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ABSTRACT

Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate
suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality
and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and
applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed
for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and
network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses
and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during
the optimization solving phase. Secondly, a quantitative comparison between fine-tuning and feature decoupling
is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the
enhanced ResNet-50. Finally, suspicious regions are localized using a feature pyramid network with bottom-up
path augmentation. Experimental results demonstrate that IMTNet achieves faster convergence, shorter training
times, and favorable generalization performance compared to existing methods. Moreover, it is shown that IMTNet
significantly outperforms fine-tuning based approaches in terms of accuracy and F 1.
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1 Introduction

Malicious image forgeries, including techniques such as copy-move, splicing, and removal, can
severely undermine the credibility and integrity of digital images. The copy-move tampering method,
being one of the most prevalent image tampering techniques, is highly concealable and presents
significant challenges for detection. Moreover, the characteristics (such as the saturation, light source,
and noise) of the tampered areas can be adapted easily without affecting the original image properties.
Therefore, CMFD methods have attracted the attention of forensic science scholars.

The traditional CMFD methods can be classified into two main categories: block-based methods
and keypoint-based methods. In the block-based methods, discrete cosine transform (DCT) technolo-
gies are generally used in image processing because of their energy compaction properties. The work in
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[1] analyzes the exhaustive search algorithms and proposes a block matching detection method based
on DCT. This work is one of the landmark methods in CMFD methods. Each block contains 64 (8 ×
8) features and any two feature vectors that are within a certain range should be matched to determine
the duplicated regions. However, the proposed method cannot detect the small duplicated regions and
the detection precision is dissatisfactory because of its lexicographically sorting algorithm. The study
in [2] improves the method of [1] by reducing the number of features to a quarter that is located in the
low frequency parts. However, the detection accuracy is unsatisfactory since some DCT coefficients
that are located in the intermediate frequency parts are truncated. A Discrete Cosine Transformation
(DCT) and Singular Value Decomposition (SVD) based technique is proposed to detect the copy-
move image forgery in [3], the combination of DCT and SVD makes the proposed scheme robust
against compression, geometric transformations, and noise. A hybrid method is reported to classify
copy-move and splicing images based on the texture information of images in the spatial domain [4].
The proposed method divides the image into equal blocks to get scale-invariant features. The tampered
image regions can be detected by matching the scale-invariant features. The proposed method is robust
to most regular signal processing type attacks. However, it is less effective against some geometric
transformation-type attacks.

In the keypoint-based methods, the underlying principle is that modifications made to the
image, such as copy-move operations, will alter the local features and consequently impact the
distribution and characteristics of the detected keypoints. By analyzing the changes in the keypoint-
based representations, these techniques aim to identify the presence of tampering in the image.
Amerini et al. in [5] propose a novel methodology based on a scale invariant features transform (SIFT)
method. The proposed method can be used to determine whether a copy-move attack has occurred in
an image. It also can be used to recover the geometric transformation that is used to perform cloning
technologies. Furthermore, the proposed method can be used to individuate the altered areas and
estimate the geometric transformation parameters with high reliability. The work in [6] reports an
improved SIFT structure with inherent scaling invariance that is designed to enhance the capability of
extracting effective keypoints in the homogeneous region. Zhong et al. in [7] analyze the structure and
excavate the inherent characteristics of local descriptors (SURF) for feature extraction in the coarse
and smooth regions. Subsequently, the proposed method utilizes kernel features for coarse feature
matching to reduce matching costs. Following this, a smaller set of candidate keypoints is identified,
which are then used in conjunction with complete features to conduct fine keypoint matching in
order to identify suspicious candidate keypoint pairs. A method is proposed in [8] to find and locate
the duplicated and pasted portions of a manipulated image by using the combination of Hessian
and Raw patch features. In the proposed method, a parallelism condition is applied together with
a random sample consensus method to eliminate mismatches. The proposed method was shown to be
effective by obtaining high F1 scores in images that are attacked with noise, JPEG compression, and
scaling operations.

Traditional image tampering detection methods have faced growing challenges in keeping pace
with the rapidly evolving landscape of image forgery techniques. In response, the increased pervasive-
ness of deep learning technologies has led to the development of contemporary copy-move forgery
detection algorithms that predominantly leverage specialized neural network architectures, which are
purposefully designed and trained for the task of image tampering identification. It is proposed in [9]
that an end-to-end approach called BusterNet can identify the source and target regions by detecting
image similarity through parallel branching. However, this method requires high accuracy on both
branches. The work in [10] reports a serial branching network that is used to improve the drawbacks
of BusterNet. The reported network consists of a copy-move similarity detection network and a



CMC, 2024, vol.80, no.3 4605

source/target region distinguishment network. The branching network is simpler and more accurate
compared with the BusterNet. However, generalization was powerless. The study in [11] proposes the
Dense-InceptionNet that combines DenseNet and InceptionNet, by utilizing multiscale information
and dense features. The study presented in [12] introduces the Spatial Pyramidal Attention Network
which is designed to capture inter-block relationships across multiple scales through a pyramidal
structure of locally self-attentive blocks. However, this approach demonstrates diminished effectiveness
at lower image resolutions and overlooks the interplay between high-dimensional and low-dimensional
features. The research in [13] reports a deep learning method for forgery detection at both image and
pixel levels. In this method, authors used a pre-trained deep model with a global average pooling
(GAP) layer instead of default fully connected layers to detect forgery. The GAP layer creates a
good dependency between the feature maps and the classes. The study in [14] proposes the Laterally
Linked Pixel (LLP) algorithm, which utilizes two-dimensional arrays and a single layer derived from
a unit-linking pulsed neural network to detect copied regions. The method employs kernel tricks to
identify multiple manipulations within a single forged image. The accuracy obtained through the LLP
algorithm is about 90% and further forgery detection is improved based on optimized kernel selections
in classification algorithm.

While extensive experimental evaluations have demonstrated the satisfactory performance of
the aforementioned specialized neural network-based copy-move forgery detection methods, such
approaches inherently compromise the broader generalizability of the underlying network architecture.
This runs counter to the primary objective of neural networks, which is to learn robust, generalizable
representations that can be effectively applied across a diverse range of related tasks and domains.
Consequentially, the following problems arise: (1) Deep neural networks (DNNs) require a substantial
quantity of high-quality labeled datasets [15]. (2) DNNs need hardware with higher computing capac-
ity. (3) As a data-driven algorithm, DNNs produce individual results based on various types of data.
However, collecting an enormous amount of data does not provide a comprehensive representation.
(4) DNNs aim to create a general model that could cater to the needs of different users, environments,
and devices. Consequently, there remains an urgent need to adapt and refine the general model to
address personalized tasks effectively [16].

Transfer learning is concerned with the transfer of knowledge across domains, leveraging prior
experience as a bridge to facilitate the adaptation from one scenario to another. Among its various
subfields, feature decoupling stands out as a significant subclass, demonstrating a broad spectrum
of applications. Feature decoupling is an approach to designing neural network architectures and
training processes that aim to make the features learned from the network independent or uncorrelated
from each other. The main purpose of feature decoupling is to improve the generalization ability and
interpretability of the model. A feature decoupled training pipeline for describe-then-detect is designed
for weakly supervised local feature learning [17]. Additionally, an introduced line-to-window search
strategy enhances descriptor learning by explicitly utilizing camera pose information, and attained
state-of-the-art performance across various tasks. The work in [18] reports a multi-scale single image
deraining network, called the feature decoupling and reorganization network, which introduces a
dilated pyramid split attention module to decouple input features and reorganize extracted features.

The aforementioned work exemplifies practical applications of feature decoupling, which often
entails specific modifications to network architecture, such as the incorporation of regularization
techniques or the addition of terms to the loss function to promote feature independence. By employing
feature decoupling, the model is anticipated to acquire more robust and distinguishable feature
representations, thereby enhancing its performance on novel and previously unseen data.
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Image semantic information can be broadly categorized into three layers: the visual, object,
and conceptual layers. The visual layer, often referred to as the shallow feature layer, encompasses
detailed attributes such as color and shape. The object layer, or mid-level feature, usually contains
object attributes. The conceptual layer, known as the high-level feature contains abundant semantic
information. ResNet-50 [19] is specifically designed for image classification tasks. However, the
tasks of CMFD and image classification have distinct focuses on the image, which necessitate the
network to possess diverse feature extraction capabilities and representation capabilities. Meanwhile,
quantitative analysis is performed experimentally on the pre-trained ResNet-50 to achieve structural
risk minimization. It is worth mentioning that the 3461 model is a variant of the ResNet-50. It indicates
that the ConvNet Layer of four modules in ResNet-50 is repeated 3, 4, 6, and 1 times, respectively.

Fig. 1 illustrates the comparison of the ResNet-50 deep module (fourth module) possessing
varying numbers of convolutional layers, where the 3 4 6 1, 3 4 6 3 and 3 4 6 6 represent the numbers
of stacks of residual blocks within the module, respectively. Multiple classes of models with slight
variations were trained while keeping the first three modules frozen. The comparative analysis of
visualization outcomes derived from the three distinct models suggests that increasing the depth of
the network architecture enhances the ability to extract complex details. Nevertheless, based on the
pertinent graphical representation, it can be inferred that integrating more complex structures into the
model is inappropriate for tackling the CMFD task.

Figure 1: Contrast analysis. The first three module weights are frozen based on a pre-trained ResNet-
50. The effect of the model is analyzed while the convolution layer of the fourth module is changed.
Source and tampered areas are indicated in blue and gray

To address the aforementioned limitations, this paper introduces a feature decoupling approach
within the context of transfer learning, leveraging knowledge migration to enhance model perfor-
mance. When the source and target domains are similar, the main challenge in feature decoupling
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is determining which layers of knowledge in the source domain network should be fixed or
fine-tuned [20].

In the proposed scheme, the relationship between the CMFD task and the number of deep feature
repetition layers in the pre-trained ResNet-50 is explored. ResNet-50 is introduced for several com-
pelling reasons: (1) the incorporation of identity shortcut connections within the residual branching
structure (RBS) optimizes the process of backpropagation, thereby rendering ResNet-50, a simple
and highly efficient method. (2) ResNet-50 employs a limited number of optimization techniques
effectively, thereby minimizing potential interferences. Furthermore, the architecture incorporates
two types of RBS. RBS-1 utilizes a step size of 2, which significantly reduces the output size and
mitigates the risk of overfitting. On the other hand, RBS-2 serves as the major module in the ResNet
network, primarily focused on enhancing the representational capabilities. (3) In addition, in the field
of passive forensics, the scarcity of high-quality datasets leads to low model generalization ability and
accuracy rates.

The objective of this paper is to streamline the multi-task framework of ResNet-50 to mitigate
disaster forgetting and enhance task efficiency. To accomplish this, the multi-task objective is simpli-
fied into a single-task objective. Specifically, the focus is on maximizing the utilization of the solution
space for the image classification task through pertinent experiments. Our goal is to enhance the model
performance on the CMFD task when the image classification task has already reached its optimum.
This paper proposes an improved multi-task copy-move forgery detection network by using a multi-
feature pyramid module (MFPM) and features decoupling across tasks. The main contributions of
this study are as follows:

1. An optimization problem is abstracted to establish a link between image classification and
CMFD based on ResNet-50 using feature decoupling, wherein the relationship between the
deep structure and task is illustrated during optimization.

2. This paper provides a quantitative demonstration of the similarities between image classifi-
cation tasks and CMFD. Moreover, it addresses the challenge of limited high-quality data in
CMFD through the transfer of frozen weights and retraining of the model.

3. The CMFD field saw the first introduction of the MFPM. It utilizes three matching maps
to detect suspicious regions and enhances localization accuracy through the application of
Feature Pyramid Networks and an optimized bottom-up pathway.

The rest of this paper is organized as follows. Section 2 describes the stages of the proposed method
and briefly explains every step. Section 3 presents databases that are being used for experiments and an
experimental setup and results in discussions for the proposed architecture. It offers tables and figures
related to results calculated using the proposed architecture. At last, Section 4 provides conclusions
for this study.

2 Proposed Method

To address the challenges in dataset building and training due to the difficulty of collecting high-
quality annotated collections of tampered images in CMFD, IMTNet is proposed in this paper, the
diagram is shown in Fig. 2. It comprises two components: copy-move forgery detection algorithm
based on feature decoupling and tampered image localization algorithm named MFPN, which
effectively leverages both high and low-dimensional image information.
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Figure 2: The diagram of IMTNet for copy-move forgery detection and localization. (a) Improved
ResNet-50 backbone. (b) MFPN

2.1 Copy-Move Forgery Detection Algorithm Based on Feature Decoupling

ResNet-50 based on transfer learning. Due to the difficulty of collecting datasets in CMFD, the
current number of datasets available is limited. Furthermore, the varying shallow weights obtained
during different training epochs can potentially disrupt correlation ablation experiments. To tackle
the aforementioned challenges, our proposal involves the adoption of a feature decoupling approach
and enhancements to the network structure of the pre-trained ResNet-50. The primary objective is to
maximize the leverage of the source domain as a feature extraction network for the target domain.

The pre-trained ResNet-50 combined with the feature decoupling approach empowers the
IMTNet to acquire highly relevant implicit expression features. Furthermore, feature decoupling
is employed as a regularization technique to mitigate dissimilarities between the source and target
marginal distributions. This mathematical description can be formulated as

DS = {(
xS

i , yS
i

)}ns

i=1
, (x, y) ∈ (X , Y) (1)

where S indicates the source domain and DS denotes the sample space in the source domain, X , Y
denote the joint feature space and the corresponding label space.

DT = {(
xT

j

)}nt

j=1
(2)

in which T denotes target domain and DT represents the sample space in the target domain. Besides,
ns is the number of samples in the source domain. There are also nt samples in the target domain. S
and T have different probability distributions, transfer learning transfers knowledge from S to T to
execute specific tasks on T , the transfer process is shown as{(

xT
j

)}nt

j=1
→
Ds

{(
xT

j , ŷT
j

)}nt

j=1
(3)

in which ŷT
j represents the predicted label after knowledge transfer. From this, feature decoupling is

realized by transferring the features of classification to CMFD. Therefore, the features of CMFD can
be extracted to verify the integrity of an image.

Optimization problem solution for multi-task based on ResNet-50. A ConvNet Layer i can be
defined as a function: Yi = Fi (Xi), where Fi is the convolution operator, Yi is the output tensor, Xi is
the input tensor. A ConvNet N can be represented by a list of composed layers
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N = FkΘ . . .ΘF2ΘF1 (X1) = Θ
j=1...k

Fj (X1) (4)

where Θ represents the multiplication operation. There are five stages in ResNet-50, and every layer
in the last four stages has the same convolutional type, except for the first layer which performs
downsampling. Therefore, ConvNet can be defined as

N = �
i=1...s

FLi
i

(
X<Hi ,Wi ,Ci>

)
(5)

where N represents the abstracted whole network processing, i is the module serial number. Fi

represents a convolution operator, Fi
Li means that the Fi operation is repeated Li times in module i. X

denotes the input tensor in stage i. <Hi, Wi, Ci > indicates width, height and number of channels. Our
purpose is to maximize the model accuracy for given resource constraints, which can be formulated
as an optimization problem.

max
d

N = Accuracy (NS (d)) + Accuracy (NT (d)) (6)

The multi-task optimization problem described above is transformed into a single optimization
problem, where NS (d) indicates that ResNet-50 has undergone optimization for image classification
tasks, and NT (d) represents ResNet-50 employed for the CMFD task, d is a scaling factor, Li, Ciare
predefined parameters in ResNet-50 and

(
H1, W1

) = (224, 224), denoted as

max
d

Accuracy
(
NT (d) |NS (d)

)

s.t.N (d) = �
i=1...S

Fd.Li
i

(
X<Hi ,Wi ,Ci>

)

Memory (N) ≤ t arg et_memory

FLOPs (N) ≤ t arg et_flops

(7)

Initially, we assume that the model is the most optimal image classification solution. According
to the steps above, this optimal solution can be adapted to the specifics of image copy-move
tampering. In the deep model, the number of iterations between layers is scaled by d. Following
feature decoupling and model optimization, the implementation of a multi-task ResNet-50 exhibits
significant advantages. It effectively circumvents catastrophic forgetting while also improving the
detection accuracy for the CMFD tasks.

2.2 Tampered Image Positioning Algorithm

The MFPN incorporates top-down and bottom-up bidirectional fusion branches, which combine
low-level features information and high-level semantic information to improve the accuracy of
semantic representation [21]. Therefore, IMTNet leverages the inherent multi-scale and hierarchical
characteristics of the network to construct MFPN, which greatly enhances its representational
capabilities and localization quality. Moreover, it reduces the cost of building MFPN. The output
results of the three matching maps and their combination are shown in Fig. 3a,b show the forgery
image and the ground truth mask, and Fig. 3c–f shows the results of the three up-sampled matching
maps I, II and III and the final suspicious area location results.
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Figure 3: The output results of the three matching maps and their combination

The numerous untrained forgery classes or objects result in difficulty in applying a classic DNNs
model to address those data. Therefore, an auxiliary image tampering localization model is proposed
to learn the correlations between the rich hierarchical features. In the proposed scheme, P features are
extracted for each image, which are the different features of the image after applying different convolu-
tion operators to the image. Assuming that sets of the feature point is P = (P1, P2, . . . , Pi, . . . , PN×N),
the M-dimensional description operator of P can be expressed as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p1,1 . . . p1,i . . . p1,M

p2,1 . . . p2,i . . . p2,M

. . . . . . . . . . . . . . .

pi,1 . . . pi,i . . . pi,M

. . . . . . . . . . . . . . .

pN×N,1 . . . pN×N,i . . . pN×N,M

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

where the parameter M represents the depth of the feature, which is the number of channels, N × N
represents the number of candidate pixels or the size of the feature maps in the candidate matrix. In the
matching localization algorithm, the feature correlation coefficient between the defined feature points
is denoted as

Pci =
(

Pci,1
, Pci,2

, . . . , Pci,i , Pci,j , . . . , Pci,N×N

)

= 1
M

⎡
⎢⎢⎢⎣

∥∥pi,1 − p1,1

∥∥
2

. . .
∥∥pi,M − p1,M

∥∥
2∥∥pi,1 − p2,1

∥∥
2

. . .
∥∥pi,M − p2,M

∥∥
2

...
...

...∥∥pi,1 − pN×N,1

∥∥
2

. . .
∥∥pi,M − pN×N,M

∥∥
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦

(9)

where the subscript i and j represent the localizations of feature point Pi and Pj in the corresponding
matching map. Pci,j is the matched measurement and represents the negative feature correlation
coefficient between the feature point Pi and Pj. The definition of the correlation coefficient represents
that the closer Pci,j is to 0, the more similar Pi and Pj are.

In the IMTNet, the 2NN matching algorithm [22] is used to reduce the matching errors. Assume
Pci,j is the second minor characteristic correlation coefficient and Pci,k

is the third minor characteristic
correlation coefficient, Pci,j and Pci,k

satisfy the following condition:

Pci,j

Pci,k

≤ TL (10)

The relevant features can be filtered according to Eq. (10) while TL = 0.65.
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In Eq. (9), set α = Pci,j , P (X) is transformed into a binary classification problem by setting it to
an activation function that approximates the sigmoid function as

P
(
Xi,j

) =

⎧⎪⎪⎨
⎪⎪⎩

2
1 + eα

, if
Pci,j

Pci,k

< TL

2
1 + β × eα

, others
(11)

where P
(
Xi,j

) ∈ [0, 1], β = 2. It is used to make the unmatched coefficient approach 0.

Finally, the feature matching coefficient P
(
Xi,j

)
is filled in the localization of the matching map.

In this way, other feature points search for the best matching coefficients and fill in the matching
localizations matrix. The hyperparameter k, v, and l are based on the input feature depths of the MFPN
blocks I, II and III. L (X) stands for three matching map combinations. The data in blocks I, II and III
of MFPM is obtained through processing by the second, third, and fourth modules of the ResNet-50,
respectively, denoted as

L (X) = kLI (X) + vLII (X) + lLIII (X) (12)

where LI (X), LII (X), and LIII (X) represent the numerical matrices of the first, second, and third
modules, respectively, in the MFPM that is processed with the 2NN matching algorithm. The
hyperparameter k, v, and l are obtained as

k = 32
(32 (I) + 48 (II) + 64 (III))′ , v = 48

(32 + 48 + 64)
′ , l = 64

(32 + 48 + 64)
′

k + v + l = 1
(13)

where 32, 48, and 64 represent the number of channels in MFPM for locks I, II and III, respectively.

Task relevance can be trained based on the premise that similar tasks share the same model
weights, and these tasks can be transformed or low-rank regularized to obtain richer representations.
The feature decoupling approach used in this paper aims to capture multiple aspects of task relevance
properties, such as sparsely and low-ranking of tasks. This is achieved by decomposing the model
partial weights into the sum or product of different convolution operator components that capture
information in addition to specific task information that is beneficial to each task. The flexibility
of the feature decoupling technique provides a deeper understanding of the nature of multi-task,
enabling feature sharing of model weights for both image classification and image tampering detection
tasks [23].

3 Experiments
3.1 Experimental Sets

IMTNet is trained on two benchmark datasets: the CASIA2.0 [24] and CoMoFod_small [25]
dataset. Meanwhile, the mentioned datasets are mixed as the target domain datasets. The blended
dataset contains many manipulated images that have been attacked, which could enhance the “quality”
of the dataset and improve its robustness. Moreover, MICC-F2000 [5], MICC-F600 [26], COVERAGE
[27], and DEFACTO [28] are used to conduct generalization tests. Original and tampered images from
the Ardizzone [29] dataset and the MICC-F2000 dataset are used. In addition, there are 140 images in
the dataset for the attack resistance experiments, where 35 identical images come from the Ardizzone
dataset that have undergone different tampering attacks, and in order to enlarge the size of the dataset,
35 images in the MICC-F2000 dataset are extracted that have also undergone different tampering
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attacks, totaling 70 tampered images. Thus, the interference due to different images is reduced and the
model is realized for the anti-attack experiments.

Anchor points are used in the experiment to divide the semantic information of images, such as
the visual layer, object layer, and concept layer. These points are chosen because each downsampling
greatly enhances the representation of semantic information. Additionally, the shallow features of the
images are generic, which is the reason that the shallow weights of the model are frozen.

3.2 Ablation Experiments

The ablation study is divided into two phases. The first phase assessed the similarity between
the source and target domains to identify the appropriate number of layers to freeze. The second
phase explored the correlation between the deep architecture of ResNet-50 and its performance on
the CMFD task.

Similarity between the image classification domain and CMFD domain. The deep architecture
of ResNet-50 is analyzed at various scales. An experimental comparison is conducted to evaluate
the representational capabilities of ResNet-50 when trained directly or with specific modules frozen.
Table 1 and Fig. 4 present the experimental results from alternative perspectives, respectively. The data
in Table 1 are the value of F1, accuracy (ACC), Precision (P) and Recall (R), which displays the average
values that demonstrate the characterization ability of the models when different modules of ResNet-
50 are frozen. The experiment images were obtained after data cleaning and mixing the MICC-2000
and MICC-600 datasets, the total number is 2600, and the valid data are 2560 after cleaning.

Table 1: Image level ablation experiments on ResNet-50 using MICC-F2000 and MICC-F600 datasets

Inter-layer
numbers

Only training Freeze all layers Freeze 1 layer Freeze 1, 2 layer Freeze 1, 2, 3 layer

F1
(%)

ACC
(%)

P
(%)

R
(%)

F1
(%)

ACC
(%)

P
(%)

R
(%)

F1
(%)

ACC
(%)

P
(%)

R
(%)

F1
(%)

ACC
(%)

P
(%)

R
(%)

F1
(%)

ACC
(%)

P
(%)

R
(%)

3, 4, 2, 1 65.03 57.49 60.82 72.83 74.10 60.80 79.23 69.58 75.61 62.59 81.91 70.18 73.33 61.97 73.88 72.78 76.35 62.59 85.34 71.08
3, 4, 4, 2 62.69 53.79 56.82 71.18 74.29 61.52 78.58 70.43 75.60 62.55 81.99 70.13 71.67 60.20 71.18 72.18 77.80 65.25 86.09 70.98
3, 4, 6, 3 58.35 50.47 49.02 72.03 72.78 59.90 75.73 70.03 73.39 61.32 75.33 71.53 71.49 60.37 70.18 72.83 75.60 63.20 80.54 71.23

In Fig. 4, the inter-layer relationship refers to freezing the pre-trained parameters of different
modules within the same model, obtained after training on the image classification task. And then
the weight parameters of the unfrozen modules are initialized and trained in the image copy-move
tampering detection task, while the generalization ability of the model in image copy-move tampering
detection is later measured to achieve the comparison of results in Fig. 4.

Fig. 4 shows that the model trained directly is more stochastic and less stable compared to the
pre-trained ResNet-50. It can be seen that the F1, ACC and P values are higher while the 1, 2, 3 layers
are frozen and the inter-layers are repeated 3, 4, 4, 2 times.

The experimental results in Fig. 4 indicate that the proposed IMTNet model achieves better
performance in the CMFD task by applying the feature decoupling method, while freezing the first
three module weights of ResNet-50.
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Figure 4: Interlayer relationships

The relationship between the deep structure of ResNet-50 and CMFD. In Fig. 5, the experimental
result of accuracy is weighted and summed in proportions. The experimental datasets are the mixture
of generalized experimental data based on MICC-F2000 and MICC-F600 datasets. The comparison
experiment is repeated 35 times for each group that is a series of values derived from the same
model after 35 experiments under the same conditions. Removing the two highest and the three
worst results, the first three modules are frozen to avoid disruptions of the parameter change. The
relationship between model depth and the image tampering detection task is revealed by the change
in the probability distribution of LOSS and ACC, conditioned on the number of repetitions of the
residual block in the model’s last layer.

Figure 5: (Continued)
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Figure 5: Ablation experiment of model deep layers. (a) Last module comparison. (b) Penultimate
module comparison. (c) Refined comparison. (d) Final detail comparison

Fig. 5a characterizes the relationship between the model generalization ability and the model loss
function. It can be seen from the distribution of model layers that model structure 3,4,6,6 does not
perform as well as expected while consuming more hardware resources. In addition, the generalizability
of the model is also reduced. The problem is mainly due to the model using concrete concepts to
represent targets rather than abstract regions in tampered images. Furthermore, model structures
3,4,6,1 have insufficient characterization ability and the upper bound of the generalization error and
the loss function error is large, which highlights the weakness of the model characterization ability and
the instability of the characterization.

Fig. 5b illustrates the training of the last layer while keeping the first three modules frozen, and it
also involves reducing the number of convolutional layers in the third module. Experimental evidence
reveals that the abundance of highly specific semantic features extracted from the middle and deep
layers hinders the detection of tampered images.

As demonstrated in Fig. 5c, the comparison of the generalization performance of the model
structures 3,4,2,3 and 3,4,2,2 reveals that they are comparable. Fig. 5a,c shows that the deep parameter
reduction of the model has little effect on the model’s ability in image tampering detection. This leads
to the conclusion that lightweighting the model without compromising its representational capabilities
can significantly reduce operational resource consumption and enhance computing speed. At present,
the preference is given to the model with larger loss as it is believed to possess better generalization
ability. Additionally, this model is more compact and consumes fewer resources.

Based on the results depicted in Fig. 5d, the stable and well-generalized model structure 3432 has
been selected as the optimal structure. By modifying the parameters of the last two layers of the model,
the network can better characterize the problem of “whether the image has been tampered with” with
an abstract entity description.

An exploration of the relevant properties of IMTNet. The mean values from multiple experiments
by using MICC-F2000 and MICC-F600 datasets are presented in Table 2. The pre-training datasets
we used are ImageNet-1K and ImageNet-21K. The ImageNet dataset is indeed a very common and
important source of pre-trained models in the field of transfer learning. The ImageNet-1K is the most
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commonly used subset of the ImageNet dataset, containing 1000 classes and approximately 1.3 million
images. The ImageNet-21K is the full ImageNet dataset, containing 21,841 classes and approximately
14 million images.

Table 2: Image level generation experiments on IMTNet (1), (2)

Image level generation experiments on IMTNet (1)
Pretained dataset Fine-tune

4 modules 3, 4 modules 2, 3, 4 modules
F1 (%) ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%)

ImageNet-1K 75.11 62.26 77.21 73.25 78.28 65.29 82.64 74.52 77.56 64.92 82.87 73.22
ImageNet-21K 76.56 64.13 77.53 74.76 78.60 66.01 82.91 74.83 77.16 63.97 81.94 73.89

Image level generation experiments on IMTNet (2)
Pretained dataset Fine-tune after feature decoupling

Only transfer 2, 3 modules 3 modules
F1 (%) ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%)

ImageNet-1K 78.28 65.29 85.39 73.23 77.49 64.89 84.96 71.93 78.39 66.93 84.79 72.88
ImageNet-21K 78.60 66.01 85.33 74.96 78.52 65.74 85.44 73.58 79.67 68.10 85.39 75.53

From the perspective of the generalization dataset, feature decoupling and fine-tuning are
compared in the CMFD task quantitatively. The experimental data is utilized to measure the similarity
between the image classification domain and the CMFD domain. Then, the comparison of the number
of frozen layers vs. the number of fine-tuned layers is made. The experimental results have led to the
determination that the most optimal approach involves fine-tuning the third module subsequent to
the feature decoupling process.

Fig. 6 depicts the correlation between the number of training parameters in a model and its
representation capabilities. The trainable parameters are derived by subtracting the model’s frozen
parameters from the model’s full parameters, while the model detection accuracy is derived from the
model’s performance in the generation experiments. This reveals that IMTNet exhibits outstanding
generalization performance by employing a trace of parameters.

Additionally, Fig. 7 presents the comparison between feature decoupling and fine-tuning across
five distinct dataset sizes: 166, 766, 2046, 4171, and 5337. These datasets are part of the training
dataset. After subtracting 5337 images from the training dataset, the test dataset is uniformly the
remaining 15,328 images. The highest value is taken in 25 runs. The results of the experiment indicate
that, for datasets with less than 1000 samples, fine-tuning is generally a more effective approach
compared to feature decoupling followed by fine-tuning. Fig. 7a,b portrays the relationship from
different perspectives.
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Figure 6: Generalization accuracy-training parameter

Figure 7: Comparative analysis of fine-tuning and feature decoupling. (a) F1-images number. (b)
Accuracy-images number

The following observations, derived from the comparison of the results obtained from these
experiments, have been listed below: (1) The findings from the quantitative analysis experiments
indicate that the CMFD task necessitates shallower layers for the ResNet-50 model as compared
to the image classification task. (2) Fine-tuning achieves superior performance compared to feature
decoupling when the dataset is limited in size. (3) For the ResNet-50 model, the CMFD task achieves
better performance when reducing the number of convolutional layers in the third module, compared
to reducing the number of convolutional layers in the last module.
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3.3 Anti-Attack Experiments

The anti-attack experiments of various algorithms are described below to evaluate the robustness
of the pre-trained network. 1: Rotation attack. 2: Gaussian noise attack. 3: JPEG image compression
attack. 4: Blurring attack. 5: Scaling attack.

As shown in Fig. 8, the value is used as an indicator to evaluate the detection capabilities of
various methods in different tampering environments. The curve depicted is obtained through the
quadratic interpolation of the relevant data points. In which, Fig. 8a–e show the result comparisons
under various attacks. In anti-attack experiments, the following observations are presented: (1) under
a variety of attacks, IMTNet exhibits excellent robustness compared to other methods. (2) IMTNet
possesses the property conferred by feature decoupling as seen in the comparison of ResNet-50.

Figure 8: Resistance to attack performance. (a) Rotation attack. (b) Noise attack. (c) JPEG compres-
sion attack. (d) Blur attack. (e) Scaling attack

To test the performance of IMTNet, MICC-F2000, MICC-F600 and COVERAGE datasets are
used to conduct generalization tests. Table 3 shows the value of F1, accuracy (ACC), Precision (P) and
Recall (R).

The algorithm in [19] introduces a classification task based on ResNet-50, the first row in Table 3
is the result of CMFD task by training directly on ResNet-50, it can be seen that applying the
classification task model directly to the CMFD task does not work well. However, the accuracy and
F1 values of the proposed IMTNet combining feature decoupling and transfer learning are higher
than other algorithms in different datasets. Therefore, it is believed that IMTNet exhibits better
generalization than other proprietary methods. The outcomes presented in Fig. 9 showcase the robust
localization proficiency of IMTNet in generalization experiments. The 1st and 2nd rows show the
forgery images and corresponding detection results.
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Table 3: Image generation experiments

Pretained
dataset

MICC-F2000 MICC-F600 COVERAGE DEFACTO

F1(%) ACC(%) P(%) R(%) F1(%) ACC(%) P(%) R(%) F1(%) ACC(%) P(%) R(%) F1(%) ACC(%) P(%) R(%)

ResNet-50 [19] 54.29 46.48 45.42 67.48 59.63 51.76 48.57 77.18 51.91 46.28 57.97 46.97 52.11 46.53 48.32 56.57
Zhong [6] 48.47 46.33 50.52 48.53 46.67 47.55 47.68 41.83 41.93 46.36 49.78 55.05 47.98 50.44 52.57 52.03
Chen [10] 62.16 54.49 53.43 74.33 67.91 60.15 57.47 82.94 56.35 52.63 61.18 52.22 54.92 50.17 50.37 60.38
Priyanka [3] 47.34 46.67 48.59 46.78 50.09 49.56 47.46 48.29 49.01 49.92 50.03 51.49 49.98 41.29 45.69 46.46
IMTNet 78.66 66.47 86.24 72.93 81.12 70.40 86.74 76.18 65.74 58.83 75.03 59.27 63.54 57.94 60.78 66.53

Figure 9: The CMFD results of IMTNet. a(1)∼e(1) The forgery images. a(2)∼e(2) Corresponding
detection results

4 Conclusions

In the proposed scheme, the relationship between ResNet-50 and CMFD is thoroughly demon-
strated through quantitative experiments. IMTNet is proposed by leveraging the image classification
feature domains and reducing the deep architecture of ResNet-50. Firstly, the relationship between
CMFD and deep network architecture is formulated as an optimization problem. In the CMFD
task, IMTNet exhibits outstanding performance compared to ResNet-50 and other CMFD algo-
rithms by reducing the deep structure of ResNet-50 and utilizing the feature decoupling method.
Secondly, experiments demonstrate that the IMTNet reduced the number of ResNet-50 parameters
while enhancing the generalization capability of the model. Furthermore, the integration of MFPN
improved the capability of the proposed method in detecting suspicious areas in tampered images.
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