion and backward sampling to guide the restoration, where in forward
diffusion the information is better extracted through VIT to capture the image to generate a
clear textured restoration image to restore the original appearance of the heritage mural image
in a more reasonable way. Additionally, we utilize long skip connections between the shallow
and deep layers of ViT, enabling the model to use low-level features more effectively for pixel
prediction training.
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3. Before the output, we add a 3 × 3 convolution block to prevent artifacts that might appear in
images generated by the Transformer. By adjusting different forms of model parameters, we
address issues of image quality degradation and excessive processing time that deep learning
models might encounter in image restoration.

4. We optimized the loss function and dynamically adjusted the focus on different image regions
to better measure the difference between the restoration results and the original murals.
Extensive experiments validate that our proposed framework significantly outperforms the
existing state-of-the-art methods.

2 Related Work

Among the image restoration based on diffusion modeling, the U-Net network architecture with
CNN as the core is often used for the noise estimation of inverse generated images. In the forward
process, the diffusion model aims to convert the original image to a full Gaussian noise image,
however, this approach suffers from the problem of multiple sampling steps and long sampling time
during the inference process, which leads to the high time cost of the inference process and restricts
the scope and effectiveness of its application [12]. Resolving how to converge to a specific prior
distribution in the expected time [13] as well as incorporating adaptive mechanisms are key issues
that need to be addressed nowadays. In noise prediction by diffusion modeling, it is usually necessary
to model complex data including spatial and temporal variations as well as possible sources of noise,
and traditional methods may be limited by the fact that feature extraction does not allow for good
restoration of mural images, whereas the use of ViT is able to better capture global information
and local structure in the image. We propose an improved denoising diffusion probabilistic model
that combines the forward diffusion and backward generation processes, denoising by iteration,
and generating samples using a standard Gaussian distribution so that they gradually evolve into
samples that conform to the empirical distribution. In the improved denoising diffusion probabilistic
model, the input data in the forward diffusion phase corrupts the original data by gradually adding
Gaussian noise, and the added noise level is dynamically estimated by means of a Transformer-based
noise estimation network. While in the reverse diffusion stage, the task of the generative model is to
learn the reverse diffusion process to recover the original input data from the noisy data, through
introducing the idea of reverse denoising and combining the noise estimation network, it can capture
the potential distribution of the original data more efficiently, so as to improve the performance of
the generative model and the quality of the generated samples. This integration not only improves the
quality of restoration but also accelerates the restoration process, making our method more efficient
and practical for handling large-scale mural restoration tasks.

2.1 Forward Diffusion

The forward diffusion process is defined as a Markov chain, where Gaussian noise is continuously
added to successive nodes to obtain noisy samples, which in turn gradually transforms the Gaussian
noise distribution into a distribution of data on which the generative model is trained. Specifically,
as shown in Fig. 1, given a data sample x0 ∼ xN, where x0 is the original image and xN is the image
corresponding to the Nth moment of added noise.
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Figure 1: Image noise schematic map

The forward additive noise t-moment process is defined as:

xt = √
αtxt−1 + √

1 − αtε, αt = 1 − βt (1)

where xt is the added noise data at moment t, t ∈ {0, 1, 2, · · · , T}, T is the number of times the noise is
added, is the noise added at moment t, obeys Gaussian distribution, αt is the initialized value, which is
the empirical value, βt increases linearly from 0.0001 to 0.002 during forward diffusion, ε is the noise,
obeys Gaussian distribution. In the forward diffusion process, the later the moment, the more closely
the noise data is related to the noise increased in the previous moment. According to the Markov chain,
the state xt−1 is denoted as:

xt−1 = √
αt−1xt−2 + √

1 − αt−1ε (2)

xt = √
αt

(√
αt−1xt−2 + √

1 − αt−1ε
)

+ √
1 − αtε (3)

where ε ∼ N (0, I) can also be expressed as:

xt−1 = √
αtαt−1xt−2 + √

1 − αtαt−1ε (4)

further the relationship between xt and x0 is obtained as:

xt = √
αtx0 + √

1 − αtε. (5)

where αt = ∏t

i=1 αi.

2.2 Reverse Generation

The forward diffusion process results in a data that nearly obeys a Gaussian distribution, and the
inverse diffusion process recovers the original data from Gaussian noise, generating original images
for learning a parameterized posterior distribution pθ (x0|xt) through xt. Assuming that the inverse
process q (xt−1|xt) is obtained, it is possible to gradually reduce an image through random noise xt.
The DDPM uses the neural network pθ (x0|xt) to fit the inverse process q (xt−1|xt), with the formula:

q (xt−1|xt, x0) = N
(

xt−1|μ (xt, x0) , β̃tI
)

(6)

can be deduced:

pθ (xt−1|xt) = N

(
xt−1|μθ (xt, t) ,

∑
θ

(xt, t)

)
(7)
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where β̃t = 1 − αt−1

1 − αt

· βt, solve the equation by Bayesian formula:

μt (xt, x0) =
√

αt (1 − αt−1)

1 − αt−1

xt +
√

αt−1βt

1 − αt

x0 (8)

αt and αt depend only on βt and it follows from the forward diffusion to express x0 as:

x0 = 1√
αt

(
xt −

√
1 − αtε

)
, ε ∼ N (0, I) (9)

by combining Eqs. (7) and (8), a mean value, that depends only on xt, results:

μt (xt) = 1√
αt

(
xt − βt√

1 − αtε

)
(10)

thus, a neural network εθ (xt, t) can be used to approximate ε and obtain the average of the following:

μt (xt, t) = 1√
αt

(
xt − βt√

1 − αt

εθ (xt, t)
)

(11)

where ε is the noise value predicted by the trained model. Actually, to predict the noise more accurately,
a noise prediction network εθ (xt, t) is used to learn E [ε |xt ] by minimizing the objective function
minEt,x0,ε ‖ε − εθ (xt, t)‖2, where t is uniformly distributed between 1 and T. To learn the conditional
diffusion model, this paper further inputs the conditional information c into the noise prediction
objective function:

minEt,x0,c,ε ‖ε − εθ (xt, t, c)‖2 (12)

The image recovered after the noise value is obtained using the noise estimation training model in
this paper, as shown in Fig. 2.

Figure 2: Image conditional diffusion model map
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3 Noise Estimation Based on Transformer

ViT can better capture the global information and local structures in images. Additionally, ViT
offers better generalization capabilities because instead of relying on fixed-size filters like traditional
convolutional neural networks, it processes input sequences through a self-attentive mechanism, which
makes it more flexible with respect to the length and size of the inputs. For this purpose, a simple and
generalized ViT-based architecture noise estimation network is improved in this paper, as shown in
Fig. 3. The model follows the transformer’s design approach, taking all inputs, including temporal,
conditional, as well as noisy picture patches as markers, using long jump branch between shallow and
deep layers. The architecture allows for more efficient training of pixel prediction targets using low
level features. In addition, to prevent possible artifacts in the image generated by the Transformer [14],
we added a 3 × 3 convolution block before the output. From experiments, the visual quality of the
model-repaired images was improved.

Figure 3: Noise estimation network structure map

The model is a simple generalized backbone network for image generation diffusion models is
shown in Fig. 3. Given time t, condition c (discrete text converted to embedded sequences via CLIP
encoder, aligned with stabilized diffusion, and input as a tagged sequence), alongside the noisy images
xt as input, and estimates the noise infused within xt. Following ViT’s design, images are segmented into
homogeneous blocks, transformed into a sequence, and combined with time, condition, and blocks
as inputs. The input sequence is then processed with a multi-head attention mechanism and a feed-
forward neural network to enable the model to capture global dependencies in the input sequence and
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use stacking of multi-layer Transformer blocks to incrementally improve the feature representation at
higher levels. To enhance the information delivery and reduce the information loss, we apply long
jump branch between Transformer blocks by learning the ideas in U-Net of CNN. This branch
allows shallow information to be passed directly to deeper layers, effectively preserving the low-level
feature information of the image, and providing efficient paths for low-level features, thus simplifying
the training process of the noise prediction network. The output of Transformer blocks is mapped
to a spatial representation of the noisy image and features are further processed through a 3 × 3
convolutional layer to improve the model’s ability to capture image details.

In Section 3.1, we present a specific instantiation of our model, detailing its core components and
architecture. Subsequently, in Section 3.2, we delve into evaluating the model’s scalability potential,
focusing on the influence of architectural dimensions such as depth, width, and patch size on its
performance.

3.1 Concrete Realization

To make the model more effective, this paper conducts a systematic empirical study on its
key elements and conducts ablation experiments on this paper’s dataset, evaluating the FID scores
of 1 K generated samples every 5 K training iterations, and selecting the optimal effect through
the experiments.

We investigate various strategies for integrating the long skip branch within our Transformer
architecture. Specifically, we consider the main branch embedding hm and the long skip branch
embedding and the long skip branch embedding hs, both of which reside in RH×W . Prior to passing these
embeddings to the subsequent Transformer block, we explore five fusion approaches: (1) concatenating
hm and hs followed by a linear projection (Linear (Concat(hm, hs))), (2) direct element-wise summation
(hm + hs), (3) applying a linear projection to hs prior to summation (hm + Linear(hs)), (4) summing
the embeddings and then applying a linear projection (Linear(hm + hs)), and (5) a baseline scenario
without the long skip branch for comparative analysis. Notably, the direct summation of hm and hs

(i.e., hm + hs) solely modulates the contribution of hs in a linear fashion, leaving the fundamental
network architecture unaltered. In contrast, all alternative fusion strategies involving the long skip
branch demonstrate enhanced performance compared to the absence of such a connection. As shown
in Fig. 4a, the approach that concatenates hm and hs followed by a linear projection emerges as the
most effective, suggesting that this method is particularly adept at leveraging the complementary
information from both branches.

In investigating the enhancement of our model, we evaluated two methodologies for integrating
an additional convolutional layer following the Transformer block: (1) The first method involved
appending a 3 × 3 convolutional block following the linear projection step, which converts token
embeddings into image patches, as illustrated in Fig. 4b. (2) Before linear projection, adding a 3 × 3
convolutional layer, and the one-dimensional sequence of label embeddings needs to be rearranged into
two-dimensional feature map of dimensions H/P × W/P × D, with P represents the size of the patches.
(3) Additionally, comparisons were made for the situation in which no additional convolutional
layers were added. According to the results in Fig. 4b, the method of adding 3 × 3 convolutional
layers following the linear transformation exhibits marginally superior performance to the remaining
two alternatives.
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Figure 4: Alate design choices map, (a) Combine long skip branch (b) Add an extra convolutional
block (c) Feed time into the network (d) Different forms of patch embedding (e) Different forms of
position embedding

To incorporate temporal information into the network, we evaluate two different methods for
inputting the time variable t: (1) Consider it as a marker, as shown in Fig. 4c. (2) Merge the layer-
normalized times into the Transformer block [15], analogous to the adaptive group normalization
employed within U-Net [16]. Another method uses adaptive layer normalization (AdaLN). Use the
normalization operation: AdaLN (h, y) = ysLayerNorm (h) + yb, within the Transformer block, we
embed the input as h, and subsequently derive ys and yb through a linear projection of the temporal
embedding. Despite the relative simplicity of the AdaLN approach, the first approach, which treats
time as a marker, outperforms AdaLN as shown in Fig. 4c.

We delve into the nuances of patch embedding by examining two distinct variants. (1) The original
approach employs a linear projection to transform each patch into a labeled embedding, as illustrated
in Fig. 4d. (2) We employed a sequence of 3 × 3 convolutional blocks, followed by a 1 × 1 convolutional
block, to map images into token embeddings. In contrast, the results indicate that the conventional
patch embedding method outperforms this approach.

We delve into the realm of positional embedding variants, exploring two distinct methodologies
tailored for our image restoration framework: (1) Firstly, we adopt the ubiquitous one-dimensional
learnable positional embedding, which is the default setting used in this paper and proposed in
the original ViT, (2) The second variant utilizes a 2-dimensional sinusoidal positional embedding,
constructed by concatenating the sinusoidal embeddings of coordinates i and j for each patch located at
(i, j). According to the results in Fig. 4e, the former performs better than the latter, and it is found that
the model is unable to generate meaningful images after trying it without any positional embedding,
which proves that positional information is crucial in image generation.
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3.2 Influence of Depth, Width, and Patch Size

We demonstrate the scalability of our proposed model through a meticulous investigation encom-
passing its depth, quantified by the number of layers, its width, defined by the hidden layer size D, and
the granularity of its input, characterized by the patch size. As shown in Fig. 5, the best performance
was achieved at a depth of 14 in the 5 K iterations of the experiment, which shows that the depth is
not positively correlated with the performance of the model, i.e., the model does not benefit from a
greater depth. Analogously, augmenting the width dimension, specifically the hidden size, from 256
to 512 yields a noticeable performance enhancement. However, further escalation to 768 does not
yield any discernible gains, indicating a saturation point in the model’s capacity to leverage additional
width for improved performance. On the other hand, a smaller patch size consistently improves the
performance. In contrast, high-level tasks (e.g., classification) may require larger patches. In practice,
due to the high dimensionality of the image data, there may be an increase in cost when using smaller
patch values for training, and therefore it is recommended to downscale the image data before using
the model.

Figure 5: Influence diagram of different factors, (a) Width (b) Depth (c) Patch size

3.3 Optimizing Denoising Losses and Estimating Distribution Functions

To better accomplish the repair task based on the diffusion model, in this paper, we refine our
diffusion model’s learning process by incorporating two distinct objective functions. The primary
objective function implements a straightforward denoising loss, which is computed given a reference
output image x and a randomly selected time step t, the reference image with a noisy version is
generated as follows:

x′ = √
αtx + √

1 − αtε (13)

take T to be 500. We train our conditional diffusion model to faithfully reconstruct the reference image
x under the influence of the conditional feature c and the time step t as follows:

Lsimple = Et,x0,c,ε[‖ε−εθ (xt ,t,c)‖2] (14)

based on the enhanced denoising diffusion model, we further train the network to predict the variance∑
θ
(x′, c, t), which not only improves the fidelity of the reconstructed image, but also helps to improve

its log-likelihood. The conditional diffusion model additionally outputs the interpolated coefficients
s for each dimension and converts the output to variance as follows:∑

θ
(x′, c, t) = exp

(
v log βt + (1 − s) log β̃t

)
(15)
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where βt and β̃ denote the upper and lower limits of the variance, respectively. The second objective
function directly optimizes the KL scatter between the estimated distribution pθ (xt−1|xt, x0) and the
diffusion posterior q (xt−1|xt, x0) with the following formula:

Lvlb = KL (pθ (xt−1|xt, x0) ‖q (xt−1|xt, x0)) (16)

The total loss function is the weighted sum of the two objective functions, formulated as follows:

L = ηLsimple + λLvlb (17)

where η and λ are the weight parameters of the balanced loss function, the improved loss function
improves the performance of the network model, accelerates the convergence speed of the algorithm,
which improves the efficiency of training when η = 0.4, λ = 0.6 is adjusted through experiments.

4 Experiments and Analysis

To verify the restoration effect of the restoration method proposed in this paper on ancient mural
images, and to compare and analyze it with existing restoration methods we conducted experiments
on the dataset of this paper, the specific experimental process is as follows.

4.1 Data Sets and Experimental Environments

Due to the scarcity of cultural relics mural data set, this paper selects the training data set from
the official website of Dunhuang Research Institute and the official website of Shanxi Museum to
provide 4000 images of cultural relics mural with different resolution synthesized into a training
dataset, through data augmentation to ultimately obtain 10,000 cultural relics images with varying
resolution. We firstly manually screened 4000 images with different resolutions, eliminated images with
too much single color and too much irrelevant content, and then augmented the images to generate a
large dataset of 10,000 images of cultural relics.

4.2 Evaluation Indicators

We used 2 types of subjective and objective evaluations to validate the method. Subjective
evaluation is done by observing the texture and color information of the generated image, objective
methods are evaluated by peak signal-to-noise ratio and structural similarity (SSIM), peak signal-to-
noise ratio (PSNR) and Fréchet Inception Distance (FID) evaluating the strengths and weaknesses
of each algorithm. PSNR mainly estimates the noise fidelity of the reconstructed image, the higher
the value, the better the quality of the reconstructed image. SSIM combines three factors: brightness,
contrast, and structure. The mean is used as an estimate of brightness, the standard deviation as an
estimate of contrast, and the covariance as an estimate of structural similarity. The value range is
between [0, 1]. The closer the result is to 1, the better the reconstructed image quality is. FID calculates
the similarity between advanced features of the image, and the smaller the value, the higher the degree
of similarity.

4.3 Experimental Results Analysis

For objective comparison of restoration results of image restoration methods, the comparison
methods in this paper use the same input data. The following experiment is the method of this
paper with the hierarchical Transformer-based image restoration method [17]; Based on generative
adversarial networks to generate high quality restored images by matching and correlating background
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patches method Contextual Attention [18]; Shift-Net, a deep learning method that combines a priori
information [12]; Global Uniform and Local Continuity (GU&LC) combining global uniformity
and local continuity based on the relationship implied between linear systems and image restoration
[19] and a comparison of the probabilistic diverse GAN method PD-GAN [20] for image repair on
irregularly corrupted images of this dataset.

4.3.1 Repair of Scratches and Damages of Different Sizes

This section compares the restoration results of each method on murals with different scratches
that conform to realistic scenarios. Combining the characteristics of irregular area and discontinuous
damaged area of cultural relics, Fig. 6 shows the restoration results of each method.

Figure 6: Comparison of repair results of different algorithms for real damaged scenes

We compare the image reconstruction effect when the methods are of the same magnification by
subjective evaluation method, which mainly observes the texture information and color brightness of
the generated image. As seen in Fig. 6b, the hierarchical Transformer-based method repairs scratches
with larger area better, however, it still fails to repair smaller scratches completely. As shown in Fig. 6c,
compared to the previous method, the Contextual Attention method scratch repair is more complete,
but there are still details that are partially repaired that are not reasonable, probably because the model
produces inaccurate results in predicting the structure of larger damaged areas. As can be seen in
the third image, this is particularly evident when the known region does not provide enough a priori
information. As seen in Fig. 6d, the Shift-Net method performs well overall, successfully repairing the
basic scratches and broken parts, and the color remains largely unchanged significantly. however, the
lack of contextual semantic information in the repair region rubs off the texture of the image, resulting
in detail not being visible. Especially in the first image, the Shift-Net model has changed less based on
the original color and still shows a dark and old feeling, while in the third image the basic scratches
of the image are all restored, but the detailed part of the restoration does not look natural. As seen
in Fig. 6e,f, the restoration quality of the GU&LC method and the PD-GAN method is relatively
high, and the detail restoration of the GU&LC is still not as natural as that of this paper despite
the elimination of artifacts. The PD-GAN method excels in the completeness and rationality of the
restoration results in terms of context, while more detailed comparisons and improvements in detail
and color are still needed. Further observation of Fig. 6g, this paper’s method in the realization of
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the texture becomes clear at the same time, it also highlights the vivid colors of the image, so that
the original dim image of cultural relics regained its former glory. The method in this paper is better
than other methods for image restoration of this dataset, and the restoration results are semantically
coherent, with fewer artifacts and duplicate textures, and better metrics and visual effects are achieved.

The quantitative evaluation of repair indexes of each method is shown in Table 1, the method of
this paper is optimal in PSNR, SSIM performance, compared with other methods, the PSNR indexes
were improved respectively by 9.01%, 5.42%, 2.11%, 3.32% and 1.51%. SSIM indicator has improved
by 1.87%, 3.31%, 2.67%, 3.48% and 1.89%. The above results show that the method of this paper has
outstanding structural recovery ability for scratched and damaged cultural relics, and the recovery of
texture and color is also more reasonable, which has a very good restoration effect.

Table 1: This method and other methods for scratch damage repair results

Method PSRN/dB SSIM

Based on hierarchical Transformer [17] 28.6570 0.8756
Contextual-Attention [18] 29.6303 0.8634
Shift-Net [12] 30.5930 0.8688
GU&LC [19] 30.2321 0.8620
PD-GAN [20] 30.7720 0.8754
Proposed 31.2376 0.8920

4.3.2 Restoration of Natural Weathering Dislodgement

The experiments in this section focus on two types of restoration effects: large weathering and
shedding repair and small weathering and shedding repair. Observe whether the restored image
outlines the object of the painting clearly, whether the color contrast is sharp, and whether its texture
is relatively reasonable. Therefore, the experiments in this section are trained using the images of figure
murals in the dataset with large weathering and shedding areas of 30% to 40% and small weathering
and shedding areas of 5% to 10%. This was done to ensure consistency and reproducibility of the
experiments and to focus on specific types of artifact images. The experimental results are shown
in Figs. 7 and 8. From Fig. 7, the method of this paper grasps the global information of the large
weathered and detached parts very well, and the texture is clear, but a small part of it will be slightly
distorted. As shown in Fig. 8, in the small area of detachment area, this paper’s method also well
restored the missing part of the image, perfected the integrity of the mural, improved the color contrast
compared to a larger area of broken, no distortion, the restoration results of the structure of the
coherent and in line with the context of the semantic information. From the data in Table 2, the PSRN
index of large weathering shedding loss compared to other methods. It respectively increased to 2.5523,
2.3094, 0.3762, 0.9981, and 0.5502 dB. The SSIM metrics improved by 0.0290, 0.0490, 0.0199, 0.0287,
and 0.0164, respectively. The PSRN metrics for small-area weathering and shedding loss increased
by 1.9977, 2.6687, 0.6686, 1.3537, and 0.9058 dB, and the SSIM metrics improved by 0.0307, 0.0537,
0.0246, 0.0334, and 0.0211. We can see that small areas are better restored than large areas.
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Figure 7: Large area off repair effect diagram

Figure 8: Small area off repair effect diagram
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Table 2: The results of this method and other methods are different in size of needle damage repair

Method Large area off Small area off

PSRN/dB SSIM PSRN/dB SSIM

Based on hierarchical Transformer [17] 28.3241 0.8630 29.2343 0.8660
Contextual-Attention [18] 28.5670 0.8430 28.5633 0.8430
Shift-Net [12] 30.5002 0.8721 30.5634 0.8721
GU&LC [19] 29.8783 0.8633 29.8783 0.8633
PD-GAN [20] 30.3262 0.8756 30.3262 0.8756
Proposed 30.8764 0.8920 31.2320 0.8967

4.3.3 Ablation Experiment

To further validate the effectiveness of our proposed image restoration method for artifacts and
the contribution of each component, we conducted a series of ablation experiments. This experiment
aims to analyze the effect of different modules and steps on the restoration results, first, we evaluate the
effect of using only the denoising diffusion model for the image restoration of artifact murals. In this
experiment, long skip connections were removed and additional added 3 × 3 convolutional machine
layers were removed to determine the repair ability of the denoising diffusion model itself and to
analyze the effect of having or not having long skip branch and adding additional convolutional layers
on the repair effect. To verify its ability to improve the accuracy of noise estimation. The experimental
results are shown in Table 3 for the performance of different modules on this dataset.

Table 3: The performance of different modules

PSRN/dB SSIM FID

Base model 28.302 0.834 7.32
Removal of LSC 28.653 0.854 6.78
Remove of extra coiler layer 29.042 0.876 5.95
Full-scale model 30.030 0.908 5.48

The experimental results are shown in Table 3, the addition of long skip connections in the noise
estimation network is 0.74 dB better than no long skip connections in PSRN and 0.042 better in SSIM.
Adding the extra coiler layer is going to improve over the baseline model by 0.351 dB on PSRN and
0.02 on SSIM. Both add improvements on PSRN of 1.728 dB and 0.074 on SSIM. FID was reduced
by 1.84. As shown in Fig. 9, After removing the LSC module, it is evident from the comparative images
that while the repaired result image exhibits clear color contrast and higher saturation, there are still
structural deficiencies present. Compared to LSC, the impact of the additional convolutional layer
is relatively minor. From the comparative images, it is apparent from the restoration of the cultural
relic mural that although the removal of this module results in a coherent image with well-done detail
restoration, the color contrast is not as distinct. The repair result of adding 2 modules at the same time
is optimal in all 3 metrics, and the repair result is optimal.
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Figure 9: Visual effects of different modules in the restoration of cultural relics murals

5 Conclusions

This paper proposes and achieves a new method for restoring images of cultural relics, which
aims at restoring the original appearance of mural images of cultural relics in a more rational way
through fine steps and techniques. The noise is mainly estimated by the noise prediction network
in the forward diffusion model. The improved Transformer module proposed can process the image
information efficiently, due to the long skip connection that can reduce the problem of information
loss brought about by the process of multiple up-sampling and down-sampling, which enables the
efficient Transformer module to improve the effect of intelligent restoration of the broken image while
maintaining the global attention. The experimental results show that our method achieves excellent
results in both breakage repair experiments and large area breakage repair experiments, which is not
only validated in subjective assessment but also performs well in objective assessment.
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