
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.053506

ARTICLE

GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network
Incorporating Text Representation in Knowledge Reasoning

Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui and Kunli Zhang*

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China

*Corresponding Author: Kunli Zhang. Email: ieklzhang@zzu.edu.cn

Received: 02 May 2024 Accepted: 16 August 2024 Published: 12 September 2024

ABSTRACT

The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the
accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic
medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of
various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text
information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating
Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction,
knowledge reasoning, and diagnostic classification. In the text representation process, GATiT uses a pre-trained
model to obtain text representations of the EMRs and additionally enhances embeddings by including chief
complaint information and numerical information in the input. In the subgraph construction process, GATiT
constructs text subgraphs and disease subgraphs from the KG, utilizing EMR text and the disease to be diagnosed.
To differentiate the varying importance of nodes within the subgraphs features such as node categories, relevance
scores, and other relevant factors are introduced into the text subgraph. The message-passing strategy and attention
weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning
process. Finally, in the diagnostic classification process, the interactive attention-based fusion method integrates
the results of knowledge reasoning with text representations to produce the final diagnosis results. Experimental
results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-the-
art methods.
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1 Introduction

Recently, the medical field has been exploring the application of artificial intelligence to improve
the quality and efficiency of medical services [1]. Electronic medical records (EMRs) encompass
structured information detailing the patient’s diagnosis and treatment process, as well as unstructured
textual data representing doctor diagnoses and treatment opinions. A physician’s clinical diagnostic
process involves evaluating the likelihood of a patient having a particular disease based on their clinical
manifestations and examination results. Typically, EMRs contain one or more diagnoses. For instance,
a patient may receive diagnoses for both “diabetes” and “hypertension”. Viewing an EMR as a sample
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can pertain to multiple classifications. Thus, the problem of intelligent diagnosis can be considered a
classification task, with each diagnosis in a medical record representing a distinct label [2–4].

Diagnosing and treating a patient’s disease involves using both medical knowledge and the
patient’s EMR. Knowledge graphs (KGs) have emerged as a critical knowledge source in various
knowledge-driven algorithms and systems [5]. KGs consist of entities and the relations between
them, denoted as G = (V,E), where V and E denote all entities and relations in the graph [6].
Integrating medical KGs into intelligent diagnostic tasks enriches diagnostic models with specialized
knowledge, thereby enhancing their performance. The KG contains a wealth of valuable implicit
knowledge, which cannot be fully extracted through distribution-based knowledge reasoning alone.
Neural network-based knowledge reasoning uncovers hidden knowledge within the graph, enhancing
reasoning capabilities [7]. Notably, knowledge reasoning based on graph neural networks (GNNs) [8]
can adaptively learn features and topologies within the graph in an end-to-end manner. Sun et al. [9]
leveraged graph structure information to uncover complex nonlinear relations, thereby improving the
accuracy and efficiency of knowledge reasoning.

Currently, the challenges of EMR-based intelligent diagnostic models are as follows:

• Current research addressing EMRs through direct encoding for text representation often
ignores the heterogeneity of information across different sections of EMRs. The chief com-
plaint information in EMRs is more important for diagnostic output compared to plain text
information. Additionally, numerical information cannot be directly represented by the model.
How to represent the different types of text information in EMRs is a challenge.

• Existing models improve diagnosis by incorporating external KGs introduced based on the
diseases to be diagnosed, failing to notice critical information in EMRs. Furthermore, the
distributed-based knowledge reasoning method is unable to effectively extract the hidden
features and topologies within the KG. Therefore, it is a challenge to effectively utilize critical
text information in EMRs and how to better learn implicit information about KG for diagnosis
during the knowledge reasoning process.

In light of the aforementioned challenges, we consider the varying impact on diagnostic output
and the diverse forms of expression. Consequently, information within EMRs can be classified into
three categories: ordinary text, chief complaints, and numerical information. The chief complaint,
which represents the primary pain or most apparent symptom experienced by the patient, has
significance in the diagnostic process that outweighs other text information. Numerical information
refers to specific test results and clinical signs recorded as numeric values in EMRs. MacBERT
(MLM as correction, Mac) [10] improves the original BERT (Bidirectional Encoder Representations
from Transformers) [11] model through the use of MLM (Masked Language Modeling) as a refined
correction technique, optimizing its performance for more accurate natural language understanding.
To address the first challenge, we incorporated the chief complaint information into the MacBERT
[10] encoding and combined it with the numerical data to derive the textual representation of EMRs.

Furthermore, we construct disease subgraphs and text subgraphs to integrate EMR representation
into knowledge reasoning. Disease subgraphs are identified from the KG based on the list of diseases
to be diagnosed. Text subgraphs are obtained based on the entities in the EMR after retrieving
them from the KG. To address the second challenge, we incorporate context nodes containing EMR
information into the knowledge reasoning process and set the node category to distinguish them from
the rest of the entities. The information contained within context nodes differs from that in other
nodes, and the significance of entities directly extracted from EMR text varies compared to other
entities. Fig. 1 illustrates a text subgraph constructed from the EMR text “In the past month, multiple



CMC, 2024, vol.80, no.3 4769

measurements of elevated blood pressure, ..., worsening dizziness without apparent cause, ...”. For
instance, if the final diagnosis is “hypertension”, the text subgraph should contain two entity nodes:
“elevated blood pressure” and “dizziness”. Notably, the former is significantly more crucial to the
final diagnosis than the latter, which is reflected in the node relevance score obtained by the model.
The Graph Attention Network (GAT) [12] employed in this study utilizes an attention mechanism
to assign different weights according to the relative importance among nodes, implementing various
learning strategies to effectively address node disparities.

Elevated blood pressure Dizziness Palpitations

Hypertension Hypoglycemia

Text subgraph

Node  relevance score

EMR text node

EMR text
In the past month, multiple measurements of elevated
blood pressure, with the highest recorded at 160/100

mmHg. Medications history and baseline blood pressure

control status are unknown. No history of chest pain,

dyspnea on exertion, syncope, or hemoptysis. Over the

past three days, worsening dizziness without apparent

cause, accompanied by palpitations, visual disturbances

(rotational), and poor appetite.

Knowledge
graph

Figure 1: A sample of constructing a text subgraph

Altogether, the following are the primary contributions of our work:

• We propose GATiT, an intelligent diagnosis model based on GAT. We constructed disease
subgraphs and text subgraphs, integrating disease information and EMR text information in
the knowledge reasoning process. By incorporating node categories, node relevance scores, and
edge relevance scores, we optimize GAT for knowledge reasoning. GAT can assign varying
weights according to the relative importance of nodes and can better address the differences
between nodes.

• GATiT encodes text representations of EMRs using MacBERT, which incorporates enhance-
ments for chief complaint and numerical information. We introduce ChiefInfo Embedding,
which integrates chief complaint information into the inputs of MacBERT and utilizes self-
attention to fuse numerical and textual information, thereby facilitating the learning of various
categories of information from EMRs.

• Comparative experiments conducted on multi-label and single-label EMR datasets using
GATiT demonstrate its superiority over several state-of-the-art methods, as indicated by the
analysis of experimental results.
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2 Related Work

Many researchers have studied intelligent diagnosis methods extensively. In this section, in
addition to describing existing intelligent diagnosis algorithms (Section 2.1), recent work on graph
neural networks is presented (Section 2.2).

2.1 Intelligent Diagnosis

Intelligent methods for disease diagnosis have received a lot of attention in recent years.
Li et al. [13] proposed a deep learning framework and fine-tuned a CNN (Convolutional Neural
Networks) model for intelligent-assisted diagnosis in pediatrics. The results on real-world pediatric
Chinese EMR data demonstrated that this method achieved an average accuracy and F1-score of 81%.
Sun et al. [14] explored a privacy-preserving medical record searching scheme (PMRSS) utilizing the
ElGamal Blind Signature. This scheme allows patients to independently make medical diagnoses by
securely searching and comparing previous and current medical records.

While the mentioned methods have been effective, they primarily focus on data processing and
neglect the integration of medical domain knowledge crucial for physicians’ diagnostic processes.
With the advancement of medical KGs, there is a growing interest in intelligent diagnosis research
that incorporates external medical knowledge. Chen et al. [15] introduced a Sequence-to-Subgraph
framework and devised a subgraph convolutional network and hierarchical diagnostic attentive
network model (SHiDAN) based on this framework. SHiDAN organizes EMR text into densely
connected subgraphs with external medical knowledge, employing hierarchical feature extraction
for patient diagnosis. Yang et al. [16] proposed a time-aware KG attention approach to address the
problem of knowledge decay over time and used a comprehensive representation of the local KG to
select candidate global knowledge for prospective interpretation.

2.2 Graph Neural Network

GNNs are extensively utilized in disease diagnosis. Yang et al. [17] proposed a feature aggregation-
based intelligent diagnostic model using heterogeneous graph convolutional networks (GCNs) that
emphasizes the intrinsic properties of symptoms and the multiple hidden relationships among them
for effective and accurate symptom-based knowledge reasoning and disease diagnosis. Song et al. [18]
incorporated disease subgraph embedding into the knowledge reasoning process using GCNs to
amplify the relevance of disease-related knowledge, yet relying solely on entity subgraphs in the knowl-
edge reasoning process presents limitations in effectively combining simulated medical knowledge with
real patient cases.

According to the aforementioned studies related to deep learning-based and GNN-based intelli-
gent diagnosis, most of the approaches have been able to obtain satisfactory results in disease diagnosis
through deep learning models and disease enhancement. However, most existing intelligent diagnosis
models enhance their performance by incorporating external KGs focused solely on the diseases listed
in the EMR, neglecting the textual information within the EMRs. Meanwhile, most of the work
introduces only EMR text and does not consider the heterogeneity of data in EMR, which leads to
unsatisfactory results. Therefore, intelligent diagnosis study should focus on enhancing knowledge
around EMR and external KG, and different categories of information from EMR text to obtain
more accurate text representation.



CMC, 2024, vol.80, no.3 4771

3 Model

The architecture of our model is shown in Fig. 2. This section describes the text repre-
sentation (Section 3.1), the construction process of both the text subgraph and the disease
subgraph (Section 3.2), and the knowledge reasoning (Section 3.3), and the diagnostic classification
(Section 3.4).
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Figure 2: Illustration of GATiT. Our model is structured with text representation, subgraph construc-
tion, knowledge reasoning, and diagnostic classification. GATiT integrates knowledge from KG and
text information from EMRs for intelligent diagnosis tasks. (a) In the text representation, TextInfo,
ChiefInfo, and NumInfo from EMRs are encoded using MacBERT, incorporating chief complaint
enhancement and numerical information injection to produce the final text representation. (b) In the
subgraph construction, the disease subgraph D extracted from the list of diseases to be diagnosed and
the text subgraph T extracted from the EMRs and KG. Incorporating the EMR context node z, node
category features, node relevance scores, and edge additional features intoT helps to distinguish nodes.
(c) The message-passing strategy and attention weight calculation of GAT are adjusted to learn these
features in the knowledge reasoning. (d) Finally, the text representations and knowledge reasoning
outputs are fused using interactive attention mechanisms in the diagnostic classification

3.1 Text Representation

The text representation utilizes MacBERT and incorporates chief complaint enhancement
(Section 3.1.1) and numerical information injection (Section 3.1.2) for encoding the text represen-
tation of EMRs. We define ordinary text information as TextInfo, chief complaint information as
ChiefInfo, and numerical information as NumInfo.

3.1.1 Chief Complaint Enhancement

The original input of MacBERT includes Token Embedding, Segment Embedding, and Position
Embedding. Since the input to GATiT is a sequence, all values in the Segment Embedding are set to zero.
Position Embedding is employed to retain information about the semantic order of the input sequence
or sequence pair. Building upon the achievements of Qu et al. [19] in integrating history response
embedding into a dialogue system, GATiT adds Chief Embedding containing the chief complaint
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information to the MacBERT input. Chief Embedding labels the chief complaint information in the
input sequence as ECC, and the rest of the characters as EG.

3.1.2 Numerical Information Injection

MacBERT encounters challenges in learning numerical features from EMRs. Therefore, we
extract numerical features from the EMR, and the hidden layer representation [C], enhanced by chief
complaint information, is concatenated with the numerical information and subsequently fused using
a multi-head attention mechanism. The specific procedure is outlined as follows:

Q = K = V = Concat ([C]; Nums) (1)

Attention (Q, K, V) = softmax
(

QK�
√

dk

)
V (2)

headi = Attention (WQ
i Q, WK

i K, WV
i V) (3)

[T ] = WOConcat (head0; head1; . . . ; headi) (4)

where [C] represents the hidden layer representation marked in MacBERT after the enhancement
with chief complaints information, which contains information on the entire input sequence.
Nums represents the processed numerical features. WQ, WK , WV , and WO represent trainable
matrices. [T ] represents the text representation after enhancing chief complaints and injecting
numerical information.

3.2 Subgraph Construction

The process of the subgraph construction is depicted in Fig. 3. This section constructs the text
subgraph (Section 3.2.1) and the disease subgraph (Section 3.2.2) within the EMR text, facilitating
their application in the subsequent knowledge reasoning and establishing a close connection between
the knowledge reasoning and EMR text information.

3.2.1 Text Subgraph

For a given EMR text sequence S = (s0, s1, . . . , sn−1) and KG G = (V, E), retrieving entities
corresponding to the G from the EMR text through the similarity algorithm and construct the
corresponding entity subgraph Ci = (Ven, Een), where Ven consists of entities identified in the text
(disease and symptom), as well as tail entities or head entities corresponding to these entities retrieved
from triples, and Een represents the relations between all entities in Ven [18].

EMR context node z. In order to design a joint reasoning space for text representations and text
subgraphs of EMRs, the model explicitly connects them in a common graph structure. z is defined
within the set of nodes of the original entity subgraph, housing the text representation of EMRs.
Notably, z is not a node in G and cannot be initialized using a distributed knowledge-based reasoning
model. Therefore, the model initializes z using a projection matrix that projects z into the joint
reasoning space.

zPTM = WL(fPTM(text(z))) (5)

where zPTM represents the initialization vector of the text representation node z. Here, fPTM signifies
the pre-trained model, while WL denotes the projection matrix. Notably, the remaining nodes in C are
initialized using TransR [20].
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Figure 3: Illustration of the subgraph construction and the knowledge reasoning. The disease sub-
graphsD is obtained by retrieving triples from the KG based on the list of diseases to be diagnosed. The
vector representation De is generated following batch updates. The entity subgraphs C are obtained
by retrieving entities in the KG after they have been identified in the EMR. The text subgraphs T were
created by incorporating the EMR context node (z), node category features, and node relevance scores
within C. T utilizes the message-passing mechanism and attention-weighting computation of GAT to
learn features that differentiate the relevance of nodes for knowledge reasoning

Node category features. Following the construction process, nodes can be categorized into three
types: (a) Context node, which contains the text representation of EMRs. (b) Text entity node, which
corresponds to disease entities and symptom entities identified from the EMR text. (c) Other entity
nodes, which represent the head entity or tail entity nodes in the triple retrieved from KGs by the text
entity nodes. The category feature of a node is defined as:

Type = (Z, T , O) (6)

where Z represents EMR text nodes, T represents text entity nodes, and O represents other entity
nodes. A corresponding one-hot vector ui ∈ {0, 1}|Types| is defined for vi ∈ Vsub to represent the node
category features.

Node relevance scores. Nodes within the same category in T exhibit varying levels of importance
towards the final diagnostic output. However, the construction process of T unavoidably introduces
some noise nodes. A pre-trained model assigns a relevance score to each node to gauge their
significance and facilitate node filtering. Specifically, for vi ∈ V

′, the relevance score is computed
by concatenating the text(z) and the text(vi) associated with vi:
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ρi = f
′

PTM(Concat(text(z); text(vi))) (7)

where f ′
PTM represents RoBERTa (Robustly Optimized BERT Pretraining Approach) [21]. ρi quantifies

the significance of each node within T concerning its associated EMR text.

Edge additional features. Relation type r′ describes the relation between z and the nodes of the text
entity. Furthermore, the one-hot vector eij ∈ {0, 1}|R| is introduced to characterize the edge category
corresponding to node vi and the relation rij between nodes vj. The number of edge categories |R| is
defined as:

|R| = 2 ∗ (|r| + 1) (8)

where |r| represents KG’s total number of relation categories. Specifically, 1 denotes the relation r′

between z and the text entity. Since T defined by the model is an undirected graph, each edge is
duplicated to incorporate the corresponding reversed edges, thus doubling the edge count and defining
the corresponding edge categories accordingly.

T is defined as:

T = (Vsub, Esub) (9)

Vsub = Ven

⋃
{z} (10)

Esub = Een

⋃
{(z, r′, v)|v ∈ VT} (11)

where z represents a context node containing a text representation of the EMR, VT represents a
collection of entities recognized directly from the text, and r′ represents a relation between the EMR
text node z and each entity recognized directly from the text.

3.2.2 Disease Subgraph

Incorporating disease subgraph (D) embeddings into the knowledge reasoning process enhances
the understanding of the disease under-diagnosis, facilitating the model in establishing connections
between T and the target disease.

D is extracted from the G using the set of diseases to be diagnosed from the EMR dataset through
the similarity algorithm. The construction process of D is the same as C [18].

D consists of n connected subgraphs. Parameters are shared across the n connected subgraphs
to reduce parameter requirements and accelerate training. These n connected subgraphs are grouped
into a graph batch, with each connected subgraph corresponding to a distinct D. The connectivity
subgraphs are updated dynamically as follows:

Dis(l+1)

i = ReLU(b(l)
1 +

∑
j∈N(i)

h(l)
j W1

(l)

√|N(i)| + Dis(l)
i W2

(l)

|N(i)| ) (12)

h(l+1)

j = ReLU(b(l)
2 + Dis(l)

i W3
(l)

√|N(i)| + W4
(l)h(l)

j ) (13)

where N(i) represents the set of neighboring nodes of node i, Dis(l)
i represents the representation of the

ith diseased node in layer l, h(l)
j represents the representation of the jth non-diseased node in layer l.

W1
(l), W2

(l), W3
(l), W4

(l), b(l)
1 , b(l)

2 are the trainable parameters in layer l.
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Splitting the whole graph batch gives updated D:

D
′ = (D

′
1, D

′
2, . . . , D

′
n−1) (14)

The vector representation of the final subgraph is obtained by reading D
′:

De = (e0, e1, . . . , en−1) (15)

where ei represents the vector representation corresponding to the ith connected subgraph Di.

3.3 Knowledge Reasoning

The architecture of knowledge reasoning is depicted in Fig. 3. Knowledge reasoning uses T and
D, which is described in Section 3.2. This section is categorized into messaging policy (Section 3.3.1),
attention weighting (Section 3.3.2), and subgraph reasoning (Section 3.3.3).

3.3.1 Messaging Policy

Aggregation of messages between each node and neighboring nodes using an attention mecha-
nism:

h(l+1)

i = ReLU

⎛
⎝∑

j∈Ni

αijW5h(l)
j

⎞
⎠ (16)

where h(l)
i denotes the hidden representation of node vi in layer l of the model, Ni represents the set

of neighboring nodes of node vi, αij signifies the attention coefficients from node vi to node vj, and
W5 denotes the corresponding weight matrix. The attention coefficients αij are computed within GAT
using a learnable function, which enables the model to detect distinctions between nodes.

Unlike GAT, the message mij transmitted from node vi to node vj includes not only the hidden
layer representation of node vi, but the category features of the relation rij between vi and vj, and of
nodes vi and vj themselves. The definition of mij is as follows:

u
′
i = fu(ui) (17)

rij = fr(Concat(eij; ui; uj)) (18)

mij = fm(Concat(hl
i; u

′
i ; rij)) (19)

where ui, uj ∈ {0, 1}|Types| is a one-hot vector representing the category features of nodes vi and vj, eij ∈
{0, 1}|R| is a one-hot vector representing the category of the relation rij. hl

i represents node vi’s hidden
representation in the layer l model. Let the dimension to which the final reasoning space belongs be
R

D, fu : R|Types| → R
D/2 is a projection of the node category vectors into the space of the R

D/2 linear
transformation layer, fr : R2×|Types|+|R| → R

D is a multilayer perceptron (MLP) that aggregates the node
vi category features, the node vj category features and the relation rij category features, fm : R2.5D → R

D

is a linear transformation layer that projects all the information conveyed by node vi to node vj to the
R

D/2 space.

3.3.2 Attention Weighting

The attention coefficient αij between nodes vi and vj denotes the strength of their association,
jointly determined by their types, the relation representation, and the relevance score. The calculation
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process of αij is as follows:

ρ
′
i = fρ(ρi) (20)

qi = fq(Concat (hl
i; u

′
i ; ρ

′
i )) (21)

kj = fk(Concat(hl
j; u

′
j ; ρ

′
j ; rij)) (22)

γij = q�
i kj√
D

(23)

αij = exp(γij)∑
j′∈Ni∪{i} exp(γij′)

(24)

where fρ : R → R
D/2 is an MLP mapping node relevance scores into the space of RD/2, fq : R2D → R

D

is a linear transformation layer mapping all the features of node vi into the space of RD, q represents
the query matrix summarized by the attention mechanism, and fk : R3D → R

D is an MLP mapping
the information related to node vj into the space R

D in a linear transformation layer, k represents the
key matrix in the attention mechanism, and

√
D represents the square root of the vector dimension of

query matrix q.

The updating equation for the knowledge reasoning process is as follows:

h(l+1)

i = GELU(fn(
∑

j∈Ni∪{i}
αjimji) + hl

i) (25)

where hl
i ∈ R

D represents the hidden representation of node vi ∈ V
′ in the layer l model, Ni represents

the set of neighboring nodes of node vi, and fn : RD → R
D stands for batch normalization.

3.3.3 Subgraph Reasoning

Subgraph reasoning is the process of knowledge reasoning based on the construction of the disease
subgraph and the text subgraph in Section 3.2.

Text subgraph reasoning. Construct the adjacency matrix A of T:

Aij = Aji =
{

1, (vi, vj) ∈ Esub

0, (vi, vj) /∈ Esub

, ∀vi, vj ∈ Vsub (26)

A self-loop is added to each node to ensure that each node’s representation influences the
representation of the subsequent layer. This is accomplished by augmenting the identity matrix I to
the base adjacency matrix A and then normalizing the resulting adjacency matrix A using a degree
matrix D:

A = A + I (27)

Dij =
{∑

k Aik, i = j
0, i 
= j

(28)

A = D− 1
2AD− 1

2 (29)

The reasoning process of T is as follows:

H (l+1) = ReLU(W(l)
6 AH (l) + b(l)

3 ) (30)
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where H (l) represents the representation of the T in the lth layer. W(l)
6 , b(l)

3 are the trainable parameters
of the lth layer GCN. Reading the T in the last layer of the GNN for the whole graph, the output is
the vector K, which is the corresponding knowledge reasoning result of T.

Disease subgraph reasoning. We employ light attention to integrate disease map structure informa-
tion into the reasoning process. Light attention divides the information into original global features
and global features to be updated, where the original global features are defined as follows:

K̃ = mean (K + De) (31)

where K represents the raw knowledge reasoning result, De represents the vector representation of the
D, and K̃ represents the raw global features.

The global features to be updated are then obtained through the weight matrix W with K̃ and De:

Com = Concat (K̃ � K; K̃ � De) (32)

weight = softmax (W7Com + b4) (33)

K = weight ∗ Concat (K; De) (34)

where W7 represents the trainable parameter matrix and b4 represents the offset. weight is a weight
representation that measures the importance of K and De for subsequent updates and is obtained by
normalizing the dot product K̃ with K and De.

The final output of the knowledge reasoning is obtained by weighted addition of K and K̃ and
employing multi-head light attention computation:

M = ω1K + ω2K̃ (35)

K
′
i = W8Concat(M0;M1; . . . ;Mn−1) + b5 (36)

where ω1 ∈ [0, 1], ω2 ∈ [0, 1] are hyperparameters that measure the relative importance between K and
K̃ in each update. W8 represents the trainable parameter matrix and b5 represents the offset.

3.4 Diagnostic Classification

The model can acquire [T ], K
′ via the text representation (Section 3.1) and the knowledge

reasoning (Section 3.3), utilizing interactive attention to amalgamate the output. Specifically, this
section can be classified into reasoning result self-attention mechanism (Section 3.4.1), correlation
mechanism (Section 3.4.2), and gated fusion mechanism (Section 3.4.3).

3.4.1 Reasoning Result Self-Attention Mechanism

The significance of the knowledge encapsulated within reasoning results varies in influencing the
final diagnostic output. To gauge the influence of the embedded knowledge on the final diagnostic
result, we introduce the reasoning result self-attention mechanism. The process unfolds as follows:

αi = softmax (W9tanh (W10K
′
i + b6) + b7) (37)

where W9, W10 represent the trainable parameter matrix and b6, b7 represent the offsets. The self-
attentive calculation process in reasoning results assigns large weight coefficients to relatively signifi-
cant knowledge, whereas unimportant knowledge tends towards zero.
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3.4.2 Correlation Mechanism

The knowledge noise problem emerges when a sentence veers from its original meaning due
to excessive external knowledge introduction. The model gauges the correlation between the text
representation and the reasoning result through reasoning result-text representation attention:

βi = softmax (W11tanh (W12Concat (K
′
i ; [T ]) + b8) + b9) (38)

where W11, W12 represent the trainable parameter matrix, and b8, b9 represent the offset. βi represents
the weight matrix quantifying the correlation between the text representation and the reasoning result.
A stronger correlation between them results in a higher corresponding weight.

3.4.3 Gated Fusion Mechanism

Employing gating mechanisms to integrate text representations and knowledge reasoning results
in enhanced mitigation of knowledge noise problems:

weight2 = sigmoid (W13Concat (αi; βi) + b10) (39)

weight
′
2 = (1 − weight2) � αi + weight2 � βi (40)

[T ]fin = weight
′
2 � [T ] (41)

where W13 represents the trainable parameter matrix, b10 represents the offset, and [T ]fin represents
the final hidden representation. weight2 can further measure the degree of influence of the knowledge
reasoning results and the text representation on the final output results.

The final prediction is derived by mapping the final hidden representation into the disease space:

output = Sigmoid (Wout [T ]fin) (42)

where Wout represents the matrix of trainable parameters.

4 Experiments
4.1 Datasets

Experimental evaluations utilized the multi-labeled Chinese Obstetrics EMRs (COEMRs) dataset
and the publicly available single-labeled Chinese EMRs (C-EMRs) dataset. The Chinese Obstetrics
Knowledge Graph (COKG) and Chinese Medical Knowledge Graph (CMeKG) serve as external
knowledge sources for COEMRs and C-EMRs, respectively. Their basic statistics are provided in
Tables 1 and 2. Furthermore, detailed information regarding these datasets is presented below:

Table 1: EMR dataset statistics

Dataset Num Train Test Diseases Category

COEMRs 24,339 21,905 2434 73 Multiple
C-EMRs 18,331 16,498 1833 10 Single
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Table 2: KG dataset statistics

Dataset Entities Relations Used for

COKG 42,616 66,261 COEMRs
CMeKG 68,722 830,768 C-EMRs

• COEMRs: A multiple-label dataset comprises real EMRs from multiple hospitals, totaling
24,339 entries. Of these, 21,905 are allocated to the training set and 2434 to the testing set,
following a 9:1 division ratio. The dataset retains 73 diseases for diagnosis, constituting a multi-
labeled dataset. Specific samples are shown in Fig. 4.

Figure 4: COEMRs sample. Chief complaint documents the patient’s most significant health problem
or symptom at the time of the visit. The medical history includes the patient’s past illnesses, surgical
history, and other relevant information. Admitting physical examination, obstetric examination, and
auxiliary examinations document the patient’s clinical findings and serve as the primary sources of
numerical information. Admitting diagnosis is the physician’s diagnosis of the patient, which serves as
the categorical label for the dataset

• C-EMRs [22]: A single-label dataset comprises 18,331 EMRs. Following a 9:1 division, 16,498
records were assigned to the training set and 1833 to the test set. Due to substantial miss-
ing numerical features in C-EMRs, numerical information extraction was omitted, focusing
solely on extracting chief complaint information. In contrast to COEMRs, C-EMRs present
diagnostic results in a single-label format, covering ten distinct diseases, such as diabetes and
hypertension.

• COKG [23]: COKG integrates medical knowledge from diverse sources, serving as a domain-
specific KG focusing on common obstetric diseases. Its knowledge base comprises obstetrics
textbooks, clinical guidelines, specialized medical dictionaries, and web resources, encompass-
ing 42,616 entities and 66,261 relations.
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• CMeKG [24]: A comprehensive medical domain KG that consolidates medical knowledge from
various sources, including clinical documents, textbooks, encyclopedias, and medical standard
nomenclatures. It focuses on diseases, drugs, diagnostic techniques, and treatment methods.

4.2 Experimental Settings

4.2.1 Implementation Details

Python is the programming language utilized for the experiment. Deep learning frameworks
include PyTorch, DGL (Deep Graph Library), and Transformers. Details of the experimental envi-
ronment and parameter settings are shown in Table 3. Specifically including operating system, GPU
(Graphics Processing Unit), RAM (Random Access Memory), CUDA (Compute Unified Device
Architecture), etc.

Table 3: Experimental environment and parameter settings

Parameter Value Parameter Value

Operating system Ubuntu 22.04 Maximum text length 512
GPU RTX 3090 Ti Learning rate 1e−5
RAM 128 G Dropout 0.3
Python 3.7.11 Batch size 8
Pytorch 1.7.0 Optimizer Adam
DGL 0.6.1 GAT layers 4
Transformers 3.0.0 Node category 3
CUDA 11.8 Edge relation types 44

4.2.2 Evaluation Metrics

The selected evaluation metrics are commonly used in text classification tasks. Considering that
the datasets include both single-label and multi-label instances, the evaluation metrics consist of
precision (P), recall (R), and F1 scores for single-label classification tasks, while for multi-label
classification tasks, hamming loss (HL) and average precision (AP) are employed. The F1 score
accounts for both P and R, representing a weighted average of both metrics. Specifically, F1 scores are
categorized into F1micro and F1macro, with F1micro capturing overall P and R across all labels, and F1macro

serving as an average of F1 scores across all labels. HL assesses the score of misclassified instance-
label pairs, while AP summarizes the weighted average precision at different thresholds, where each
threshold’s weight is determined by R of the previous threshold.

P = 1
N

∑N

i=1

|f (xi) ∩ yi|
|yi| (43)

R = 1
N

∑N

i=1

|f (xi) ∩ yi|
|f (xi)| (44)

F1micro = 2PR
P + R

(45)
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F1macro = 1
N

∑N

i=1

2PiRi

Pi + Ri

(46)

HL = 1
N

∑N

i=1
|f (xi)  yi| (47)

AP =
∑

n
(Rn − Rn−1)Pn (48)

where f (xi) represents the predicted label for the ith sample and yi represents the true label for the ith
sample. Pn and Rn represent P and R at the nth threshold, respectively.

4.3 Results Analysis for Comparative Experiment

To demonstrate the effectiveness of GATiT, we analyzed the experimental results. The overall
performance of GATiT was first evaluated using several baseline models including Text Recurrent
Neural Network (TextRNN) [25], Text Convolutional Neural Network (TextCNN) [26], Text Recur-
rent Convolutional Neural Network (TextRCNN) [27], TextRNN with Attention (TextRNN+Att)
[28], Transformer [29], Deep Pyramid Convolutional Neural Networks (DPCNN) [30], BERT [11],
MacBERT [10], KAIE (Knowledge powered Attention and Information Enhanced) [31], GSKN
(Graph-based Structural Knowledge-aware Network) [32], DeGCN (Disease enhanced Graph Con-
volutional Network) [18]. Subsequently, we analyzed disease-specific F1 scores to provide fur-
ther evidence of GATiT’s superiority. Tables 4 and 5 show the overall performance of COEMRs
and C-EMRs.

Table 4: Diagnostic predictive results of GATiT and baseline models evaluated on COEMRs (Chinese
Obstetrics EMRs) evaluated by F1macro, F1micro, P, R, AP, and HL

Model F1micro(%)↑P(%)↑ R(%)↑ F1macro(%)↑AP(%)↑ HL ↓
TextRNN [25] 42.87 74.81 30.04 1.17 40.57 0.02732
TextCNN [26] 59.64 83.81 46.29 11.34 68.63 0.02138
TextRCNN [27] 65.81 78.70 56.55 14.76 71.25 0.02005
TextRNN+Att [28] 58.21 78.36 46.31 7.78 65.08 0.02268
Transformer [29] 76.72 80.65 73.17 – – 0.01982
DPCNN [30] 68.76 80.10 60.23 19.50 74.13 0.01867
BERT [11] 79.74 80.63 78.87 – – 0.02362
MacBERT [10] 80.50 86.98 74.93 31.82 72.53 0.02230
KAIE [31] 80.83 81.44 80.22 47.59 81.99 0.01298
GSKN [32] 81.16 84.20 78.33 41.86 82.18 0.01241
DeGCN [18] 81.81 85.95 78.06 45.92 82.65 0.01184
GATiT 82.32 86.69 78.37 50.62 83.01 0.01167
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Table 5: Diagnostic predictive results of GATiT and baseline models evaluated on C-EMRs (Chinese
EMRs) evaluated by F1macro, F1micro, P, R, AP, and HL

Model F1micro(%)↑ P(%)↑ R(%)↑ F1macro(%)↑
TextRNN [25] 64.63 79.97 54.23 30.38
TextCNN [26] 75.53 87.50 66.45 55.24
TextRCNN [27] 76.32 87.01 67.98 57.70
TextRNN+Att [28] 74.70 85.56 66.28 53.76
DPCNN [30] 77.79 83.90 72.50 61.26
BERT [11] 80.17 81.43 78.95 –
MacBERT [10] 89.37 89.85 87.36 88.33
KAIE [31] 89.70 84.50 93.56 87.49
GSKN [32] 89.95 87.85 85.92 86.77
DeGCN [18] 91.39 90.86 87.40 89.00
GATiT 92.68 90.80 89.64 90.09

After preprocessing, numerical information extraction, and chief complaint information extrac-
tion, the average text length of COEMRs is 371.83. Due to the more severe lack of numerical
information in C-EMRs, only chief complaint information enhancement is retained, resulting in an
average text length of 352.22 for C-EMRs. The GATiT comprises 153,394,722 trainable parameters,
representing a 51.71% increase compared to GSKN. The mean number of entities in the T is 33.73,
ranging from 2 to 281. Ultimately, 50 entities are retained.

MacBERT is trained on a large-scale corpus, significantly outperforming traditional deep learning
models across all metrics, with P of 86.98%. KAIE enhances its ability to extract pertinent information
from the BERT model and perform intelligent diagnosis by incorporating medical knowledge in triples.
Moreover, KAIE introduces a comprehensive KG spanning various medical domains that are highly
relevant to diagnostic tasks. This broader consideration leads to R of 80.22% and 93.56%. Among
the evaluation metrics, HL, which evaluates the misclassification score, AP, which summarizes the
accuracy at different thresholds, and F1micro, the GATiT demonstrates superior performance. GATiT
incorporates context nodes containing text information from EMR and employs GAT for knowledge
reasoning. Notably, F1macro achieved 50.62%, surpassing KAIE by 3.03%.

4.4 Results Analysis for Across Disease Groups in COEMRs

To further validate GATiT’s performance and showcase its superiority effectively, we categorized
the total tags based on their occurrence frequency in COEMRS into five groups: 20–30, 31–80, 81–200,
201–1000, and >1000, as illustrated in Fig. 5.
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Figure 5: F1micro of GATiT across disease groups in COEMRs

When the label occurrence frequency exceeds 200, the F1micro of GATiT, KAIE, and DeGCN are
virtually identical. This observation further validates that with ample data, graph-based knowledge
structures and triple representations effectively facilitate the model’s learning of disease-related
knowledge for diagnosis. GATiT integrates text information from EMRs into the knowledge reasoning
process, resulting in more precise reasoning. It outperforms KAIE marginally in the 31–80 and 80–
200 frequency groups but slightly lags in the 201–1000 group. For labels with a frequency below
30, the significance of knowledge-based reasoning becomes more pronounced, leading to higher
performance for disease-enhanced GATiT compared to KAIE. Moreover, GATiT augmented with
EMR representations exhibit further improvement. From a modeling perspective, incorporating
context nodes with EMR text data in the reasoning process mitigates errors, thereby reducing noise
associated with erroneous reasoning results.

4.5 Results Analysis for Each Disease in C-EMRs

Fig. 6 visualizes the F1micro for each disease in C-EMRs. GATiT demonstrated improvements
across five disease categories: “Hypertension”, “Diabetes Mellitus”, “Gout”, “Arrhythmia”, and
“Urinary Tract Infection (UTI)”, compared to DeGCN. Specifically, GATiT exhibited enhancements
for “Arrhythmia”, “UTI”, and the abovementioned categories. Additionally, improvements were
observed for “Gastritis”, “Gastric Polyps”, and “Gastric Ulcer” diseases. Notably, while “Gastric
Polyps” showed substantial enhancement in F1micro, there was a slight decline in performance for
“Gastritis” and “Gastric Ulcer”. Nonetheless, the overall average F1micro for these three categories
remained higher than that of DeGCN. Moreover, in “Asthma” and “Chronic Obstructive Pulmonary
Disease (COPD)”, although the F1micro of GATiT were slightly lower than those of DeGCN, they still
surpassed those of MacBERT.
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Figure 6: F1micro of GATiT for each disease in C-EMRs

4.6 Results Analysis for the Confusion Matrix

To demonstrate GATiT’s predictions across diseases, confusion matrices of GATiT and DeGCN
were visualized in Figs. 7 and 8 (rounded to one decimal place, and results of 0 are not shown).

Figure 7: Visualization of DeGCN’s confusion matrix in C-EMRs
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Figure 8: Visualization of GATiT’s confusion matrix in C-EMRs

p value of GATiT slightly decreases in “COPD” and “Gastritis”, consistent with its F1micro

performance. In other diseases, GATiT’s p value improves compared to DeGCN. However, for
“Asthma” and “Gastric Ulcer”, GATiT’s F1micro are lower due to increased incorrect predictions
of other diseases. Experimental results on C-EMRs further demonstrate the validity of GATiT
and the feasibility and necessity of incorporating text information from EMRs into the knowledge
reasoning process.

4.7 Results Analysis for Each Disease in COEMRs

To validate the effectiveness of incorporating EMR text nodes and GAT into the knowledge
reasoning process, we selected GATiT and DeGCN for further comparison. The specific results
were analyzed by examining the F1micro of diseases in 12 specific COEMRs, as shown in Fig. 9.
From both the dataset’s perspective and the model’s perspective, COEMRs exhibit a long-tailed
distribution phenomenon.

Integrating the disease subgraph and the text subgraph helps enrich the data on low-frequency
diseases, thereby improving knowledge reasoning. Additionally, incorporating EMR text nodes into
the knowledge reasoning process allows the model to learn context information from EMRs, thus
enhancing diagnostic accuracy.
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Figure 9: Disease-specific F1micro comparisons in COEMRs

4.8 Results Analysis for Ablation Study

To evaluate the effectiveness of GNN knowledge reasoning, light attention, and the introduced
context nodes and additional features, we conducted an ablation study on COEMRs and C-EMRs.
The experiments included the following conditions: (a) MHSA (Multi Head Self Attention): utilization
of the multi-head self-attention mechanism in the transformer instead of light attention. (b) w/o GCN:
removal of the GCN-based knowledge reasoning, with direct reading of the disease subgraph as the
reasoning results. (c) w/o Att: removal of light attention. (d) w/o De: elimination of the entire disease
augmentation module. (e) w/o NodeZ: removal of the context node containing the EMR information.
(f) w/o Ext: elimination of node additional features and edge additional features. Complete removal
of additional features leads to the degradation of GATiT to the GAT; thus, w/o Ext can be used to
represent knowledge reasoning using an ordinary GAT. Specific experimental results are presented in
Tables 6 and 7.

Table 6: The ablation study was conducted in the intelligent diagnostic using COEMRs, and the
evaluation metrics included F1macro, F1micro, P, R, AP, and HL

Model F1micro(%)↑ P(%)↑ R(%)↑ F1macro(%)↑ AP(%)↑ HL ↓
GATiT 82.32 86.69 78.37 50.62 83.01 0.01167
MHSA 81.40 85.64 77.55 44.92 82.96 0.01209
w/o GCN 81.38 85.22 77.88 44.76 82.24 0.01216
w/o Att 81.29 87.44 75.95 38.95 81.31 0.01193
w/o De 81.16 84.20 78.33 41.86 82.18 0.01241
w/o NodeZ 81.87 87.20 77.15 45.49 82.63 0.01182
w/o Ext 82.19 86.57 78.23 48.46 82.96 0.01174
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Table 7: The ablation study was conducted in the intelligent diagnostic using C-EMRs, and the
evaluation metrics included F1macro, F1micro, P, R, AP, and HL

Model F1micro(%)↑ P(%)↑ R(%)↑ F1macro(%)↑
GATiT 92.68 90.80 89.64 90.22
MHSA 90.96 89.40 87.68 88.37
w/o GCN 90.93 90.58 87.10 88.60
w/o Att 90.54 88.00 87.93 87.85
w/o De 89.95 87.85 85.92 86.77
w/o NodeZ 91.43 90.57 87.27 89.13
w/o Ext 92.35 90.73 87.53 89.98

The ablation study revealed a significant decrease in all evaluation metrics of GATiT when
the knowledge reasoning based on GCNs was removed. This finding underscores the necessity of
incorporating knowledge reasoning based on GNNs in the intelligent diagnosis task. Substituting the
light attention with the MHSA in the transformer resulted in a decrease in all evaluation metrics of
the model, demonstrating the effectiveness of the light attention. The light attention utilized 4,202,512
trainable parameters and required a memory size of 16.81 MB. In contrast, during the experiment, the
MHSA employed 16,789,504 trainable parameters and required a memory size of 67.58 MB. Complete
removal of the attention mechanism resulted in the model’s inability to differentiate between the disease
knowledge to be augmented effectively and that embedded in the textual entities, leading to respective
decreases of 1.03% and 2.14% in F1micro.

In multi-labeled COEMRs, where numerous diseases may be diagnosed in each medical record,
removing the attention mechanism caused an 11.67% decrease in the F1macro evaluation metric for
GATiT. In the single-label C-EMRs dataset, with a small number of independent labels, combining
the disease subgraph without relying on the attentional mechanism can effectively capture knowledge
related to the diagnosed disease. Removing the context nodes of the EMRs led to a decrease in the
model’s performance relative to GATiT, which is attributed to the sparser nature of the COKG, where
the added node and edge features only moderately influence the representation of the original nodes.
The ablation mentioned above experiments further emphasizes the need to introduce and distinguish
context nodes from other nodes in the knowledge reasoning process.

5 Conclusion

This paper proposes an innovative GATiT model, which incorporates the graph attention network
in knowledge reasoning for medical intelligent diagnosis tasks. GATiT incorporates the disease
subgraph related to the diagnosis and constructs the text subgraph of context nodes containing
text information from EMRs within the knowledge reasoning. To facilitate the model’s ability to
differentiate context nodes from other nodes during learning, GATiT introduces additional features.
Additionally, we adapt the message-passing strategy of GAT and adjusts the calculation of attention
weights to learn these features. In the text representation, we adjust MacBERT to obtain text
representations of the EMR. In the diagnostic classification, we use the interactive attention-based
fusion mechanism to fuse the above results to get the final output. Results from COEMRs and C-
EMRs validate the effectiveness of GATiT and the importance of incorporating text information from
EMRs in the knowledge reasoning process. For future work, we plan to:



4788 CMC, 2024, vol.80, no.3

• Further explore how to effectively utilize different forms of multimodal data in intelligent
diagnosis research and realize the effective fusion of different modal data.

• Another focus of future work is to apply the few-shot learning technique to intelligent diagnosis
research to learn the relevant features of diseases from a small amount of data.
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